Melanoma Screening With Smartphone Spectroscopy
Justina Bonaventura\textsubscript{1}, Thomas Graham Knapp\textsubscript{2}, John Koshel\textsubscript{1}, Travis William Sawyer\textsubscript{1,2}
1Wyant College of Optical Sciences, 2Department of Biomedical Engineering

Motivation
Melanoma accounts for 1\% of all skin cancer diagnoses in the US yet it results in the most deaths with an estimated 7,180 fatalities each year1. This situation is made more dramatic by the higher incidence of melanoma cases in rural or remote places with less access to state-of-the-art medical care2. Earlier diagnosis could be effective in increasing the survival rate and ease of treatment. Localized melanoma has a 99\% five-year survival rate, while distant melanoma which has spread to other areas of the body has only a 27\% five-year survival rate1.

Objective
Develop a low cost, easy to use, in vivo diagnosis tool to increase accessibility and ease of melanoma screening.

Proposed Solution
- A smartphone spectrometer attachment that couples to the phone's camera.
- A corresponding application which provides spectral analysis to catch signatures of melanoma such as those documented in figure 24.

Results
Initial measurements made with the benchtop model show promise for key feature identification.

Spectrum can then be extracted from the image pixelwise into the individual color channels.

Next Steps
- Spectrum will be calibrated to wavelength.
- Spectrometer model will be fine tuned to maximize spectral resolution.
- Case to hold spectrometer directly to the phone will be developed.

Conclusions
- This method shows promise for detecting melanoma.
- When fully implemented this method would allow for low-cost point-of-care diagnosis.

Acknowledgements-
Special Thanks to Rachel Ulanch, and Tech Launch Arizona Grant Number UA21-241

References-
1 American Cancer Society publications, Cancer Facts & Figures