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Background and Aim(s) Methods

Figure 3: (A) Generation of a gray-level co-occurrence matrix from a DGAST multi-photon image. Each element of the GLCM is the frequency of pixels with in-
tensity = [row, column] values being immediately adjacent, ex: element [3, 17] = # of pixels with intensity 3 next to pixels of intensity 17 in either the horizontal, 
vertical, or diagonal direction, depending on the GLCM. Shown is one of thirteen equations for image texture described by Haralick [3], contrast, where p(i,j) = 
(i,j)th entry in the GLCM and Ng = number of distinct gray levels in quantized image. (B) Process of down-sampling images, done through the averaging of 
pixels within n x n regions corresponding to the degree of downsampling to create pixels for the lower resolution images (C) Flow diagram of the process used 
to determine the optimal imaging channels and resolution. The threshold for features correlated to each principal component was a correlation greater than the 
standard deviation.

Model Improvements

Figure 4: Top row - PCA-LDA classification accuracy in relation to degree of down-sampling. The drop in classification accuracy for the down-sampling of eight 
was great enough to remove it from subsequent analysis. Middle row - proportion of each channel used to achieve highest classification accuracy at different 
resolutions. In all but a single case, either the FAD or Lipofuscin channel were used in the greatest proportion. Bottom row - result of only using features from 
the FAD and LIpofuscin channels which show a marked improvement in classification accuracy at lower image resolutions.

Results 

Conclusions

Figure 5: Models of various image sampling methods (adapted from Teo et 
al. [4]) (left) and an example of how a point spread function (PSF) would be 
incorporated into this model, i.e., by convolving the original high-resolution 
image data by a PSF model based on the system optics (right). 
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Duodenal gastrinoma (DGAST) neoplasms are commonly diagnosed at a 
late stage due to their characteristically small size and slow growth. Their 
tendency to grow diffusely in the duodenum [Figure 1] complicates 
surgical removal, increasing the chance of incomplete resection [1]. 

Figure 2: Depiction of the motivation for this work. (A) Illustration of a multi-modal laparascope with: 1. a 
wide-field fluorescence probe meant to detect labeled fluorescence for receptors highly expressed by 
DGASTs, and 2. a multi-photon microscopy (MPM) probe designed to use label-free contrast generated from 
tissue autofluorescence to identify normal and malignant cells. (B) The five autofluorescence channels and 
separate tissues of interest that were used to characterize the DGAST samples (normal tissue bounded in 
green, tumor bounded in red). (C) Receiver operating characteristic curves of linear-discriminant analysis 
image classifiers. Texture features were extracted from the MPM images and used to train these classifiers 
that correctly distinguished between images of tumor vs normal duodenal tissue with a high level of accuracy. 
(D) Determining which channels result in the greatest classification accuracy at varying levels of image 
resolution can help us predict the optimal paramters for the MPM probe that will be incorporated into the 
laprascope system. Doing so would significantly reduce acquisition time without sacrificing diagnostic power.

Figure 1:
Multi-focal neuroendocrine tumors (NETs) that have 
grown in the submucosa of the small bowel, indicated 
by the white arrows. 
Current intraoperative imaging techniques are not ca-
pable of determining if these small tumors have been 
fully removed during surgical resection. Incomplete 
removal of tumors has been linked to decreased pa-
tient survival [2]. 
Resected samples are sent to pathology, where a 
lengthy process of examination is performed to 
determine if an adequate amount of healthy tissue 
surrounds the tumor, indicating that all cancer cells 
have been removed. 
Surgical revision for incomplete removal is 
detrimental to patient well-being, necessitating a 
method for rapid assessment of tumor resection sites 
during the time of procedure.   

We have investigated the use of multiphoton microscopy (MPM) to 
generate label-free images of human DGASTs. The high spatial resolution 
and imaging depth of MPM supports its incorporation as a margin analysis 
probe into a multimodal laparoscope [Figure 2 A]. MPM channels were 
tuned to collect signal from endogenous fluorophores with known spectra 
and links to cell pathways perturbed in cancer development [Figure 2 B]. 
Classifiers trained on MPM image texture features of formalin-fixed paraf-
fin-embedded specimens discerned between images of normal and malig-
nant tissue with a high degree of accuracy [Figure 2 C]. Acquisition of 
multiple channels is unfeasible for clinical use, requiring optimization of 
imaging parameters [Figure 2 D].

B

Images are first transformed into gray-level co-oc-
currence matrices (GLCM), which are generated for 
four pixel pair orientations and averaged due to the 
random orientation of tissue during in-vivo imaging 
leading to rotational independence.  [Figure 3 A]
Images were then down-sampled to reduce their 
spatial resolution [Figure 3 B], and texture feature 
extraction was repeated. Principal component anal-
ysis (PCA) was used to eliminate redundancy in the 

texture features prior to the training of linear dis-
criminant analysis (LDA) classifiers. PCA-LDA clas-
sifier accuracy was measured using a leave-one-out 
approach with all possible combination of features 
within feature subsets ranging from 2 to 7 features. 
The original MPM features most correlated with the 
PC features resulting in the highest PCA-LDA clas-
sifier accuracy were then extracted for each degree 
of image down-sampling [Figure 3 C]. 

Several assumptions are being made with this 
model and it is limited by the initial acquisition 
being done using fixed tissue. The inclusion of 
image sampling and point spread function models 
[Figure 5] specific to the system of interest would 
improve the utility of the proposed methods for de-
termining design parameters.  

Texture features of label-free multi-photon 
microscopy images result in a high accuracy of 
classification between duodenal tissue types using 
linear discriminant analysis. 
Classification accuracy is changed in basic 
models of lower image resolutions, suggesting 
boundaries of acceptable imaging parameters. 
The improvement of classification accuracy with 
elimination of channel features based on this 
optimization process indicates potential utility for 
system design [Figure 4]. 
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