1. What are the matrices corresponding to a reflection about the x-axis and about the y-axis? Show that a reflection about the x-axis followed by a reflection about the y-axis is equivalent to a rotation of 180°.
2. The plots for the phase space example are shown below. On each of them, draw the equivalent line for a point source located at $y=3 \mathrm{~mm}$ in the object plane. Based on the plots what is the required diameter of the second lens so that vignetting does not occur?

Object Plane

T_{0}

Clipping by Lens 1

R_{1}

T_{1}

R_{2}

T_{2}

3. The concept for our paraxial raytracing technique can be extended to handle anamorphic systems with toroidal and cylindrical lenses oriented along the x and y axes. The vector describing each ray now has four elements and the refraction and transfer matrices are 4×4 matrices as follows:
$\operatorname{ray}=\left(\begin{array}{c}y \\ n u_{y} \\ x \\ n u_{x}\end{array}\right) \quad \mathrm{T}_{\mathrm{k}}=\left(\begin{array}{cccc}1 & t_{k} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t_{k} \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathrm{R}_{\mathrm{k}}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\phi_{y} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\phi_{x} & 1\end{array}\right)$
Design a movie projection lens that takes a $36 \times 24 \mathrm{~mm}$ frame and projects it onto a $15.8 \times 6.7 \mathrm{~m}$ screen. You will need two toroidal thin lenses to accomplish this design. Assume the distance from the frame to the first lens is 100 mm , the distance from the first to second lens is 200 mm and the distance from the second lens to the movie screen is 40 m . What are the powers of the two toroidal lenses in the x and y directions?

