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Recap of previous lecture

• Trace distance
• Minimum probability of error state discrimination
• Multi-copy binary state discrimination and the 

Chernoff bound
• Examples where measurement that is optimal 

for single-copy state discrimination is suboptimal 
when presented with M copies, and vice versa

• Quantum illumination
– 6 dB improvement in Chernoff error exponent
– OPA receiver to achieve 3 dB improvement
– Optimal receiver that uses squeezing and feedback



Quantum limit of classical communication

Alice Bob
Physical (quantum) 
channel
(e.g., loss, noise)

Optical (quantum) 
modulation

Optical (quantum) 
receiver

Shannon’s “channel”

Shannon capacity C is a function of p(y|x), which depends upon the choice of transmitter 
modulation, and (more importantly) choice of receiver measurement. How do we 
calculate, and design a receiver to attain, the capacity of the underlying physical channel?

Alice Bob

Holevo capacity, 

Holevo, 1996
Schumacher, Westmoreland, 1997

Physical (quantum) 
channel
(e.g., loss, noise)

Bits per use of the physical channel
Shannon theory starts after detection
We will try to zoom inside that 



The stalwarts of Information theory

Claude Shannon
1916-2001

John von Neumann
1903 - 1957

Alexander Holevo
1943 –
Shannon Awardee, 2016



Information, entropy, compression
• Shannon entropy of a random variable X

– Quantifies the “amount of uncertainly” in X

• Binary entropy, 

• Data compression
X (i.i.d. 
source)

H(X): bits per 
source symbol

Max H(X) for given      :   
(uniform prior) = 



• Mutual information

• Capacity, 

– Noise does not preclude error-free digital communication
– Need error correction to achieve capacity

0

1

0

1

Channel capacity, Binary Symmetric 
Channel (BSC)

Shannon’s “channel”

Claude Shannon, 1948



• Driving down errors via redundancy, (n,k,d) code

• For R < C, there exists a sequence of (n, nR, dn) 
codes, s.t.,                 as 

Channel coding

[100100101]

[101101001] Codebook: a pruned set of 
2nR binary sequences

(Code rate, R = k/n)

(decoding)



Example of a code

channel

D
ec

od
er

Encoder “Codebook”

ML decoding 
(min distance)

(d-1)/2 errors can be deterministically corrected

Noisy channel output
Encoder

Information to 
be transmitted Coded transmission Channel, 

BSC(p)

Decoder
Decoded information



Differential entropy

• Continuous random variable X,
• Differential entropy

– Translation invariant; h(X) independent of mean

• Entropy of a Gaussian random variable

– For given variance      , Prove that Gaussian X with that 
variance maximizes h(X)

– If
• Mutual information,

Problem 91



Capacity of the AWGN channel
• Additive white Gaussian noise (AWGN) channel

• Capacity,                        , modulo
• Expanding

–
–
– . So,          ,
–
– Hence, 

Z independent of X

mean independent

Input power constraint



Capacity of the AWGN channel (contd.)

• Now, let us find a lower bound to the capacity C
• Since,                           , if we pick a particular      

modulo the input power constraint                     , 
we will get a lower bound to C

• Let us pick, 
• We obtain

• This proves that:

We get this by lower bound 
by choosing a specific pX



Optical communication capacity of a 
lossless channel with homodyne detection

• Use coherent state modulation
• Homodyne detection output

• Capacity

bits per mode

modulation
Lossless 
(identity) 
quantum 
channel

receiver



• Use coherent state modulation
• Heterodyne detection output(s)

• Capacity is the sum of capacities of two 
independent AWGN channels

Optical communication capacity of a 
lossless channel with heterodyne detection



Capacity of homodyne and heterodyne

Bits per 
mode



Quantum unitary and quantum channel

• Unitary transformation 
– Most general transformation of a closed quantum system

• Quantum channel
– completely positive trace preserving (CPTP) map



Quantum version of entropy

• von Neumann Entropy (pure state has zero entropy)

– Shannon entropy of eigenvalues of density operator
• Interpretation 1: quantum data compression

– need          to make above statement precise for finite n

• Interpretation 2: entanglement concentration

Quantum data 
compression

qubits

Benjamin Schumacher, 1995

Entanglement 
concentration

ebits (EPR pairs)



Shannon vs. Holevo capacity

• Shannon capacity of a given receiver that detects each channel 
symbol one at a time (all standard optical and RF receivers)

– E.g. AWGN (RF antenna, Optical heterodyne), Poisson (Optical photon detection)
– Highest capacity with symbol-by-symbol detection,

• Holevo capacity of the quantum channel

Holevo information:

Holevo capacity with product-state encoding:

Ultimate capacity:

Superadditivity conjecture [settled by Hastings, 2009]:

modulation

quantum channel receiver

Classical channel



Holevo capacity for two pure states 

Problem 92
Derive the expression of 
the eigenvalues,        and 
prove this expression for 
Holevo capacity

Modulation, and 
quantum, channel



Shannon capacity for two pure states

• Lets pick the optimal measurement to distinguish 
the two pure states

Min. Prob. Error 
measurement

0

1

0

1

Modulation, 
channel



Shannon vs. Holevo capacities

Capacity gain with a joint-detection receiver   
most pronounced in the regime, 

(low photon number regime for optical communication)

Example: BPSK coherent state 
alphabet:



Single-mode bosonic channel

• The beamsplitter

• Single-mode bosonic channel,         :
– Pure loss:                     (            ) 
– Thermal noise:
– Mean power (photon number) constraint,
– Only state that retains its purity through the pure loss channel is 

the coherent state,
– Mean photon number at output,

environment 
(noise)

environment 
(loss)

Alice Bob



Pure loss bosonic channel
• Coherent state transmission

– With a mean photon number constraint      at the input, 
which implies a mean photon number constraint         at 
the output, how many bits can be transmitted per use of 
this channel? (each use = one transmitted mode)

– Example: use BPSK modulation
• Maximum capacity (achieved at high N) is 1 bit per mode
• Max capacity with 4-PSK (high N) is 2 bits per mode, etc.

Transmitter Receiver



Maximum entropy state

• For a given mean photon number, the thermal 
state maximizes the von Neumann entropy
– For                        ,

– With equality attainted by the thermal state,

• For a k-mode state with total mean photon 
number given by M, a tensor product thermal 
state of those k modes with M/k mean photon 
number in each mode, maximizes the entropy

Advanced Problem 18Prove both of the above statements



Holevo capacity of pure-loss channel

Achievability

Converse

Capacity/coding 
analysis can pretend 
N is at the outputGiovannetti, Guha, Lloyd, Macconne, Shapiro, Yuen, PRL, 92, 027902 (2004)



Holevo capacity of pure-loss channel

• For coherent state 
transmission, no other 
distribution (other than 
Gaussian) attains a 
higher Holevo capacity 

• Modulation using no 
other states at the inputs 
(such as number or 
squeezed states) can 
attain a higher capacity

• Homodyne and/or 
heterodyne detection 
receiver, even under their 
ideal (quantum noise 
limit) operations, cannot 
attain the Holevo capacity

Pure loss: we can take N to be the output mean photon number per mode



Photon vs. spectral efficiency

Takeoka, Guha, PRA 89, 042309 (2014)



Holevo capacity with loss and noise

Coherent state 
modulation

V. Giovannetti, Guha, S. Lloyd, L. Maccone, J. H. Shapiro, Physical Review A 70, 032315 (2004)
V. Giovannetti, R. Garcia-Patron, N. J. Cerf, A. S. Holevo, Nature Photonics 8, 796-800 (2014)

Achievability

Converse

Minimum output 
entropy conjecture

Please note 
change in notation: 
NS = input photon 
number
N = thermal photon 
number



“Vacuum or not” black box

VON

• How do we realize the VON measurement using 
beam-splitters, phase-shifters, squeezers and 
cross-Kerr gates:                        ?

Advanced Problem 19 (open)



The “vacuum or not” receiver to achieve 
the Holevo capacity

Lloyd, Giovannetti, Maccone, Phys. Rev. Lett. 106, 250501 (2011) 
Wilde, Guha, Tan, Lloyd, ArXiv: 1202.0518 (IEEE Int. Symp. Inf. Theory 2012)
”Measuring Nothing”, Oi, Potocek, Jeffers, ArXiv:1207.3011, (PRL, 2012)

• Random code with 2nR codewords: A sequence of 2nR “vacuum or 
not” binary non-destructive projective measurements plus phase-
space displacements (beamsplitter & laser) can achieve capacity

Displacement by negative of jth
c.w.          : array of n BS + lasers 

Receiver cycles through 
multimode entangled 
coherent states…



Holevo attaining joint detection receivers
• “vacuum or not” meas. and coherent feedback

• Quantum polar code and successive cancellation

• Efficient joint measurements for symmetric codes

• Slicing receiver

Displacement by negative of jth
c.w.          : array of n BS + lasers 

Wilde, SG, Tan, Lloyd, ISIT 2012
Oi, Potocek, Jeffers, Phys. Rev. Lett. 110, 210504 (2013)

SG, Wilde, ISIT 2012
Wilde, SG, IEEE Trans. Inf. Theory, 59, no. 2, 1175-1187 (2013)

Krovi, SG, Dutton, da Silva, Phys. Rev. A 92, 062333 (2015)

Da Silva, SG, Dutton, Phys. Rev. A 87, 052320 (2013)



Upcoming topics

• Wiretap channel – secure communication
• Quantum communication and entanglement 

distribution
• Quantum repeaters
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