Background

Lineage tracing using fluorescent reporters is a common tool for monitoring expression of genes and transcription factors in stem cell populations. For example, ZBP-89 (mouse Zfp148) is a transcription factor that plays a role in GI stem cell maintenance and cellular differentiation [1]. Previous studies using a Zfp148CreERT2 transgenic line demonstrated expression of ZBP-89 in both intestine and colonic stem cells and provided insight into how ZBP-89 protein expression contributes to the formation of colon adenomas and progression during the early stages of colon cancer [2].

While lineage tracing is a useful tool, it is commonly done with high magnification microscopy, limiting the generalizability of observations given the small field of view and thin sections. Furthermore, this requires extensive tissue processing, which is time consuming and requires sacrificing the animal. Additional knowledge could be elucidated by measuring expression of labeled markers across entire organs and with minimal tissue processing.

Objective

Our objective is to demonstrate the use of wide-field fluorescence imaging to perform rapid whole-organ, lineage tracing of ZBP-89 in a mouse model.

Methods

- We generated a cohort of tdTomato-labeled Zfp148CreErT2 mice with wild type littermates.
- Tamoxifen was injected to induce the tdTomato Cre.
- Mice were euthanized by CO2 inhalation, organs were explanted.
- A wide-field fluorescent imaging system (Fig 2) was used to measure tdTomato fluorescence in the GI tract, stomach, and liver.
- Measurements taken at 24 hours, 3 weeks, 6 weeks and 12 months.

Images were dark subtracted and normalized by light source power and a flat-field image to correct for illumination nonuniformity.
- Region of interest was drawn for each organ using ImageJ.
- The average grey value of the region of interest was calculated to quantify the fluorescent intensity (Fig 3).
- Tissues were cryopreserved and sectioned, and inspected under a fluorescent microscope for ground-truth comparison.

Results

- Our results confirm that ZBP-89 is expressed ubiquitously in the gastrointestinal tract (Fig 4).
- The wide-field fluorescence results show concordance with fluorescence microscopy - we see that the level of fluorescent signal correlates with the abundance of cells expressing the labeled marker (Fig 5).
- We observe a small amount of tdTomato expression in the liver, which is consistent with literature showing Zfp148 in hepatic cells [4].
- Quantification of the images shows statistically significant increase of fluorescent signal across the GI tract between transgenic and wild type animals (Fig 7).

We observe a gradient of decreased expression from proximal intestine to distal, suggesting increased differentiation in the proximal intestine.

Conclusions

Ultimately, we demonstrate that wide-field fluorescence imaging is a valuable tool for monitoring whole-organ expression of labeled markers. This technique could potentially be applied in vivo for longitudinal assessment of a single animal, further increasing the translation and impact of lineage tracing. Further innovation could be made by monitoring multiplexed fluorescent labels (Fig 8) [5].

Acknowledgements

We would like to thank other members of the Merchant and Sawyer laboratories for support. Research reported in this publication/presentation was supported by the National Cancer Institute of the National Institutes of Health under award number P30-CA037342. Noelle Daigle1, Heyu Song2, Ricky Sontz2, Juanita L. Merchant2, Travis W. Sawyer1,2

Wyant College of Optical Sciences1, College of Medicine2, University of Arizona

References