OPTI 512R: Linear Systems, Fourier Transforms


Recommended Texts

  • Jack Gaskill’s LINEAR SYSTEMS, FOURIER TRANSFORMS, AND OPTICS
  • Joseph W. Goodman’s INTRODUCTION TO FOURIER OPTICS
  • Tyo, JS, Alenin A.  Field Guide to Linear Systems in Optics. SPIE Press. 2015.

Back to Top


Course Outline

Mathematical Background

  • Complex numbers  Notes 1_12
  • Special functions, the impulse function and functions based on the impulse  Notes 13_27
  • Harmonic Analysis and the Fourier Series, truncated Fourier series  Notes 28_45
  • Operators and Linear Shift-Invariant Systems. Convolution and its properties  Notes 46_58
  • Fourier Transform and its properties  Notes 59_69
  • Convolution Theorem and other special theorems for the Fourier transform (Rayleigh energy, Wiener-Khinchine)  Notes 70_71
  • Two-dimensional functions, Fourier transforms, and convolution. The Hankel transform and the Radon transform.  Notes 72_82

Signal Processing and Sampling

  • Filters: Low Pass, High Pass, Band Pass; Amplitude and Phase Filters  Notes 83_89
  • Signal processing, noise reduction, equalization  Notes 90_93
  • Sampling and Reconstruction; Aliasing  Notes 94_104
  • Discrete Fourier Transform and Discrete Convolution  Notes 105_111

Electromagnetic Wave Propagation and Diffraction

Imaging Systems and Fourier Optics

  • Fresnel diffraction from Lenses and Fourier transforming properties of lenses  Notes 152_159
  • Diffraction limited imaging systems  Notes 160_167
  • Performance of optical imaging systems with coherent and incoherent illumination, OTF, MTF, PSF, Aberrations  Notes 168_178

Back to Top


Homework

Back to Top


Homework Solutions

Back to Top


Midterms

Back to Top


Finals

Back to Top


Recitations

Back to Top


Demos

Back to Top


Videos

Back to Top