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1
SMALL PORTABLE NIGHT VISION SYSTEM

RELATED APPLICATIONS

This application claims the benefit of priority of U.S.
Provisional Application No. 62/113,656, filed on Feb. 9,
2015, the entire contents of which application(s) are incor-
porated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to night vision
systems, and more particularly, but not exclusively, to night
vision systems that are compact in size due to the design of
one or more of the optical system and the light detector
module.

BACKGROUND OF THE INVENTION

Existing night vision systems, which include optics, a
detector, a display, and power supply, are bulky, because
state-of-the-art devices are optimized for resolution and
sensitivity, but not size and weight. Three types of night
vision technologies are currently deployed. A first one
makes use of an image intensifier, which amplifies light
~30,000 to 1,000,000 times, usually at the wavelength range
of 0.4 to 1 micron. Since moonlight or starlight is usually
present at night, a scene can be made visible provided there
is enough amplification with high signal-to-noise ratio. The
image intensifier includes a photocathode, a single or mul-
tiple microchannel plate, and a phosphor screen that emits
green light, to which the human eye is most sensitive. Light
is absorbed by the photocathode and converted to electrons,
which are amplified by the microchannel plate. The elec-
trons are then accelerated to the phosphor screen at high
voltage (~600-900V), resulting in the generation of more
light. In a typical night vision system, the image intensifier
is sandwiched between the imaging optics and eyepiece,
resulting in a bulky tubular structure. The image intensifier
can also be coupled directly to a CCD detector by using
intermediate optics or a fiber bundle.

A second night vision technology is application of active
illumination in near infrared wavelengths (~0.7 to 1 micron)
and detection using a conventional silicon based focal plane
array such as a CCD or CMOS. The technique is used
extensively indoors. For outdoor applications, the range of
view is limited by the intensity and directionality of the
illumination source. A third technology is thermal imaging.
Objects at ambient temperature emit long wavelength infra-
red radiation at 7.5 to 15 microns. The radiation can be
detected using InSb, InGaAs, HgCdTe, a quantum well
infrared photodetector (QWIP), or microbolometer focal
plane arrays. In many applications, the thermal image is
combined with a visible image acquired using conventional
silicon focal plane array to provide a thermal map of an
object or scene.

SUMMARY OF THE INVENTION

In one of its aspects the present invention provides low
weight and size, portable night vision systems with direct
line of sight, utilizing freeform optics and compact integra-
tion of detectors and displays. For example, one particularly
useful optical design of the present invention incorporates
wedge-shaped lenses having freeform surfaces in both the
collection optics and display optics. In this regard, exem-
plary designs of the present invention may include a wedge-
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shaped, freeform objective as the collection optics and a
wedge-shaped, freeform eyepiece as the display optics. The
collection optics of the present invention may capture an
image of a scene for amplification by an image intensifier.
The image intensifier may electrically communicate through
appropriate electronics, such as a computer, with the micro-
display for displaying the intensified image. As used herein,
the term “electrically communicate” is defined to include
both wired and wireless communication and combinations
thereof. The appropriate electronics, such as a computer,
may be a physically separate unit from the microdisplay and
image intensifier, or may be incorporated as part of one or
more of the image intensifier and microdisplay. The display
optics of the present invention may be configured to form an
image of the microdisplay at an eye pupil for viewing by a
user.

For instance, in one exemplary configuration the present
invention may provide a compact night vision system
including an imaging device configured to receive light from
a scene and a microdisplay disposed in electrical commu-
nication with the imaging device for generating an image to
be viewed by a user. The image may be relayed to the user
by a wedge-shaped, freeform eyepiece which has a first
freeform surface positioned to receive light from the micro-
display, a second freeform surface configured to receive the
light transmitted into the body of the eyepiece from the first
freeform surface and configured to reflect the received light
at the second surface, and a third freeform surface config-
ured to receive the light reflected by the second freeform
surface and configured to transmit the light out of the
eyepiece. The first, second, and third freeform surfaces of
the eyepiece may be positioned to provide the wedge-shape
to the eyepiece.

In one desirable exemplary configuration, the imaging
device may be a camera, such as a thermal imaging camera.
Alternatively, the imaging device may include a wedge-
shaped, freeform objective and an image intensifier posi-
tioned to receive light transmitted out of the objective. The
image intensifier may be disposed in electrical communica-
tion with the microdisplay. The freeform objective may
include a first freeform surface configured to receive light
from a scene, a second freeform surface configured to
receive the light transmitted into the body of the objective
from the first freeform surface of the objective and config-
ured to reflect the received light at the second surface of the
objective, and a third freeform surface configured to receive
the light reflected by the second freeform surface of the
objective and configured to transmit the light out of the
objective for delivery to the image intensifier. The first,
second and third freeform surfaces of the objective may be
positioned to provide the wedge-shape to the objective.

In another of its aspects, the present invention may
provide a light detector module, which may be particularly
compact, and therefore well-suited to night vision systems.
The detector module may include a photocathode, a micro-
channel plate (MCP), a lens array, and a detector array,
FIGS. 4A-5B. The compact configuration may be provided
by a lens array coated with phosphor materials. Light
generated by phosphor material may be collected by the
microlenses of the array and focused onto and detected by
respective individual pixels of the focal plane array.

In one desirable configuration, the light detector module
may include, from a first end to a second end: a photocath-
ode layer, a microchannel plate, a lens array, and a detector
array where each element of the detector array is disposed in
registration with a respective lens of the lens array. The lens
array may include a plurality of microlenses coated with a
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phosphor layer and may include a barrier structure disposed
between two adjacent microlenses of the microlens array. In
addition, the lens array may include an Finzel lens array and
the detector may include a Faraday cup array, a delta-doped
CCD, an electrometer array, or a focal plane array.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary and the following detailed
description of exemplary embodiments of the present inven-
tion may be further understood when read in conjunction
with the appended drawings, in which:

FIG. 1-3 schematically illustrate exemplary configura-
tions of optical designs of compact imaging night vision
systems in accordance with the present invention;

FIGS. 4A-4C schematically illustrate an exemplary con-
figuration of a light detector module in accordance with the
present invention comprising a phosphor coated microlens
array and focal plane array;

FIG. 5A schematically illustrates a further exemplary
configuration of a light detector module in accordance with
the present invention comprising an Einzel lens array and
Faraday cup array; and

FIG. 5B schematically illustrates an exemplary configu-
ration of a light detector module in accordance with the
present invention comprising an Einzel lens array and a
delta-doped charge-coupled device.

DETAILED DESCRIPTION OF THE
INVENTION

Referring now to the figures, wherein like elements are
numbered alike throughout, the present invention may pro-
vide particularly compact and portable night vision systems,
where the compact and portable features are due in part to
one or more of the design of the optical system 100 and/or
light detector module 400. For example, in one of its aspects
the present invention may provide an optical system layout
that is compact due to the inclusion of freeform optics, such
as a wedge-shaped, freeform lens 110, 120 (e.g., a prism-
lens), FIGS. 1-3, for example. The freeform optics may be
the collection optics 120, the display optics 110, or both.

In exemplary configurations of the present invention as
illustrated in FIGS. 1-2, a freeform objective 120 may be
provided in the form of a wedge-shaped, freeform prism-
lens. Likewise a freeform eyepiece 110 may be provided in
the form of a wedge-shaped, freeform prism-lens. Each of
the freeform objective 120 and freeform eyepiece 110 may
define separate optical paths, such as a night vision capture
path 10 and night vision image display path 12, respectively.
The night vision capture path 10 may include the freeform
objective 120, an objective stop, and an image intensifier 20,
while the night vision image display path may include the
freeform eyepiece 110 prism and a microdisplay 30. The
image intensifier 20 may operate in the 0.4 to 1 micron range
and may receive and intensify an image from the capture
path 10, and then electronically communicate the intensified
image to the microdisplay 30 for use in the night vision
image display path 12. Both the freeform objective 120 and
the freeform eyepiece 110 may be formed by multiple
freeform optical surfaces S1-S3, S4-S6.

In the capture path 10, photons from a scene may pass
through the objective stop and reach the detector (e.g., the
image intensifier 20) through consecutive refraction and
reflections by the prism-like objective 120. A principal
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advantage of the exemplary configurations of FIGS. 1-2 is
the folding of the optical path inside a solid prism such as the
freeform eyepiece 110 and/or freeform objective 120, which
enables the detector 20 and/or microdisplay 30 to be pack-
aged to the side. (In contrast, state-of-the art night vision
goggles suffer from the large volume due to the co-linear
restriction of conventional rotationally symmetric optics.) In
the display path 12, the captured image may be processed in
real time and displayed on the microdisplay 30. Light from
the microdisplay 30 may thus propagate through the
freeform eyepiece 110, via multiple consecutive refractions
and reflections, and reach the eye pupil.

Turning to FIG. 1 in more detail, the exemplary freeform
objective design shown therein has a field of view of 40
degrees and system F/number of 1.1, which achieves a fast
objective 120 needed for night vision use. The display
design shown in FIG. 1 offers an equivalent 40-degree
field-of-view (FOV), a 25 mm eye clearance, and a 10 mm
eye pupil. The overall volume of the optical system is
approximately 35 mm thick, 40 mm high, and 25 mm wide,
which is substantially more compact than the state-of-the-art
night vision goggles. Example of a suitable commercially
available image intensifiers include Image Intensifier DS001
(Photek Limited, East Sussex, UK) and iStar 334 T (Andor
Technology Ltd, Belfast, UK) that combines an image
intensifier and CCD.

FIG. 2 schematically illustrates an additional configura-
tion of a compact and portable night vision system 200 in
accordance with the present invention which is similar in
certain respects to the configuration of FIG. 1. In particular
the freeform objective 120, freeform eyepiece 110, micro-
display 30, and image intensifier 20 may all be the same in
both the configurations of FIGS. 1 and 2. However, in the
configuration of FIG. 2, the freeform objective 120 is
inverted relative to the freeform eyepiece 110 to permit the
freeform objective 120 and freeform eyepiece 110 to be
positioned more closely together. For example, whereas the
freeform eyepiece 110 and freeform objective 120 in the
configuration of FIG. 1 are separated by 35 mm, in the
configuration of FIG. 2 the freeform eyepiece 110 and
freeform objective 120 are separated by 30 mm.

In yet another exemplary configuration in accordance
with the present invention, as schematically illustrated in
FIG. 3, an imaging device, such as a thermal camera module
50, operating in a 7.5 to 15 micron range may replace the
freeform objective 120 using the configuration of FIGS. 1-2.
The camera module 50 may collect information from a scene
and electrically communicate it to the microdisplay 30. An
example of a suitable commercially available thermal cam-
era module is the Quark 2 Uncooled Thermal Imaging
Camera Core (FLIR, Wilsonville, Oreg.) with 6.3 mm lens
and dimensions of 22x22x35 mm. The position of the
thermal camera module 50 may be set to provide real time
imaging close to the direct line-of-sight of the eye. Reduc-
tion of parallax between measured image and image seen by
the naked eye is important for night vision goggle applica-
tion.

An optical prescription of the exemplary freeform eye-
piece 110 of FIGS. 1-3 is listed in Tables 1-3 for surfaces S1,
S2, and S3, respectively. Of the three optical surfaces in the
freeform eyepiece 110, surface S1 is an anamorphic aspheric
surface (AAS). The sag of an AAS surface is defined by
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where z is the sag of the freeform surface measured along
the z-axis of a local x, y, z coordinate system, c, and ¢, are
the vertex curvature in x and y axes, respectively, K, and K,
are the conic constant in X and y axes, respectively, AR, BR,
CR and DR are the rotationally symmetric portion of the 4th,
6th, 8th, and 10th order deformation from the conic, AP, BP,
CP, and DP are the non-rotationally symmetric components
of the 4th, 6th, 8th, and 10th order deformation from the
conic.

Surface S2 of the freeform eyepiece 110 may be an XY
polynomial surface defined by:

02 + 2 66
7= ( ) +Z Cix"y",
L+VI-(l+k)c2x? +y) o

j=[m+ny +m+3n)2+1

where z is the sag of the freeform surface measured along
the z-axis of a local x, y, z coordinate system, ¢ is the vertex
curvature (CUY), k is the conic constant, and Cj is the
coeflicient for x™y”".

Surface S3 may be an aspheric surface with a rotationally

symmetric kinoform diffractive optical element, with the sag
of the aspheric surface defined by:

cr?
1= —
1+ V1-(1+K)2r?

+AF £ B+

Crf+ D0+ ErF? 4+ PP+ G+ HPE 4 0P,

where z is the sag of the surface measured along the z-axis
of'alocal x, y, z coordinate system, ¢ is the vertex curvature,
k is the conic constant, A through J are the 4th, 6th, 8th, 10th,
12th, 14th, 16th, 18th, and 20th order deformation coeffi-
cients, respectively.

TABLE 1

Optical surface prescription of surface
S1 of the freeform eyepiece 110

-1.348215E-02
2.004523E-03
0.998125E+01

-3.9067945E-06
—-9.5768964E-17
-2.8799927E-15
—-8.7077963E-16
—-1.5687534E+01
—-3.2949463E-01
—-2.0405356E+02
—-8.0782710E+00
—-2.72019184E-01

X Curvature (c,)

Y Curvature (c,)

Y Conic Constant (Ky)

4th Order Symmetric Coefficient (AR)
6th Order Symmetric Coefficient (BR)
8th Order Symmetric Coefficient (CR)
10th Order Symmetric Coeflicient (DR)
X Conic Constant (Ky)

4th Order Asymmetric Coeflicient (AP)
6th Order Asymmetric Coeflicient (BP)
8th Order Asymmetric Coeflicient (CP)
10th Order Asymmetric Coefficient (DP)
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6
TABLE 3

Optical surface prescription of surface
S3 of the freeform eyepiece 110

Y Radius

Conic Constant (K)

4th Order Coefficient (A)
6th Order Coefficient (B)
8th Order Coefficient (C)
10th Order Coefficient (D)
Diffraction Order
Construction Wavelength (nm)
R**2 (HCO C1)

R**4 (HCO C2)

R**6 (HCO C3)

R**8 (HCO C4)

R**10 (HCO C5)

—-1.5000000000E+01
-8.1715030467E+00
—-3.5999478362E-05
4.1811989405E-07
—-2.0382499300E-09
3.7498678418E~-12

1

550
-3.2332326174E-03
4.1482610496E-05
—-4.2185152895E-07
1.8253428127E-09
—-2.7615741244E-12

TABLE 2

Optical surface prescription of surface
S2 of the freeform eyepiece 110

Y Curvature

Y Radius

Conic Constant (SCO K | CI)

X (SCOX IC2)

Y (SCOYIC3)

X**2 (SCOX2 | C4)

X *Y (SCO XY | C5)

Y**2 (SCO Y2 | C6)

X**3 (SCOY3 | C7)

X**2 *Y (SCO X2Y | C8)

X Y**2 (SCO XY2 | C9)

Y**3 (SCO Y3 | C10)

X**4 (SCO X4 | C11)

X**3 *Y (SCO X3Y | C12)
X** *YH#ED (SCO X2Y2 | C13)
X *Y**3 (SCO XY3 | Cl14)
Y**4 (SCO Y4 | C15)

X**5 (SCO X5 | Cl16)

X**4 *Y (SCO X4Y | C17)
X**3 * Y*E2 (SCO X3Y2 | C18)
X**2 * Y3 (SCO X2Y3 | C19)
X *Y**4 (SCO XY4 | C20)
Y**5 (SCO Y5 | C21)

X**6 (SCO X6 | C22)

X**5 *Y (SCO X5Y | C23)
X**4 * Y*E) (SCO X4Y2 | C24)
X**3 * Y**3 (SCO X3Y3 | C25)
X** * Y*E4 (SCO X2Y4 | C26)
X *Y**5 (SCO XY5 | C27)
Y**6 (SCO Y6 | C28)

X**7 (SCO X7 | C29)

X*%6 * Y (SCO X6Y | C30)
X**5 % Y*E2 (SCO X5Y2 | C31)
X**4 * Y**3 (SCO X4Y3 | C32)
X**3 * Y**¥4 (SCO X3Y4 | C33)
X#*Q * YHRES (SCO S2YS5 | C34)
X *Y**6 (SCO XY6 | C35)
Y**7 (SCO Y7 | C36)

X**8 (SCO X8 | C37)

X**7 *Y (SCO X7Y | C38)
X**6 * Y**2 (SCO X6Y2 | C39)
X**5 * Y*#3 (SCO X5Y3 | C40)
X**4 * Y*E4 (SCO X4Y4 | C41)
X**3 * Y*E5 (SCO X3Y5 | C42)
X#*2 * YHREG (SCO X2Y6 | C43)
X *Y**7 (SCO XY7 | C44)
Y**8 (SCO Y8 | C45)

X**9 (SCO X9 | C46)

X**8 * Y (SCO X8Y | C47)
X#*T *YHRED (SCO XTY2 | C48)
X**6 * Y**3 (SCO X6Y3 | C49)
X**5 * Y*E4 (SCO X5Y4 | C50)
X**4 * Y*E5 (SCO X4Y5 | C51)
X**3 * Y*E6 (SCO X3Y6 | C52)
X#* *YH#ET (SCO X2Y7 | C53)

—-1.26056882299E-02
-7.93292664201E+01
1.99429650209E+00
0.00000000000E+00
0.00000000000E+00
-2.8963611697E-03
0.00000000000E+00
5.13151841830E-04
0.00000000000E+00
-1.6871196613E-05
0.00000000000E+00
-3.9628025988E-05
5.63763951591E-07
0.00000000000E+00
—-5.1451820404E-07
0.00000000000E+00
1.52902584933E-06
0.00000000000E+00
2.30036831137E-08
0.00000000000E+00
3.82949206634E-08
0.00000000000E+00
-9.3057372440E-08
—-2.3473886032E-09
0.00000000000E+00
—-2.4682522624E-09
0.00000000000E+00
-3.5764311583E-09
0.00000000000E+00
—-4.3636504848E-09
0.00000000000E+00
-1.8300632292E-10
0.00000000000E+00
-1.0237987168E-10
0.0000000000E+00
2.0693559836E-10
0.0000000000E+00
2.1203645386E-10
2.6638311623E-12
0.0000000000E+00
4.2552541871E-12
0.0000000000E+00
-4.101261981E-12
0.0000000000E+00
3.9696325158E~-12
0.0000000000E+00
1.7421792489E-11
0.0000000000E+00
2.8416565461E-13
0.0000000000E+00
7.7200373777E-13
0.0000000000E+00
—-6.188783932E-13
0.0000000000E+00
1.7935251959E-14
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TABLE 2-continued

Optical surface prescription of surface
S2 of the freeform eyepiece 110

X * Y*#8 (SCO XY8 | C54)
Y**9 (SCO Y9 | C55)

X**10 (SCO X10 | C56)

X*%9 * Y (SCO X9Y | C57)
X8 * YD (SCO X8Y2 | C58)
X5 * Y**3 (SCO XTY3 | C59)
X*%6 * Y4 (SCO X6Y4 | C60)
X#5 % Y5 (SCO X5Y5 | C61)
X##4 % Y6 (SCO XAY6 | C62)
X*#3 % Y7 (SCO X3Y7 | C63)
X2 * Y8 (SCO X2Y8 | C64)
X * Y**9 (SCO XY9 | C65)
Y**10 (SCO Y10 | C66)

0.0000000000E+00
-1.391093985E-13
—-2.6923251198E-15
0.00000000000E+00
-1.5546422781E-14
0.00000000000E+00
-1.0384073178E-14
0.0000000000E+00
3.8750232363E-14
0.0000000000E+00
-3.094245370E-14
0.000000000E+00
-3.15607172E-14

For the freeform objective 120 of FIGS. 1-2, one or more
of the surfaces (S4, S5, S6) in the design layout may utilize
a type of freeform surface, Tables 4-5. Each of the surfaces
of the freeform objective 120 was modeled as an “XY Poly”
type. The term “XY Poly” refers to a surface which may be
represented by the equation

cr?
1= —
1+ V1-(1+K)2r?

66
z= +Z Cixmy?
=
 (m+n+m+3n
J:f

where z is the sag of the freeform surface measured along
the z-axis of a local x, y, z coordinate system, ¢ is the vertex
curvature (CUY), r is the radial distance, k is the conic
constant, and C, is the coefficient for x"y”. The optical
prescriptions for these surfaces (S4 through S6) are listed in
Table 4, while the surface decenters with respect to the
global origin which coincides with the center of the eye box
are listed in Table 5.

TABLE 4

Optical surface prescription of the freeform objective 120

S4 S5 S6
Y Radius -525.2 -65 -50
k 1.324 -0.52 2.25
X**2 -0.0015 -0.002156 -1.387e-5
Y**2 -0.00025 -1.55¢-6 -1.821e-5
X**Q *Y 1.5e-5 0.00012 0.000174
TABLE 5

Optical surface positions and orientations of the freeform objective
of Table 4 with respect to the center of the objective stop

Origin of surface reference Orientation of the surface

X (mm) Y (mm) Z (mm) Rotation about X-axis 0 (°)
S4 0 0 3 5.5
S5 0 0 12 -20.5
S6 0 18 9 65
Detector* 0 -1 4 2

Note:
In Table 5, the detector coordinates are defined relative to S6, instead of the objective stop.

In another of its aspects, the present invention provides a
light detector module 400, which may be particularly com-
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8

pact, and therefore well-suited to night vision systems. Light
detector modules of the present invention are expected to
provide space-saving advantage over conventional systems,
which typically use a fiber bundle array or relay optics to
couple an image intensifier 20 to a CCD. The use of a fiber
bundle array or relay optics requires additional separation
between the image intensifier and CCD, leading to an
increased and undesirable size.

Exemplary light detector modules of the present invention
can effect night vision imaging by measurement of visible
and near infrared photons using an image intensifier in
combination with a silicon based focal plane array or
delta-doped CCD. In particular, in an exemplary configura-
tion in accordance with the present invention, the light
detector module 400 may include a photocathode 410, a
microchannel plate (MCP) 420, a lens array 430, and a
detector array 440, FIGS. 4A-5B. The process of light
amplification starts when light is absorbed in the photocath-
ode 410 and electrons are emitted. The electrons accelerate
to the microchannel plate 420 which generates more elec-
trons. The lens array 430 may be coated with a phosphor
material layer 432, FIG. 4B, may be biased relative to the
microchannel plate 420, so that electrons are accelerated
toward the phosphor coated lens array 430 to generate light.
The lens array 420 may be disposed on a substrate 435. Light
generated by phosphor layer 432 may be collected by
microlenses 434 of the array 430 and focused onto and
detected by respective individual pixels of the focal plane
array 440.

Turning to the photocathode 410 in more detail, the
photocathode 410 converts incident light into electrons by
the photoelectric effect. The quality of the photocathode 410
may be characterized by the quantum efficiency (QE), which
is defined to be the percentage of incident photons that are
converted to electrons. QE is generally wavelength depen-
dent. Depending on the required spectral sensitivity, differ-
ent photocathode materials can be used. Examples of suit-
able photocathode materials for use in the present invention
include alkali, multi-alkali alloys (lithium, sodium, potas-
sium, rubidium, cesium, antimony, silver) and semiconduc-
tor (GaAs, GaAsP, InGaAs, Cs—Te).

The MCP 420 may be positioned to receive electrons
created by the photocathode 410. The MCP 420 then ampli-
fies the electron signal, usually by >10* times. The MCP 420
may include a thin metal oxide coating to prevent ion
feedback to the photocathode 410. Suitable MCPs for use in
light modules of the present invention include Longlife™
MCP (Photonis, Sturbridge, Mass.) and F1551 MCP (Hama-
matsu Photonics, Bridgewater N.J.).

After the electrons received by the MCP 420 are ampli-
fied, the resulting electrons may be accelerated by a constant
voltage and subsequently collide with a phosphor material.
In one exemplary configuration of the present invention, the
phosphor material may be provided as a phosphor layer 432
on the microlenses 434, FIG. 4B. The transparent substrate
435 of the microlens array 430 may be biased by a positive
voltage to attract the electrons. A portion of the electron
kinetic energy may be converted to heat and the remaining
energy absorbed by the phosphor to excite the phosphor
atoms. The excited phosphor returns to the ground state by
emission of light. Phosphor materials typically emit green
light and may be made of rare earth oxides or halides, such
as P20=Y,0,S:Eu, P43=Gd,0,S:Tb, P45=Y,0,S:Tb,
P46=Y;Al;0,,:Ce, P47=Y,Si10,:Ce, for example. The type
of phosphor may be chosen to match the peak sensitivity of
the detector array and the required frame rate. High frame
rates require a phosphor with short fluorescence decay time.
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The phosphor may be deposited by the settling process, the
slurry process, the dusting process, or the phototacky pro-
cess. Information about different typed of phosphor and their
processing can be found in William M. Yen, et al., “Practical
Applications of Phosphors,” CRC Press 2007. After the
electrons are converted back to photons through the excita-
tion and de-excitation of the phosphor layer 432, the photon
signal may be detected by the detector array, such as a focal
plane array 440 which may be a CCD or CMOS detector
array, for example, FIG. 4A.

Turning to the lens array 430 more particularly, in one
particularly useful configuration of the present invention, the
lens array 430 may include a plurality of microlenses 434,
each of which may be coated with a phosphor layer 432,
FIG. 4B. The microlens array 430 may be utilized to couple
light to the CCD to reduce the separation of the image
intensifier (microchannel plate 420 and photocathode layer
410) and the focal plane array 440, leading to an overall
more compact design. The spacing, or pitch, between micro-
lenses 434 may be selected to correlate to the spacing or
pitch between light sensing pixels in the focal plane array
440, FIG. 4C. The center of each microlens 434 of the array
430 may align with the center of the active area of a
respective pixel of the focal plane array 440. By providing
a microlens array 430, and matching the microlens pitch to
that of the focal plane array 440, the lens array 430 may
increase the optical fill factor by collecting photons proxi-
mate to each pixel, and delivering such photons into the
active area of each pixel of the focal plane array 440.

The lens array 430 may be made of glass or polymer using
techniques such as resist reflow, gray scale lithography,
embossing, and casting. The material of the lens array 430
may desirably have low optical loss at the emission wave-
length of the phosphor. A barrier structure 436 may also be
provided on the lens array 430, which may include a
conducting material, such as metal or semiconductor. The
barrier structure 436 may remove excess charge build up on
the phosphor layer 432 and separate the phosphor layer 432
into different spatial regions, such that light emitted from
each spatial region is collected mainly into the single lens
434 adjacent the spatial region and respective pixel of the
focal plane array 440. The barrier structure 436 may reduce
pixel cross talk, by preventing light emitted from neighbor-
ing phosphor spatial regions from reaching the same pixel.
The barrier structure 436 may be fabricated by conventional
microfabrication techniques such as photolithography, sput-
tering, and etching.

In one exemplary configuration of the detector array of
the present invention, the lens array 430 may be fabricated
directly on top of the focal plane array 440, with a separate
transparent substrate 435, phosphor layer 432, and a barrier
structure 436 mounted on top. In another configuration, the
detector array 440 may contain the barrier structure 436, the
phosphor layer 432, and the lens array 430 directly fabri-
cated on top of the focal plane array 440, which may be
fabricated using conventional microfabrication techniques.

In another exemplary configuration of a light detector
module in accordance with the present invention, the detec-
tor module 500 may include a photocathode 510, a micro-
channel plate 520, and a micro Faraday cup array 540, FIG.
5A. (An example of a Faraday cup array suitable for use in
the present invention may be found in U.S. Pat. No. 8,866,
080 and references disclosed therein.) In this configuration,
electrons coming from the microchannel plate 520 are
detected by the array 540 of Faraday cups. An electrode 560,
such as a mesh electrode, may be placed between the
microchannel plate 520 and the Faraday cup array 540 to
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bias the electrons, and each Faraday cup may be connected
to a transimpedance amplifier which converts the current
signal to voltage signal. Further, an array of Einzel lenses
530 may optionally be placed between the microchannel
plate 520 and the Faraday cup array 540 to refocus the
electrons. (An example of an Finzel lens array suitable for
use in the present invention may be found in US Patent
Application Publication 2013/0341526. See also Tomono et
al., “Fabrication of Einzel Lens Array with One-Mask RIE
Process For Electron Micro-Optics,” Solid-State Sensors,
Actuators and Microsystems Conference, 2009. TRANS-
DUCERS 2009.) Similar to the configuration of FIG. 4A, the
size and pitch of the lenses of the Einzel array 530 may be
matched to the size and pitch of the array 540 of Faraday
cups.

In yet another exemplary configuration of a light detector
module in accordance with the present invention, the detec-
tor module 600 may include a photocathode 610, a micro-
channel plate 620, and a delta-doped CCD 630, FIG. 5B. An
example of a delta-doped charge-coupled device suitable for
use in the present invention is FastCamera 300 (FastVision
LLC, Nashua, N.H.). Electrons from the microchannel plate
620 may be detected directly by each pixel at the delta-
doped CCD 630. An electrode and/or array of Einzel lenses
640 may be placed between the microchannel plate 620 and
the delta-doped CCD 630 to bias or refocus the electrons.
The size and pitch of the lenses of the FEinzel array 640 may
be matched to the size and pitch of the delta-doped CCD
630. Alternatively a delta-doped silicon p-i-n diode array
may be used instead of the delta-doped CCD 630 to directly
detect and image low energy electrons. (See Nikzad, et al.,
“Direct detection and imaging of low-energy electrons with
delta-doped charge-coupled devices,” Applied Physics Let-
ters, Volume 73, p. 3417, 1998. Nikzad et al., “Direct
detection of 0.1-20 keV electrons with delta doped, fully
depleted, high purity silicon p-i-n diode array,” Applied
Physics Letters, Volume 89, p. 182114, 2006). Other charge
detectors, such as a MEMS electrometer array, may also be
used.

Moreover, any of the light detector modules disclosed
herein, such as those illustrated in FIGS. 4A-5B may be used
as the image intensifier 20 in the designs of FIGS. 1-3.

These and other advantages of the present invention will
be apparent to those skilled in the art from the foregoing
specification. Accordingly, it will be recognized by those
skilled in the art that changes or modifications may be made
to the above-described embodiments without departing from
the broad inventive concepts of the invention. It should
therefore be understood that this invention is not limited to
the particular embodiments described herein, but is intended
to include all changes and modifications that are within the
scope and spirit of the invention as set forth in the claims.

A number of patent and non-patent publications are cited
herein; the entire disclosure of each of these publications is
incorporated herein by reference.

What is claimed is:

1. A compact night vision system, comprising:

an imaging device configured to receive light from a
scene,

a microdisplay disposed in electrical communication with
the imaging device for generating an image to be
viewed by a user;

a wedge-shaped, freeform eyepiece including:

a. a first freeform surface positioned to receive light
from the microdisplay,

b. a second freeform surface configured to receive the
light transmitted into the body of the eyepiece from
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the first freeform surface and configured to reflect the
received light at the second surface, and

c. a third freeform surface configured to receive the
light reflected by the second freeform surface and
configured to transmit the light out of the eyepiece,
wherein the first, second and third freeform surfaces
of the eyepiece are positioned to provide the wedge-
shape to the eyepiece;

a wedge-shaped, freeform objective including:

a. a first freeform surface configured to receive light
from a scene,

b. a second freeform surface configured to receive the
light transmitted into the body of the objective from
the first freeform surface of the objective and con-
figured to reflect the received light at the second
surface of the objective, and

c. a third freeform surface configured to receive the
light reflected by the second freeform surface of the
objective and configured to transmit the light out of
the objective, wherein the first, second and third
freeform surfaces of the objective are positioned to
provide the wedge-shape to the objective; and

an image intensifier positioned to receive light trans-
mitted out of the objective through the third surface
of the objective, the image intensifier disposed in
electrical communication with the microdisplay,

wherein the image intensifier comprises a microlens
array comprising a plurality of microlenses coated
with a phosphor layer.

2. The compact night vision system according to claim 1,
wherein the imaging device comprises a camera.

3. The compact night vision system according to claim 1,
wherein the second freeform surface of at least one of the
objective and the eyepiece comprises a mirror coating.

4. The compact night vision system according to claim 1,
wherein the objective includes an objective apex end dis-
posed between the first and second freeform surfaces of the
objective at a location across from the third freeform surface
of the objective, and wherein the eyepiece includes an
eyepiece apex end disposed between the first and second
freeform surfaces of the eyepiece at a location across from
the third freeform surface of the eyepiece, and wherein the
objective apex end and eyepiece apex end are disposed
proximate one another at a selected surface of the night
vision system.

5. The compact night vision system according to claim 1,
wherein the objective includes an objective apex end dis-
posed between the first and second freeform surfaces of the
objective at a location across from the third freeform surface
of the objective, and wherein the eyepiece includes an
eyepiece apex end disposed between the first and second
freeform surfaces of the eyepiece at a location across from
the third freeform surface of the eyepiece, and wherein the
objective apex end is disposed proximate the first freeform
surface of the eyepiece.

6. The compact night vision system according to claim 1,
wherein the objective has a field of view of at least 30
degrees.

7. The compact night vision system according to claim 1,
wherein the objective has an f-number of 2 or less.

8. The compact night vision system according to claim 1,
wherein the eyepiece has an eye clearance of at least 18 mm.

9. The compact night vision system according to claim 1,
wherein the eyepiece has an eye pupil of at least 6 mm.
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10. The compact night vision system according to claim
1, wherein the microlens array comprises a barrier structure
disposed between two adjacent microlenses of the microlens
array.

11. The compact night vision system according claim 1,
wherein the image intensifier comprises a focal plane array
having a plurality of light sensing pixels, wherein each pixel
is disposed in registration with a respective microlens of the
microlens array.

12. The compact night vision system according claim 1,
wherein the image intensifier comprises from a first end to
a second end a photocathode layer, a microchannel plate,
and the microlens array.

13. The compact night vision system according to claim
1, wherein the image intensifier comprises one or more of an
Einzel lens array, a Faraday cup array, or a delta-doped
CCD.

14. The compact night vision system according claim 1,
wherein the image intensifier comprises from a first end to
a second end a photocathode layer, a microchannel plate,
and a Faraday cup array or a delta-doped CCD.

15. A compact night vision system, comprising:

an imaging device configured to receive light from a
scene,

a microdisplay disposed in electrical communication with
the imaging device for generating an image to be
viewed by a user;

a wedge-shaped, freeform eyepiece including:

a. a first freeform surface positioned to receive light
from the microdisplay,

b. a second freeform surface configured to receive the
light transmitted into the body of the eyepiece from
the first freeform surface and configured to reflect the
received light at the second surface, and

c. a third freeform surface configured to receive the
light reflected by the second freeform surface and
configured to transmit the light out of the eyepiece,
wherein the first, second and third freeform surfaces
of the eyepiece are positioned to provide the wedge-
shape to the eyepiece;

a wedge-shaped, freeform objective including:

a. a first freeform surface configured to receive light
from a scene,

b. a second freeform surface configured to receive the
light transmitted into the body of the objective from
the first freeform surface of the objective and con-
figured to reflect the received light at the second
surface of the objective, and

c. a third freeform surface configured to receive the
light reflected by the second freeform surface of the
objective and configured to transmit the light out of
the objective, wherein the first, second and third
freeform surfaces of the objective are positioned to
provide the wedge-shape to the objective; and

an image intensifier positioned to receive light trans-
mitted out of the objective through the third surface
of the objective, the image intensifier disposed in
electrical communication with the microdisplay,

wherein the image intensifier comprises from a first end to

a second end: a photocathode layer, a microchannel

plate, a lens array, and a detector array where each

element of the detector array is disposed in registration
with a respective lens of the lens array, and

wherein the lens array comprises a plurality of microl-
enses coated with a phosphor layer.
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16. The compact night vision system according to claim
15, wherein the lens array comprises a structure disposed
between two adjacent microlenses of the microlens array.

17. The compact night vision system according to claim
15, wherein the lens array comprises an Einzel lens array. 5
18. The compact night vision system according to claim
15, wherein the detector comprises a Faraday cup array, a

delta-doped CCD, or an electrometer array.

19. The compact night vision system according to claim
15, wherein the detector comprises a focal plane array. 10

#* #* #* #* #*



