
           

Surgery is the preferred method of treatment for 
most pancreatic neuroendocrine tumors (PNETs), 
particularly functional PNETs or those greater 
than 2 cm in largest dimension. Existing 
techniques include intraoperative ultrasound and 
manual palpation, both of which have inherent 
disadvantages such as poor resolution and low 
contrast against normal pancreatic tissue (Fig. 1). 
This results in surgeons performing more 
demolitive resections, such as the Whipple 
procedure, when they may not be strictly 
necessary in order to ensure total removal of 
tumors [1]. Therefore, improving surgical 
localization methods could greatly improve 
patient outcome and quality of life. 

Multiphoton microscopy (MPM) is an optical 
imaging technique capable of visualizing intrinsic 
biomarkers through two-photon fluorescence 
(Fig. 2), and collagen through second harmonic 
generation (SHG), notably without the aid of 
exogenous labels and with increased penetration 
depth compared to conventional microscopy [2]. 

Formalin-fixed paraffin-embedded PNET (n=27) and normal 
pancreas (n=21) samples were imaged with a multiphoton 
microscope at five excitation and emission wavelengths 
corresponding to four endogenous fluorophore and SHG signals 
(Fig. 3A). Images covered an area approximately 4 mm by 4 mm. 
Texture features were then extracted using Haralick’s method [3], 
and a computer model trained to classify the samples using 
linear discriminant analysis [4]. Sets of one to six features were 
tested, and models assessed using a leave-one-out-approach. 
Accuracy of classifiers was evaluated as the ratio of the number 
of correctly identified samples (Fig. 3B).

Ultimately, we demonstrate that wide-field fluorescence imaging is a valuable tool for 
monitoring whole-organ expression of labeled markers. This technique could potentially be 

applied in vivo for longitudinal assessment of a single animal, further increasing the 
translation and impact of lineage tracing.
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Results

Conclusions

Our work tests the use of MPM as a new method 
of microscopic tumor localization by applying 
this data to novel machine learning algorithms 
designed to automatically classify tissue types. 
Previous work has shown that fixed frozen 
samples are able to be classified accurately using 
this method; this work further probes whether 
sample preparation affects our results.

We have demonstrated that using texture analysis 
with MPM images, we are able to distinguish 
between PNETs and normal pancreatic tissue to 
91.7% accuracy. By building this model, we can 
begin to test which imaging wavelengths and 
texture features are optimal for distinguishing the 
tissue types, which in turn provides guidelines for 
the development of new surgical guidance 
instruments. This supports the continued 
investigation of MPM as a clinical imaging 
technique and lays the groundwork for the 
integration of machine learning methods to real 
time imaging. 
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Fig 3. (A) Emission spectra for the four endogenous fluorophores that dominate four of the five MPM 
channels for an excitation wavelength of 344 nm [5]. Actual excitation wavelengths used for all five MPM 
channels are listed in the legend. Colored overlays correspond to detection wavelength ranges for each 
channel. (B) The method used to determine optimal texture features for classification.
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Fig 4. Visualization of features and correlation between imaging channels. (A) Z-score dendrogram of 
features for each sample, and (B) a heat matrix showing average correlation between imaging channels for 
all samples. (C) Accuracy of classifiers defined as number of correctly labeled samples out of total samples.
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Fig 5. Selected MPM images for two tumor and one normal sample. Hematoxylin and eosin (H&E) images 
were obtained for samples for ground truth validation. Brightness was increased by 40% and contrast by 
20% for MPM images for improved viewing.
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Fig 6. (A) LDA projections for n=2 to n=6 
features. As the number of features 
increases, separation between tumor and 
normal classes increases. (B) Receiver 
operator characteristic (ROC) curves for 
classifiers using n=1 to n=6 features and their 
area under the curve (AUC) values. 
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Fig 1. (A) 
Intraoperative 
laparoscopic 
sonography and 
(B) 
intraoperative 
sonography of 
gastrinomas [1]. 
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A B Fig 2. (A) 
Traditional 
microscopy using 
single photon 
excitation. (B) 
Multiphoton 
microscopy using 
two photon 
excitation [2].
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