Undergraduate do three problems and Graduate Students do all four problems.

1. The letters of the fine print on a medicine bottle are 1 mm high. Suppose you hold the bottle 125 mm from your eye to read it. Answer the following:
(a) What visual acuity is needed in order to resolve the letters?

Using the small angle approximation, the angular subtense of the letter is

$$
\alpha=\frac{1}{125} \mathrm{rad}=27.5 \operatorname{arcmin}
$$

A 20/20 letter subtends 5 arcmin, so this is $5.5 x$ larger, so we would expect the visual acuity to be 20/110.
(b) How many diopters does a person need to accommodate in order to focus on the letters?

The accommodation needed is $\frac{1}{0.125 \mathrm{~m}}=8 \mathrm{D}$.
(c) Based on the plot of accommodation vs. age in the notes, at about what age will this level of accommodation be the maximum a person can do?

Somewhere around 25 years old.
(d) Suppose you only have 2.5 D of accommodation and now move the bottle to a distance of 400 mm to focus on it. What visual acuity is needed in this case

Using the small angle approximation, the angular subtense of the letter is

$$
\alpha=\frac{1}{400} \mathrm{rad}=8.6 \operatorname{arcmin}
$$

A 20/20 letter subtends 5 arcmin, so this is 1.7x larger, so we would expect the visual acuity to be 20/34.
2. A Stokes lens is a variable crossed cylinder. It is comprised of a plano-convex cylinder lens of power Φ and a planoconcave lens of power - Φ. The lenses are geared such that if the positive cylinder lens is rotated through an angle θ, then the negative cylinder lens is automatically rotated through an angle $-\theta$.
a) What is the combined prescription of the Stokes lens as a function of θ ?

This is an astigmatic decomposition problem. We can

write the two cylinder lenses in terms of J0, J45 and M

Sph	Cyl	Axis	J0	J45	M
0	Φ	$90-\theta$	$-\frac{\Phi}{2} \cos (180-2 \theta)$	$-\frac{\Phi}{2} \sin (180-2 \theta)$	$\frac{\Phi}{2}$
0	$-\Phi$	$90+\theta$	$\frac{\Phi}{2} \cos (180+2 \theta)$	$\frac{\Phi}{2} \sin (180+2 \theta)$	$-\frac{\Phi}{2}$

Summing the columns gives a spherical equivalent $M=0$. The crossed cylinder terms are given by
$J 0=\frac{\Phi}{2}[\cos (180+2 \theta)-\cos (180-2 \theta)]=\frac{\Phi}{2}[-\cos (2 \theta)-\cos (2 \theta)]=0$
and

$$
J 45=\frac{\Phi}{2}[\sin (180+2 \theta)-\sin (180-2 \theta)]=\frac{\Phi}{2}[\sin (-2 \theta)-\sin (2 \theta)]=-\Phi \sin 2 \theta .
$$

Based on these, the prescription of the lens is given by
$C_{R}=2 \sqrt{\Phi^{2} \sin ^{2} 2 \theta}=2 \Phi \sin 2 \theta$,
$S_{R}=0-\sqrt{\Phi^{2} \sin ^{2} 2 \theta}=-\Phi \sin 2 \theta$
$\theta_{R}=-\tan ^{-1}\left[\frac{\Phi \sin 2 \theta}{-\Phi \sin 2 \theta}\right]=45^{\circ}$
b) What is the spherical equivalent power of the Stokes lens?
$M=0$ in the previous part as is to be expected with a crossed cylinder lens.
3. Measure the wavefront $W(x, y)=-0.002\left(x^{2}+y^{2}\right)$ with a Shack Hartmann sensor for a 4 mm diameter pupil. Suppose the lenslets of the array have a focal length of 24 mm and a spacing of 1 mm .
(a) What does the unaberrated Shack Hartmann pattern look like?

See part (c)
(b) What are the focal spot shifts Δx and Δy for each spot?

The spot displacement are given by
$\Delta x=-f \frac{\partial W(x, y)}{\partial x}$ and $\Delta y=-f \frac{\partial W(x, y)}{\partial y}$. The table below summarizes the values. Use symmetry to speed the calculations.

x	y		$\Delta \mathrm{x}$	$\Delta \mathrm{y}$	$\mathrm{x}+\Delta \mathrm{x}$		$\mathrm{y}+\Delta \mathrm{y}$	
0	2	0	0.192	0	2.192			
-1	1	-0.096	0.096	-1.096	1.096			
0	1	0	0.096	0	1.096			
1	1	0.096	0.096	1.096	1.096			
-2	0	-0.192	0	-2.192	0			
-1	0	-0.096	0	-1.096	0			
0	0	0	0	0	0			
1	0	0.096	0	1.096	0			
2	0	0.192	0	2.192	0			
-1	-1	-0.096	-0.096	-1.096	-1.096			
0	-1	0	-0.096	0	-1.096			
1	-1	0.096	-0.096	1.096	-1.096			
0	-2	0	-0.192	0	-2.192			

(c) What does the Shack Hartmann pattern look like for the wavefront?

4. Given the wavefront $W(x, y)=x^{3}-3 x y^{2}+x^{2}$ over a 4 mm diameter pupil:
(a) Rewrite the wavefront in terms of polar coordinates (r, θ).

Using $x=r \cos \theta$ and $y=r \sin \theta$, the wavefront can be rewritten as

$$
W(r, \theta)=r^{3} \cos ^{3} \theta-3 r^{3} \cos \theta \sin ^{2} \theta+r^{2} \cos ^{2} \theta
$$

(b) Rewrite the wavefront in terms of normalized polar coordinates (ρ, θ).

Using $\rho=r / 2, W(r, \theta)=8 \rho^{3} \cos ^{3} \theta-24 \rho^{3} \cos \theta \sin ^{2} \theta+4 \rho^{2} \cos ^{2} \theta$.
(c) Rewrite the wavefront in terms of a linear combination of Zernike polynomials $\mathrm{Z}_{\mathrm{n}}^{\mathrm{m}}(\rho, \theta)$. Give explicit expressions for the relevant expansion coefficients $\mathrm{a}_{\mathrm{n}, \mathrm{m}}$.

Rewrite the wavefront as

$$
W(r, \theta)=8 \rho^{3}\left(\cos ^{3} \theta-3\left(\cos \theta-\cos ^{3} \theta\right)\right)+4 \rho^{2} \cos ^{2} \theta .
$$

Using

$$
\begin{gathered}
\cos ^{2} \theta=\frac{1}{2}[1+\cos 2 \theta] \text { and } \cos ^{3} \theta=\frac{1}{4}[\cos 3 \theta+3 \cos \theta], \\
W(r, \theta)=8 \rho^{3} \cos 3 \theta+2 \rho^{2}+2 \rho^{2} \cos 2 \theta .
\end{gathered}
$$

Examining a list of Zernike polynomials, we would expect the following terms:
$W(r, \theta)=8 \rho^{3} \cos 3 \theta+2 \rho^{2}+2 \rho^{2} \cos 2 \theta=a_{33} \sqrt{8} \rho^{3} \cos 3 \theta+a_{20} \sqrt{3}\left(2 \rho^{2}-1\right)+a_{00}+a_{22} \sqrt{6} \rho^{2} \cos 2 \theta$.
Note the a_{00} term is needed to cancel the constant in the a_{20} term. Comparing like terms:

$$
\begin{gathered}
8 \rho^{3} \cos 3 \theta=a_{33} \sqrt{8} \rho^{3} \cos 3 \theta \\
2 \rho^{2}=a_{20} \sqrt{3}\left(2 \rho^{2}\right) \\
2 \rho^{2} \cos 2 \theta=a_{22} \sqrt{6} \rho^{2} \cos 2 \theta \\
0=a_{20} \sqrt{3}(-1)+a_{00} .
\end{gathered}
$$

Solving these gives $a_{33}=\sqrt{8} ; \quad a_{20}=\frac{1}{\sqrt{3}} ; \mathrm{a}_{22}=\frac{2}{\sqrt{6}} ; \mathrm{a}_{00}=1$.

