## Zernike Polynomials

- Application of Zernike polynomials has been used to represent both wavefront shape and corneal topography in the eye.
- Would like to recover basic shape information such as radius of curvature, astigmatism and asphericity based on Zernike coefficients.
- For wavefronts, radius of curvature and astigmatism is related to refractive error, and asphericity is related to spherical aberration.
- For corneal topography, radius of curvature and astigmatism is related to keratometry and asphericity is related to corneal eccentricity.



## Axis of Astigmatism

The height of an astigmatic surface will oscillate up and down as it is circumnavigated. The extrema will be along the principal meridia.





## Average Conic Constant

Equation of a conic

$$z = \frac{1}{K+1} \left[ R - \sqrt{R^2 - (K+1)r^2} \right] \cong \left[ \frac{r^2}{2R} + \frac{(K+1)r^4}{8R^3} + \dots \right]$$

Find expansion terms that go as  $\rho^4$ 

$$\mathbf{K} = \frac{8\mathbf{R}^3}{\mathbf{r}_{\max}^4} \Big[ 6\sqrt{5}\mathbf{a}_{40} - 30\sqrt{7}\mathbf{a}_{60} + 270\mathbf{a}_{80} + \cdots \Big] - 1$$











