1. Young's double slit experiment illustrates that light is a wave and exhibits interference
a) A transmission mask with two narrow slits separated by a distance h is given by

$$
t(x, y)=\delta\left(y-\frac{h}{2}\right)+\delta\left(y+\frac{h}{2}\right)
$$

This mask is located at the front focal plane of a thin lens with focal length f. The mask is illuminated with a unit amplitude plane propagating along the z -axis. A screen is placed at the rear focal plane of the lens. Draw a sketch of the setup.

b) Calculate the irradiance pattern $I_{i}\left(x_{i}, y_{i}, 2 f\right)$ on the screen. You can ignore the effects of the pupil of the lens, and be sure your answer is in terms of coordinates $\left(x_{i}, y_{i}\right)$. The field on the screen is given by

$$
\begin{aligned}
& U\left(x_{i}, y_{i}, f+d\right)=\frac{\exp (i k(f+d))}{i \lambda f} \exp \left[\frac{i \pi}{\lambda f}\left(1-\frac{d}{f}\right)\left(x^{2}+y^{2}\right)\right] \\
& \times \mathcal{F}_{2 D}\left\{U\left(x_{o}, y_{o}, 0\right) P\left(x_{o}+\frac{d}{f} x, y_{o}+\frac{d}{f} y\right)\right\} ; \quad \xi=\frac{x}{\lambda f}, \eta=\frac{y}{\lambda f}
\end{aligned}
$$

with $d=f, P()=1$ since the pupil effects are being ignored and $U\left(x_{o}, y_{o}, 0\right)=$ $t\left(x_{0}, y_{o}\right)$. Given these requirements

$$
U\left(x_{i}, y_{i}, 2 f\right)=\frac{\exp (i 2 k f)}{i \lambda f} \mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\} ; \quad \xi=\frac{x_{i}}{\lambda f}, \eta=\frac{y_{i}}{\lambda f}
$$

and

$$
I\left(x_{i}, y_{i}, 2 f\right)=\frac{1}{(\lambda f)^{2}}\left|\mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\}\right|^{2} ; \quad \xi=\frac{x_{i}}{\lambda f}, \eta=\frac{y_{i}}{\lambda f}
$$

The Fourier transform of the transmission mask is

$$
\mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\}=2 \delta(\xi) \cos \left[2 \pi \frac{h}{2} \eta\right]=2 \lambda f \delta\left(x_{i}\right) \cos \left[\pi \frac{h y_{i}}{\lambda f}\right]
$$

Plugging into the irradiance expression

$$
I\left(x_{i}, y_{i}, 2 f\right)=4 \cos ^{2}\left[\pi \frac{h y_{i}}{\lambda f}\right]
$$

c) What is the spacing between the peaks in the irradiance pattern?

The peaks of $\cos ^{2}()$ occur when the argument is integer multiples of π, so the spacing between peaks is

$$
\Delta y_{i}=\frac{\lambda f}{h}
$$

d) How does the irradiance pattern change when h is decreased?

From part c, decreasing h causes the spacing between the peaks to increase.
e) Let's make the transmission mask have finite sized slits. The mask now looks like

$$
t(x, y)=\operatorname{rect}\left(\frac{x}{50 D}, \frac{y}{D}\right) * *\left[\delta\left(y-\frac{h}{2}\right)+\delta\left(y+\frac{h}{2}\right)\right] .
$$

What is the constraint on D relative to h so that this is a physically realizable experiment?

The setup now looks like

From the diagram, it should be evident that $D / 2 \leq h / 2$, otherwise the openings start to overlap and give an impossible transmission value of 2 in the overlap regions. Thus

$$
D \leq h .
$$

f) Calculate the irradiance pattern $I_{i}\left(x_{i}, y_{i}, 2 f\right)$ on the screen for the new transmission mask.

We know from part b that

$$
I\left(x_{i}, y_{i}, 2 f\right)=\frac{1}{(\lambda f)^{2}}\left|\mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\}\right|^{2} ; \quad \xi=\frac{x_{i}}{\lambda f}, \eta=\frac{y_{i}}{\lambda f}
$$

In this case,

$$
\begin{gathered}
t\left(x_{o}, y_{o}\right)=\operatorname{rect}\left(\frac{x_{o}}{50 D}, \frac{y_{o}-h / 2}{D}\right)+\operatorname{rect}\left(\frac{x_{o}}{50 D}, \frac{y_{o}+h / 2}{D}\right) \\
\mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\}=50 D^{2} \operatorname{sinc}(50 D \xi, D \eta)[\exp (-i \pi h \eta)+\exp (i \pi h \eta)] \\
\mathcal{F}_{2 D}\left\{t\left(x_{o}, y_{o}\right)\right\}=100 D^{2} \operatorname{sinc}(50 D \xi, D \eta) \cos [\pi h \eta]
\end{gathered}
$$

Finally,

$$
I\left(x_{i}, y_{i}, 2 f\right)=\left[\frac{100 D^{2}}{\lambda f}\right]^{2} \operatorname{sinc}^{2}\left(\frac{50 D x_{i}}{\lambda f}, \frac{D y_{i}}{\lambda f}\right) \cos ^{2}\left[\frac{\pi h y_{i}}{\lambda f}\right]
$$

g) Sketch $I_{i}\left(0, y_{i}, 2 f\right)$ when $D=h / 2$.

$$
I\left(0, y_{i}, 2 f\right)=\left[\frac{25 h^{2}}{\lambda f}\right]^{2} \operatorname{sinc}^{2}\left(0, \frac{h y_{i}}{2 \lambda f}\right) \cos ^{2}\left[\frac{\pi h y_{i}}{\lambda f}\right]
$$

2. A variation on the kinoform lens we looked at in class is called a multi-order diffractive (MOD) lens. A plot of the periodic pattern $\phi(x)$ is shown below. The peak height of the pattern is 4π. The phase profile of the MOD lens is given by $\phi\left(r^{2}\right)$.

a) Calculate the complex Fourier series coefficients a_{m} of the function $f(x)=$ $\exp (i \phi(x))$. You can modify the integration range to 0 to X to simplify the calculation.

For $0 \leq x \leq X$, the phase $\phi(x)=4 \pi x / X$ and $f(x)=\exp (i 4 \pi x / X)$. The coefficients of the Fourier series are given by

$$
a_{m}=\frac{1}{X} \int_{0}^{X} \exp \left(\frac{i 4 \pi x}{X}\right) \exp \left[-\frac{i 2 \pi m x}{X}\right] d x
$$

since $\xi_{o}=\frac{1}{X}$.

$$
\begin{gathered}
a_{m}=\frac{1}{X} \int_{0}^{X} \exp \left[-\frac{i 2 \pi(m-2) x}{X}\right] d x \\
a_{m}=\frac{1}{X}\left[\frac{-X}{i 2 \pi(m-2)}\right](\exp [-i 2 \pi(m-2)]-1) \\
a_{m}=\left[\frac{1}{\pi(m-2)}\right] \exp [-i \pi(m-2)](\sin [\pi(m-2)]) \\
a_{m}=\exp [-i \pi(m-2)] \operatorname{sinc}(m-2)
\end{gathered}
$$

b) What is the diffraction efficiency η_{m} for the MOD lens?

$$
\eta_{m}=\left|a_{m}\right|^{2}=\operatorname{sinc}^{2}(m-2)
$$

c) What diffraction order has the maximum diffraction efficiency? What is the value of the diffraction efficiency for this order?

All of the coefficients are zero, except $a_{2}=1$ since the sinc function is zero whenever the argument is a non-zero integer. The diffraction efficiency in this case is 100%.
3. A coherent system with wavelength λ and image distance z^{\prime} has a square pupil of width D.
a) Calculate the impulse response $\tilde{h}\left(x_{i}, y_{i}\right)$ of the system.

$$
\begin{aligned}
& \tilde{h}\left(x_{i}, y_{i}\right)=\frac{1}{\lambda^{2} z^{\prime 2}} \mathcal{F}_{2 D}\left\{\operatorname{rect}\left(\frac{x_{l}}{D}, \frac{y_{l}}{D}\right)\right\} ; \quad \xi=\frac{x_{i}}{\lambda z^{\prime}}, \eta=\frac{y_{i}}{\lambda z^{\prime}} \\
& \tilde{h}\left(x_{i}, y_{i}\right)=\frac{D^{2}}{\lambda^{2} z^{\prime 2}} \operatorname{sinc}(D \xi, D \eta)=\frac{D^{2}}{\lambda^{2} z^{\prime 2}} \operatorname{sinc}\left(\frac{D x_{i}}{\lambda z^{\prime}}, \frac{D y_{i}}{\lambda z^{\prime}}\right)
\end{aligned}
$$

b) Calculate the Coherent Transfer Function $\operatorname{CTF}(\xi, \eta)$ of the system.

$$
\operatorname{CTF}(\xi, \eta)=\mathcal{F}_{2 D}\left\{\tilde{h}\left(x_{i}, y_{i}\right)\right\}=\operatorname{rect}\left(\frac{\lambda z^{\prime} \xi}{D}, \frac{\lambda z^{\prime} \eta}{D}\right)
$$

c) If incoherent light is now used with the system, calculate the point spread function $\operatorname{PSF}\left(x_{i}, y_{i}\right)$.

$$
\operatorname{PSF}\left(x_{i}, y_{i}\right)=\left|\tilde{h}\left(x_{i}, y_{i}\right)\right|^{2}=\left[\frac{D^{2}}{\lambda^{2} z^{\prime 2}}\right]^{2} \operatorname{sinc}^{2}\left(\frac{D x_{i}}{\lambda z^{\prime}}, \frac{D y_{i}}{\lambda z^{\prime}}\right)
$$

d) Calculate the Optical Transfer Function $\operatorname{OTF}(\xi, \eta)$.

$$
\begin{gathered}
\operatorname{OTF}(\xi, \eta)=\mathcal{F}_{2 D}\left\{\operatorname{PSF}\left(x_{i}, y_{i}\right)\right\} ; \text { Normalize so } \operatorname{OTF}(0,0)=1 \\
\operatorname{OTF}(\xi, \eta)=\operatorname{tri}\left(\frac{\lambda z^{\prime} \xi}{D}, \frac{\lambda z^{\prime} \eta}{D}\right)
\end{gathered}
$$

e) The cutoff frequency in the ξ-direction is given by $\xi_{\text {cutoff }}$ in this case where $\operatorname{OTF}(\xi, \eta)=0$ for $|\xi|>\xi_{\text {cutoff }}$. Write an expression for $\xi_{\text {cutoff }}$.

The tri() function goes to zero when its argument is greater than or equal to one, so

$$
\frac{\lambda z^{\prime} \xi_{\text {cutoff }}}{D}=1 \Rightarrow \xi_{\text {cutoff }}=\frac{D}{\lambda z^{\prime}}
$$

4. The field at the plane $z=0$ is periodic in the x-direction and can be written as a complex Fourier series given by

$$
U(x, y, 0)=\sum_{m} a_{m} \exp \left(i 2 \pi m \xi_{o} x\right)
$$

a) Calculate the angular spectrum $A(\xi, \eta ; 0)$ of this field.

$$
A(\xi, \eta ; 0)=\sum_{m} a_{m} \delta\left(\xi-m \xi_{o}, \eta\right)
$$

b) Use the Fresnel approximation transfer function to calculate $A(\xi, \eta ; z)$, the angular spectrum a distance z away.

$$
A(\xi, \eta ; z)=\sum_{m} a_{m} \delta\left(\xi-m \xi_{o}, \eta\right) \exp (i k z) \exp \left[-i \pi \lambda z\left(\xi^{2}+\eta^{2}\right)\right]
$$

Using the multiplication properties of delta functions

$$
A(\xi, \eta ; z)=\exp (i k z) \sum_{m} a_{m} \delta\left(\xi-m \xi_{o}, \eta\right) \exp \left[-i \pi \lambda z\left(m^{2} \xi_{o}^{2}\right)\right]
$$

c) Calculate the field $U(x, y, z)$ at this new plane.

$$
U(x, y, z)=\exp (i k z) \sum_{m} a_{m} \exp \left(i 2 \pi m \xi_{o} x\right) \exp \left[-i \pi \lambda z\left(m^{2} \xi_{o}^{2}\right)\right]
$$

d) At what distance z does (there are multiple possible distances, but use the most basic one) $U(x, y, z)=\exp (i k z) U(x, y, 0)$?

We are seeking z values where
$\exp (i k z) \sum_{m} a_{m} \exp \left(i 2 \pi m \xi_{o} x\right) \exp \left[-i \pi \lambda z\left(m^{2} \xi_{o}^{2}\right)\right]=\exp (i k z) \sum_{m} a_{m} \exp \left(i 2 \pi m \xi_{o} x\right)$
Comparing both sides, we want

$$
\exp \left[-i \pi \lambda z\left(m^{2} \xi_{o}^{2}\right)\right]=1
$$

so the argument of the exponential should be integer multiples of $i 2 \pi$, which leads to the basic separation of

$$
\begin{gathered}
\pi \lambda z\left(m^{2} \xi_{o}^{2}\right)=2 \pi \\
z=\frac{2}{\lambda \xi_{0}^{2}}=\frac{2 X^{2}}{\lambda}
\end{gathered}
$$

since if this holds for $m=1$, then it will hold for higher values of m as well.
e) When this condition is met, how do the irradiance patterns at the input plane and the output plane compare?

The irradiance patterns are identical.

$$
I(x, y, z)=|\exp (i k z) U(x, y, 0)|^{2}=|U(x, y, 0)|^{2}=I(x, y, 0)
$$

