OPTI 535 Final Exam

1. (25 Points) Suppose the cornea is a conic section with radius R and conic constant K.

(a) What is difference in corneal sag between this surface and a spherical surface with the same radius?

The sag of a sphere is given by $z = R - \sqrt{R^2 - r^2}$. The sag of a conic is given by $z = \frac{1}{K+1} \left[R - \sqrt{R^2 - (K+1)r^2} \right]$. Subtract the two to get the difference is sag.

(b) Show that the axial power ϕ_a of the cornea is given by $\phi_a = \frac{(n_k - 1)}{\sqrt{R^2 - Kr^2}}$

If
$$z = \frac{1}{K+1} \left[R - \sqrt{R^2 - (K+1)r^2} \right]$$
, then $\frac{dz}{dr} = \frac{r}{\sqrt{R^2 - (K+1)r^2}}$, and
 $1 + \left(\frac{dz}{dr}\right)^2 = \frac{R^2 - (K+1)r^2}{R^2 - (K+1)r^2} + \frac{r^2}{R^2 - (K+1)r^2} = \frac{R^2 - Kr^2}{R^2 - (K+1)r^2}$

Axial power is given by

$$\phi_{a} = \frac{(n_{k} - 1)dz / dr}{r\sqrt{1 + (dz / dr)^{2}}} = \frac{(n_{k} - 1)r\sqrt{R^{2} - (K + 1)r^{2}}}{r\sqrt{R^{2} - (K + 1)r^{2}}\sqrt{R^{2} - Kr^{2}}} = \frac{(n_{k} - 1)r}{\sqrt{R^{2} - Kr^{2}}}$$

(c) Show that the instantaneous power ϕ_i of the cornea is given by $\phi_i = \frac{(n_k - 1)R^2}{[R^2 - Kr^2]^{3/2}}$ The instantaneous power is given by

$$\phi_{i} = \frac{d(r\phi_{a})}{dr} = r\frac{d\phi_{a}}{dr} + \phi_{a} = \frac{(n_{k}-1)Kr^{2}}{\left[R^{2}-Kr^{2}\right]^{3/2}} + \frac{(n_{k}-1)}{\sqrt{R^{2}-Kr^{2}}}\frac{R^{2}-Kr^{2}}{R^{2}-Kr^{2}}$$
$$\phi_{i} = \frac{(n_{k}-1)R^{2}}{\left[R^{2}-Kr^{2}\right]^{3/2}}$$

- 2. (25 Points) The local planetarium is showing a Laser Metallica show. They have three lasers to create the special effects. The wavelengths of these lasers are 480 nm, 540 nm and 630 nm and each laser has the same maximum power.
 - (a) What are the chromaticity coordinates of each laser?

The spectrum for the blue laser is given by $P(\lambda) = B\delta(\lambda - 480)$ where B is the power of the laser. The Tristimulus values are given by

$$X = \int [B\delta(\lambda - 480)]\overline{x}(\lambda)d\lambda = B\overline{x}(480)$$
$$Y = \int [B\delta(\lambda - 480)]\overline{y}(\lambda)d\lambda = B\overline{y}(480)$$
$$Z = \int [B\delta(\lambda - 480)]\overline{z}(\lambda)d\lambda = B\overline{z}(480)$$

The chromaticity coordinates are

$$x = \frac{X}{X + Y + Z} = \frac{B\overline{x}(480)}{B[\overline{x}(480) + \overline{y}(480) + \overline{z}(480)]} = \frac{0.09564}{0.09564 + 0.13902 + 0.8129501} = 0.0913$$
$$y = \frac{Y}{X + Y + Z} = \frac{0.13902}{0.09564 + 0.13902 + 0.8129501} = 0.1327$$

Similar calculations are made for the other wavelengths. For the green laser

$$x = \frac{0.2904}{0.2904 + 0.9540 + 0.0203} = 0.2296$$
$$y = \frac{0.9540}{0.2904 + 0.9540 + 0.0203} = 0.7543$$

For the red laser

$$x = \frac{0.6424}{0.6424 + 0.2650 + 0.00005} = 0.7079$$
$$y = \frac{0.2650}{0.6424 + 0.2650 + 0.00005} = 0.2920$$

(b) The three laser spots are overlapped to create a new color. If the blue laser provides 1 Watt, what powers do the red and green lasers need to put out to create a white spot? Assume the equal energy white ($x_w = 0.333$, $y_w = 0.333$).

The equal energy white point has X = Y = Z = C, where C is a constant. If the combined spectrum of the three lasers is $P(\lambda) = \delta(\lambda - 480) + G\delta(\lambda - 540) + R\delta(\lambda - 630)$, where G and R are the powers of the green and red laser, respectively, then

$$X = \overline{x}(480) + G\overline{x}(540) + R\overline{x}(630) = C$$
$$Y = \overline{y}(480) + G\overline{y}(540) + R\overline{y}(630) = C$$
$$Z = \overline{z}(480) + G\overline{z}(540) + R\overline{z}(630) = C$$

Solving these equations gives G = 0.4598 and R = 0.9234 (Also, C = 0.8223).

3. (25 Points) The Tscherning ellipse describes the solution for zero astigmatism for a thin spectacle lens and is given by

$$\phi_1^2(n+2) - \phi_1 \left[\frac{2}{q'} (n^2 - 1) + \Phi(n+2) \right] + n \left[\Phi + \frac{n-1}{q'} \right]^2 = 0$$

where n is the spectacle lens refractive index, q' is the separation between the lens and the center of rotation of the eye, ϕ_1 is the power of the front surface of the lens and Φ is the total power of the lens. Assuming n = 1.494, q' = 0.027 m and $\Phi = +4.00$ diopters:

(a) What are the two solutions for the front surface power ϕ_1 ?

Plugging in the known values gives the following quadratic equation:

$$3.494\phi_1^2 - 105.238\phi_1 + 742.704 = 0$$
.

Solving for ϕ_l gives $\phi_l = 11.29$ D and $\phi_l = 18.83$ D. In terms of the surface radii, these are 43.766 mm and 26.231 mm, respectively.

(b) What are the two back surface powers?

For a thin lens, $\Phi = \phi_1 + \phi_2$ so the back surface powers are -7.29 D and -14.83 D, respectively.

- 4. (25 Points) Suppose we want to design a new accommodating IOL based on a fluidic lens. The fluidic lens is shown in the figure below. It consists of one rigid surface and one flexible surface which form a hollow chamber. The space between the two lenses is filled with silicone oil (refractive index = 1.52). There is a reservoir off the side of the side of the lens which contains additional silicone oil. When the reservoir is compressed by the ciliary muscle extra silicone oil is pumped into the chamber causing the radius of the flexible surface to change from R1 to R2 and the thickness of the lens changes from t1 to t2. Assume that the thicknesses of the flexible and rigid surfaces are negligible.
 - (a) If we want the power of the flexible surface to be 20 diopters in the eye, what is R1?

$$\frac{1.52 - 1.336}{\text{R1}} = 20\text{D} \Rightarrow \text{R1} = 9.2\text{mm}$$

(b) To get accommodation, we want the flexible surface to increase its power to 23 diopters when the reservoir is compressed. What is R2 in this case?

$$\frac{1.52 - 1.336}{R2} = 23D \Longrightarrow R1 = 8.0 \text{mm}$$

(c) If the thickness of the uncompressed lens is t1 = 2 mm, what is the thickness t2 of the lens in the compressed state? Assume a parabolic shape for the flexible surface.

To keep the surface sag fixed at the edge of the lens (r = 3 mm), the following must be true:

$$\frac{r^2}{2R1} - t1 = \frac{r^2}{2R2} - t2 \Longrightarrow t2 = \frac{r^2}{2} \left(\frac{1}{R1} - \frac{1}{R2}\right) + t1 = 2.073 \text{mm}$$

λ	White	Color	IllumC	xbar	ybar	zbar
380	0.153	0.118	31.3	0.001368	0.000039	0.006450001
390	0.245	0.179	45	0.004243	0.00012	0.02005001
400	0.409	0.283	60.1	0.01431	0.000396	0.06785001
410	0.671	0.343	76.5	0.04351	0.00121	0.2074
420	0.84	0.359	93.2	0.13438	0.004	0.6456
430	0.878	0.35	106.7	0.2839	0.0116	1.3856
440	0.883	0.327	115.4	0.34828	0.023	1.74706
450	0.886	0.298	117.8	0.3362	0.038	1.77211
460	0.887	0.267	116.9	0.2908	0.06	1.6692
470	0.888	0.239	117.6	0.19536	0.09098	1.28764
480	0.888	0.209	117.7	0.09564	0.13902	0.8129501
490	0.888	0.182	114.6	0.03201	0.20802	0.46518
500	0.887	0.163	106.5	0.0049	0.323	0.272
510	0.887	0.146	97.2	0.0093	0.503	0.1582
520	0.887	0.124	92	0.06327	0.71	0.07824999
530	0.887	0.106	93.1	0.1655	0.862	0.04216
540	0.887	0.102	97	0.2904	0.954	0.0203
550	0.886	0.107	99.9	0.4334499	0.9949501	0.008749999
560	0.887	0.106	100	0.5945	0.995	0.0039
570	0.888	0.112	97.2	0.7621	0.952	0.0021
580	0.887	0.141	92.9	0.9163	0.87	0.001650001
590	0.886	0.198	88.5	1.0263	0.757	0.0011
600	0.887	0.279	85.2	1.0622	0.631	0.0008
610	0.889	0.394	84	1.0026	0.503	0.00034
620	0.891	0.522	83.7	0.8544499	0.381	0.00019
630	0.891	0.628	83.6	0.6424	0.265	5E-05
640	0.89	0.696	83.4	0.4479	0.175	0.00002
650	0.889	0.742	83.8	0.2835	0.107	0
660	0.889	0.766	83.5	0.1649	0.061	0
670	0.888	0.78	82	0.0874	0.032	0
680	0.888	0.791	79.8	0.04677	0.017	0
690	0.888	0.798	76.2	0.0227	0.00821	0
700	0.888	0.804	72.5	0.01135916	0.004102	0
710	0.886	0.807	68.8	0.005790346	0.002091	0
720	0.886	0.807	64.9	0.002899327	0.001047	0
730	0.885	0.813	61.2	0.001439971	0.00052	0
740	0.884	0.813	58.4	0.000690079	0.0002492	0
750	0.883	0.808	56.2	0.000332301	0.00012	0
760	0.882	0.814	55.2	0.000166151	0.00006	0
770	0.88	0.785	55.3	8.30753E-05	0.00003	0
780	0.879	0.752	55.3	4.15099E-05	0.00001499	0