Zernike Polynomials

- Application of Zernike polynomials has been used to represent both wavefront shape and corneal topography in the eye.
- Would like to recover basic shape information such as radius of curvature, astigmatism and asphericity based on Zernike coefficients.
- For wavefronts, radius of curvature and astigmatism is related to refractive error, and asphericity is related to spherical aberration.
- For corneal topography, radius of curvature and astigmatism is related to keratometry and asphericity is related to corneal eccentricity.

Radii and Astigmatic Axis

Consider the first six terms of a Zernike expansion of a surface, with $\rho=r / r_{\text {max }}$

$$
\begin{aligned}
& f(\rho, \theta)=a_{00}+2 a_{11} \rho \cos \theta+2 a_{1-1} \rho \sin \theta+\sqrt{6} a_{2-2} \rho^{2} \sin 2 \theta+ \\
& \sqrt{3} a_{20}\left(2 \rho^{2}-1\right)+\sqrt{6} a_{22} \rho^{2} \cos 2 \theta
\end{aligned}
$$

If the z axis is perpendicular to the surface at the origin, then a_{11} and a_{1-1} are both zero. We can also switch from normalized coordinates to regular coordinates such that

$$
f(r, \theta)=a_{00}+\sqrt{6} a_{2-2} \frac{r^{2}}{r_{\text {max }}^{2}} \sin 2 \theta+\sqrt{3} a_{20}\left(2 \frac{r^{2}}{r_{\text {max }}^{2}}-1\right)+\sqrt{6} \mathrm{a}_{22} \frac{\mathrm{r}^{2}}{r_{\text {max }}^{2}} \cos 2 \theta
$$

Axis of Astigmatism

The height of an astigmatic surface will oscillate up and down as it is circumnavigated. The extrema will be along the principal meridia.

$\frac{\mathrm{df}}{\mathrm{d} \theta}(\mathrm{r}, \theta)=2 \sqrt{6} \mathrm{a}_{2-2} \frac{\mathrm{r}^{2}}{\mathrm{r}_{\text {max }}^{2}} \cos 2 \theta-2 \sqrt{6} \mathrm{a}_{22} \frac{\mathrm{r}^{2}}{\mathrm{r}_{\text {max }}^{2}} \sin 2 \theta=0$
$\mathrm{a}_{2-2} \cos 2 \theta=\mathrm{a}_{22} \sin 2 \theta$
$\tan 2 \theta=\frac{a_{2-2}}{a_{22}}$ $\theta=\frac{1}{2} \tan ^{-1}\left(\frac{a_{2-2}}{a_{22}}\right)+\frac{m \pi}{2} \quad$ minteger

Two values of m will give $\theta \mathrm{s}$ that lie between 0° and 180°

Radii of Curvature

Along
$\theta_{1 f\left(r, \theta_{1}\right)=a_{00}+\sqrt{6} a_{2-2} \frac{r^{2}}{r_{\text {max }}^{2}} \sin 2 \theta_{1}+\sqrt{3} a_{20}\left(\frac{r^{2}}{r_{\text {max }}^{2}}-1\right)+\sqrt{6 a_{22}} \frac{r^{2}}{r_{\text {max }}^{2}} \cos 2 \theta_{1}}^{1}$

$R_{1}=\frac{r_{\max }^{2}}{2}\left[\sqrt{6}\left(a_{2-2} \sin 2 \theta_{1}+a_{22} \cos 2 \theta_{1}\right)+2 \sqrt{3} a_{20}\right]^{-1}$
A similar expression holds
for θ_{2}

Average Conic Constant

Equation of a conic

$$
\mathrm{z}=\frac{1}{\mathrm{~K}+1}\left[\mathrm{R}-\sqrt{\mathrm{R}^{2}-(\mathrm{K}+1) \mathrm{r}^{2}}\right] \cong\left[\frac{\mathrm{r}^{2}}{2 \mathrm{R}}+\frac{(\mathrm{K}+1) \mathrm{r}^{4}}{8 \mathrm{R}^{3}}+\ldots\right]
$$

Find expansion terms that go as ρ^{4}

$$
\mathrm{K}=\frac{8 \mathrm{R}^{3}}{\mathrm{r}_{\max }^{4}}\left[6 \sqrt{5} \mathrm{a}_{40}-30 \sqrt{7} \mathrm{a}_{60}+270 \mathrm{a}_{80}+\cdots\right]-1
$$

Spherical Aberration

$$
\begin{aligned}
& W(\rho, \theta)=a_{40} \sqrt{5}\left(6 \rho^{4}-6 \rho^{2}+1\right) \\
& d \phi=\frac{-1000}{\mathrm{r}} \frac{\mathrm{dW}(\mathrm{r}, \theta)}{\mathrm{dr}}(\text { in Diopters for } \mathrm{W} \text { in } \mathrm{mm}) \\
& \mathrm{W}(\mathrm{r}, \theta)=\mathrm{a}_{40} \sqrt{5}\left(6\left(\mathrm{r} / \mathrm{r}_{\max }\right)^{4}-6\left(\mathrm{r} / \mathrm{r}_{\max }\right)^{2}+1\right) \\
& \mathrm{d} \phi=\frac{-1000}{\mathrm{r}} \mathrm{a}_{40} \sqrt{5}\left(24 \frac{\mathrm{r}^{3}}{\mathrm{r}_{\max }^{4}}-12 \frac{\mathrm{r}}{\mathrm{r}_{\max }^{2}}\right) \\
& \mathrm{d} \phi=\frac{-24000 \mathrm{a}_{40} \sqrt{5}}{\mathrm{r}_{\max }^{4}} \mathrm{r}^{2}+\frac{12000 \mathrm{a}_{40} \sqrt{5}}{\mathrm{r}_{\max }^{2}}
\end{aligned}
$$

Keratoconus Detection

Keratoconics

Normals

Keratoconus Detection

Normal Feature

Keratoconus Detection

$\hat{\mathrm{K}}=$ unit vector of average higher order coeffcients of Keratoconus Patients
$\hat{\mathrm{N}}=$ unit vector of average higher order coeffcients of Normal Patients
$\overrightarrow{\mathrm{A}}=<\mathrm{a}_{3,-3}, \mathrm{a}_{3,-1}, \mathrm{a}_{3,1}, \mathrm{a}_{3,3}, \mathrm{a}_{4,-4}, \ldots>$

The dot product of the feature vectors and the vector under test gives a measure of how much the test vector looks like the feature vector.

Keratoconus Detection

Misclassified Cones

