OPTI 512 Midterm Due: October 16, 2019

1. Given the following function

$$f(x) = \frac{1}{X} rect\left(\frac{x}{d}\right) * comb\left(\frac{x}{X}\right),$$

- a) What is the maximum value of d such that the rects() don't overlap?
 The comb function are a series of delta function spaced by a distance X. Therefore d ≤ X will give rect functions that don't overlap on convolution.
- b) What is the value of d such that the rects() are spaced by 2d?

 The spacing between the delta functions now needs to be X = 3d, which is 2d for the spacing plus d for the width of the rect.
- c) What is the Fourier transform $F(\xi)$ when d = X? Simplify and plot your answer.

$$f(x) = \frac{1}{X} rect\left(\frac{x}{X}\right) * comb\left(\frac{x}{X}\right)$$

$$F(\xi) = X sinc(X\xi) comb(X\xi)$$

From the definition of the comb function

$$F(\xi) = \sum_{n=-\infty}^{\infty} \operatorname{sinc}(X\xi)\delta\left(\xi - \frac{n}{X}\right)$$

Using the multiplication property of delta functions

$$F(\xi) = \sum_{n=-\infty}^{\infty} \operatorname{sinc}(n)\delta\left(\xi - \frac{n}{X}\right)$$

But sinc(n) = 0 for $n \neq 0$, so $F(\xi) = \delta(\xi)$. This should make sense since the width of the rect functions is the spacing between the delta functions and the input reduces to f(x) = 1.

- 2. An LSI system has an impulse response of $h(x) = \delta(x) 3sinc(3x)$.
 - a) What is the transfer function $H(\xi)$ of the system?

$$H(\xi) = 1 - rect\left(\frac{\xi}{3}\right)$$

This is an ideal high pass filter.

b) For the input $f(x) = cos(2\pi \xi_0 x)$, what is the output g(x) of the system? The input spectrum is

$$F(\xi) = \frac{1}{2} [\delta(\xi - \xi_o) + \delta(\xi + \xi_o)]$$

 $H(\xi)$ is 0 for $|\xi| < 1.5$, and 1 for $|\xi| > 1.5$ and technically $\frac{1}{2}$ for $|\xi| = 1.5$, although I didn't mark off for this. The output spectrum is

$$G(\xi) = F(\xi)H(\xi) = \begin{cases} 0 & |\xi| < \xi_o \\ \frac{1}{4} [\delta(\xi - \xi_o) + \delta(\xi + \xi_o)] & |\xi| = \xi_o \\ \frac{1}{2} [\delta(\xi - \xi_o) + \delta(\xi + \xi_o)] & |\xi| > \xi_o \end{cases}$$

The inverse transform now gives

$$g(x) = \begin{cases} 0 & |\xi_o| < 1.5\\ \frac{1}{2}cos(2\pi\xi_o x) & |\xi_o| = 1.5\\ cos(2\pi\xi_o x) & |\xi_o| > 1.5 \end{cases}$$

- c) What frequencies ξ_0 pass through the system? Only frequencies with $|\xi_0| \ge 1.5$ pass through the system.
- 3. Compute the complex Fourier series for the function $f(x) = \frac{x}{2}$ defined over the range $-2 \le x < 2$, with period X = 4.
 - a) Sketch a plot of f(x) over its range.

b) What is the fundamental frequency ξ_o of the series?

The fundamental frequency is

$$\xi_o = \frac{1}{X} = \frac{1}{4}$$

c) Calculate the coefficients a_m of the series. Hint: $\int u \sin(u) du = -u \cos(u) + \sin(u)$.

$$a_m = \frac{1}{4} \int_{-2}^{2} \frac{x}{2} exp(-i2\pi m \xi_o x) dx$$

Expand into real and imaginary parts

$$a_{m} = \frac{1}{8} \left[\int_{-2}^{2} x \cos(2\pi m \xi_{o} x) dx - i \int_{-2}^{2} x \sin(2\pi m \xi_{o} x) dx \right]$$

The first term is odd \times even = odd, so the integral goes to zero. The second term is odd \times odd = even, so the integral doubles.

$$a_m = -\frac{i}{4} \int_{0}^{2} x \sin\left(\frac{m\pi x}{2}\right) dx$$

This integral has the form of the integral in the hint with substitution $u = m\pi x/2$.

$$a_m = -\frac{i}{4} \left(\frac{2}{m\pi}\right)^2 \int_0^{m\pi} u \sin(u) du$$

$$a_m = -\frac{i}{m^2\pi^2}[-m\pi cos(m\pi) - 0]$$

The value of $cos(m\pi)$ just alternates between 1 and -1, so the coefficient can be written compactly as

$$a_m = \frac{i}{m\pi} (-1)^m \quad m \neq 0$$

We also need to handle the case where m=0. One application of L'Hopital's rule shows that $a_0=0$.

Alternative Method (Integration by Parts)

With

$$a_m = \frac{1}{8} \int_{-2}^{2} x exp(-i2\pi m \xi_0 x) dx$$

make the substitutions

$$u = x$$
 $dv = exp(-i2\pi m\xi_o x)dx$ $du = dx$ $v = \frac{exp(-i2\pi m\xi_o x)}{-i2\pi m\xi_o}$

then by integration by parts,

$$a_{m} = \frac{1}{8} \left[\frac{x exp(-i2\pi m \xi_{o} x)}{-i2\pi m \xi_{o}} \right|_{x = -2}^{x = 2} - \int_{-2}^{2} \frac{exp(-i2\pi m \xi_{o} x)}{-i2\pi m \xi_{o}} dx \right].$$

Continuing along

$$a_{m} = \frac{1}{8} \left[\frac{2exp(-i4\pi m\xi_{o}) - (-2)exp(i4\pi m\xi_{o})}{-i2\pi m\xi_{o}} - \frac{exp(-i2\pi m\xi_{o}x)}{(-i2\pi m\xi_{o})^{2}} \Big|_{x = -2}^{x = 2} \right]$$

$$a_{m} = \frac{1}{8} \left[\frac{2}{-i\pi m\xi_{o}} cos(4\pi m\xi_{o}) - \frac{exp(-i4\pi m\xi_{o}) - exp(i4\pi m\xi_{o})}{(-i2\pi m\xi_{o})^{2}} \right]$$

$$a_{m} = \frac{1}{8} \left[\frac{2}{-i\pi m\xi_{o}} cos(4\pi m\xi_{o}) + \frac{sin(4\pi m\xi_{o})}{2i(\pi m\xi_{o})^{2}} \right]$$

With $\xi_o = 1/4$,

$$a_m = \frac{\cos(m\pi)}{-i\pi m} + \frac{\sin(m\pi)}{i(\pi m)^2} = \frac{i\cos(m\pi)}{m\pi} = \frac{i}{m\pi} (-1)^m \quad m \neq 0$$

Again, we also need to handle the case where m=0. One application of L'Hopital's rule shows that $a_0=0$.

4. Compute the following:

a) A mask is made up of an annular region with inner radius a and outer radius b. The mask is opaque except in the region $a \le r \le b$, where the transmission is 1.0. Write an expression for the transmission t(r) of the mask.

$$t(r) = cyl\left(\frac{r}{2h}\right) - cyl\left(\frac{r}{2a}\right)$$

Remember that the diameter describes the width of the cyl function.

b) For the annular mask, what is the 0^{th} order Hankel transform $\mathcal{H}_0\{t(r)\}$?

$$T(\rho) = \mathcal{H}_0\left\{cyl\left(\frac{r}{2b}\right) - cyl\left(\frac{r}{2a}\right)\right\} = \pi b^2 somb(2b\rho) - \pi a^2 somb(2a\rho)$$

since

$$\mathcal{H}_0\left\{f\left(\frac{r}{b}\right)\right\} = |b|^2 F(b\rho) \ and \ \mathcal{H}_0\{cyl(r)\} = \frac{\pi}{4} somb(\rho)$$

Brute Force

We can also revert to brute force if needed. From the definition of the Hankel transform

$$T(\rho) = 2\pi \int_{0}^{b} J_{0}(2\pi\rho r)rdr - 2\pi \int_{0}^{a} J_{0}(2\pi\rho r)rdr.$$

In the notes, we showed that

$$\mathcal{H}_0\{cyl(r)\} = 2\pi \int_0^{1/2} J_0(2\pi\rho r) r dr = \frac{\pi}{4} somb(\rho).$$

If we make the following substitutions: r = 2br', dr = 2bdr' in the first integral and r = 2ar', dr = 2adr' in the second integral, then

$$T(\rho) = (4b^{2})2\pi \int_{0}^{1/2} J_{0}(2\pi(2b\rho)r')r'dr' - (4a^{2})2\pi \int_{0}^{1/2} J_{0}(2\pi(2a\rho)r')r'dr'.$$

$$T(\rho) = (4b^{2})\left(\frac{\pi}{4}somb(2b\rho)\right) - (4a^{2})\left(\frac{\pi}{4}somb(2a\rho)\right)$$

$$T(\rho) = \pi b^{2}somb(2b\rho) - \pi a^{2}somb(2a\rho)$$

c) The function $g(r) = \delta(r - a)$ describes ring of delta functions of radius a. What is the 0^{th} order Hankel transform $\mathcal{H}_0\{g(r)\}$?

$$G(\rho) = \mathcal{H}_0\{\delta(r-a)\} = 2\pi \int_0^\infty \delta(r-a)J_0(2\pi\rho r)rdr$$

By sifting $G(\rho) = 2\pi a J_0(2\pi a \rho)$.