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What | will assume you know! wa
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* Multi-mode Gaussian states (pure and mixed)
and Gaussian transformations both in phase
space (Wigner, Q, P) and in Heisenberg picture
(symplectic transformation on mode operators)

« Homodyne and Heterodyne detection

« CV teleportation; definition of Fidelity

* Universal bosonic n-mode unitary operation, and
the role of non-Gaussian operations

« Creation of non-Gaussian states by photon
number subtraction on Gaussian entangled states

* Quantum sensing: Heisenberg vs. standard shot-
noise limit, Quantum vs. Classical Fisher
Information



Plan for today Aw
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* Quantum state discrimination
» Application to quantum radar



Trace norm Z&w
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* Trace norm (lets assume Hermitian M)

|M|, = Te{ VMM } = Te(IM))

— M Hermitian, M = Z,uz\z}(z\, | M| = Z |1

« Satisfies properties for being a “norm”
— Positive semidefinite |[M]; > 0 M|y =0 < M=0
— Homogeneity |[|cM ||, = |c[[[M]],
— Triangle inequality |M + NJ|, < ||M]|, + |IN||;



Trace distance wa
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* Trace distance as the twice the largest
probability difference that two states p and o
could give to the same measurement outcome A

| —oll, = 2 max Tr{iA(p — o)}

— Maximization is over all positive operators A with
eigenvalues bounded from above by 1.

— Optimal A'is the projector onto the positive
eigenspace of (p - 0)

[Helstrom] Read proof in Book by Mark Wilde,
https://arxiv.org/abs/1106.1445
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» Choose between p, and p, with minimum error
Pe = PY|X(O\1)Z7X(1) +pY|X(1\O)pX(O)

1 1
= TT{A0P1}§ + TT{A1P0}§'

= - (Tr{8opr} + Te{(7 — Ao)pu})

— %(Tr{/\om} -+ Tr{po} — Tl”{/\oﬂo})

— %(TI‘{AOM} + 1 —Tr{Agpo})

— 2(2 — 2Tr{Ao(po — p1)})-



Minimum probability of error Aw
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* Minimizing the average probability of error,

1
Pe min — In — B o
7 /I\IO1’1AI11 4(2 QTI'{A()(pQ /01)})

_ i (2 — 2max Tr{Ay(py — Pl)}>

AOJA].

~ (- H
5 2,00 P11

1

— For unequal priors, e min = 9 (1 — ||[popo — p1/01H1>
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Discriminating pure states,

Inner product, o = (Ygl|11)
Recall, we had shown earlier,

1
Pe,min — 5 {1 — \/1 — ‘0’2}

Re-derive the above expression using the general
trace-distance formula in the previous slide

Problem 89

Relationship between Fidelity and trace distance

1
1= VF(p,0) < 5llp—oll; < V1= Flp,0)




Multi-copy state discrimination Aw
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« Consider the following problem:
— We are given M copies of one of two states:

pd™ versus pi"

— Minimum error probability (exact)

Pe,min,n .= (]- — Hﬂ-lp?n — WopgmHl)/Q

~Y e_gn

’ Audenaert et al., Phys. Rev. Lett. 98, 160501 (2007)

« Quantum Chernoff exponent, £ = — log (Oglsigl TT(PSP%_SO

« When the states are Gaussian, £ can be calculated from the
symplectic eigenvalues of the density operators

Pirandola and Lloyd, Phys. Rev. A 78, 012331 (2008)



Quantum Chernoff bound Aw
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« QCB: Minimum probability of error of n-copy
state discrimination, pg" versus p¢"

n I . . s 1—s
Pe( D o< < ¢ . § = —log (02“521 Tr(pGp1- ))

— Bhattacharyya bound: s = 2 (looser upper bound)

* When the states are simultaneously diagonal,
this reduces to the classical problem of telling
apart two distributions p, and p, with n samples

Pé?r)lm = %e_gn § = —log (0@521;%@)%1(7;)13)



Optimal measurements for one copy ZAS
discrimination versus multi-copy T Gy

« Consider the following problem:
— We are given n copies of one of two coherent states:
) )"

la)®™ versus |3

— Assume equally likely hypotheses
— Inner product, o = (a|B), |o|? = e~ 1*=A
* Prove that: Problem 90
— Optimal measurement Pe min ~ 5" £ = —2log ||

— Optimal single-mode méggtsurement followed by
majority vote, P, ~ e~ "2 "

— Kennedy receiver, P, ~ e~ %pt"




Target detection (radar) Aw
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* Binary hypothesis test

asg B 1
XNITR ‘ Hy = target absent
signal H, = target present

equally likely

return o — ar = ag
H1 —"&R:\/E&S—I-Vl—fi(ﬁlg
M ~ WT independent temporal modes
k<< 1land Ng>1

RCVR

under H
» background state is thermal: (aLap) =

» signal is coherent state: (aLas) = N { Np

NB_ under H 1

1 —k



Quantum illumination (entangled probe) Aw
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 Two-mode squeezed vacuum as transmitter

asg B 1
SPDC| H, = target absent
signal H, = target present

equally likely

return Ho — Gr = ap
H1 —"&R:\/E&S—I-Vl—fiflg
M ~ WT independent temporal modes
k<< 1land Ng>1

+ signal state is thermal: (alas) = Ng {NB under H,

» background state is thermal: (alLap) =

Np
under H
* receiver uses return + idler to decide !

1 —k




The state discrimination problem
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« Both hypotheses produce M zero-mean two-mode Gaussian
states, with covariance matrices given by

« QOperating regime: Highly lossy, highly noisy, low-
brightness transmitter kK < 1, Ns < 1 and Np > 1

[ S

1
Asr =7

0
Oﬂ}
0

0 C,
S 0
0 S
—C, 0

0
~C,
0
S

0 V&C, O

A 0 —+/kC,

0 S 0
—\/KC, 0 S

S = 2Ng + 1
Oq = 2\/NS(N5+1)

A = 2Ng + B



6 dB improvement in the exponent; A
Chernoff exponent can be seen as SNR o
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M M 1 _ . 1—
p(()X> VS. 10(18 Pe min S —€ Me € — — I log(Tr[pgpl 8])
’ 2 s€(0,1)
0 | _ L MrNg/an
RIN|S B
— Pecs < e
. Coherent-state (Chernoff)
_2i 6 dB in error upper bound on optimum
reception
/"5\ ——— Coherent-state (Bhattacharyya)
g lower bound on optimum
reception
QO _4}
N YN
) \
N 1
5: 6! Pe SPDC < — eM’%NS /NB =  SPDC entangled transmitter
L ’ - 2 (Chernoff) upper bound on
o optimum reception
= . —— SPDC entangled transmitter
20 v = (.01
2 k= L. (Bhattacharyya) lower bound
-8 8 on optimum reception
Ng = 0.01
AN ¢
;\ B — 2(] Tan, Erkmen, Giovannetti, Guha,
-1 05 55 é 6'5 ' 2 Lloyd, Maccone, and Shapiro

Physical Review Letters,101, 253601,

log0(K) (2006)
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 How do we build a receiver that harnesses the promise of the
6 dB improvement?

« Consider a receiver which mixes the return and idler beams
on an optical parametric amplifier (OPA) and detects the
output by photon counting measurement

« K = M, the number of temporal modes integrated over

Optical K
~ K ~ 1K
{aRi}izl Parametric {Ci}isq N = Z N;

Amoplifier i=1

(OPA)
A ~ S _ 1 T Total number of
{&I‘ }K _ G = VG ar, + VG —1 AR; clicks registered
iJi=1 Low gain, N _ ala in K received
i — GG modes

G=1+¢

Guha, arXiv: quant-ph/0902.2932
ISIT 2009
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e Output ¢; of the OPA s in a zero-mean thermal

state with mean photon number given by
Hypothesis H: <a§@> =GNg+ (G—-1)(1+ Np) &£ Ny

Hypothesis H;:
(&'&;) = GNs + (G —1)(1 + N + kNs) + 21/G(G — 1)\/kNs(Ng + 1)
N —— e’

£ N
Signature of remnant phase-
sensitive cross-correlation
between return and idler modes, R(ag, ar, )

* Optimum measurement to distinguish between
two zero-mean thermal states of ¢; is photon
counting on all received modes. Under H, & Hj:

oo N n
) = . k 11.1<i<K
pCi Z (1 + Nk)n+1 |n><n|ﬂ S {0: }3 ST

n=0



Performance analysis of OPA receiver le
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» Detection problem: Based on the observed value
of the total clicks N, decide between H, & H,

e 1 n+K+1 N \"
PN, (7 O)_W b 1+ N

e 1 n+ K+1 M N
pi\-’!fﬁ(”" l) — (1 + A.Tl)K n 1+MN;

Very close to Gaussian

distribution for large K, due
& J

to Central Limit Theorem

 Decision rule
_ Say “HO” if N < Nthreshold

11 = KN KN |
— Say "H;" If N > Nypreshond o 1 !
Nthreshold
1 oo 1 Ninreshold 1 1 )
P PI'(C) — 5 Z leHo(anO) + § Z leHl (n|H1) ~ éerfC(C\@) ~ Z__Le_(c JK
N=Nthreshold+1 n=0

(C = (N1 — No)/(\/i(cro +01)), o= \/Nk(Nk + 1),k e {0,1})



Bhattacharyya bound on performance A
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« Bhattacharyya (upper) bound on performance of
OPA-based receiver

| R B N,"
— Pr(e) < Q5 ,w.here Qp = Z 1_|_N0)l+n TS ALET
— Bound asymptotically
tightas K — oo (‘/(1+N0)(1+N1)_ v NUNl)

-1

I

0
— 1 « OPAGain G =1+ g is optimized
2 for min Pr(e), i.e. max C
- 15x10
e
S
3 :
2 C C(g*) =1.4x 1073
@ 1 i
£ : = 0.01
= =0.01 ': Ng = 0.01
a0 I
2 Ng = 0.01 0.5 i Np = 20
8 - . :
Np =20
B . g =5.041x107"
G=1+5.041x10"3 ./
-1 05 55 é 6: 5 . % o.dés 0.01 0.015 0.02

log(K) g
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0 ,
Quantum Radar Coherent state
Chernoff bound
kNg — —WNsM/4Ng
- _2 .
SNR X '_é} Quantum illumination,
Q NB g Chernoff bound [
| 54
ClﬂSSlcal Radar = 0000@ Classical transmitter &
E E Humodyne"Recmu:r
= uantum illumination
/{NS ~—= Q-'*_6 i ﬁansmitter&OPA Receiver ]
SNRC O( \E"/ — + == Quantum illumination P
— transmitter & PC Receiver
— —k NN S 0\
4NB %D—B' . — 0.01 ~ € ‘,‘
— Ng = 0.01 ~ —H‘,NsM/ B
oL VB =20 € | \
5 5.5 6 6.5 7

logm(ﬂd{)

Quantum Radar with OPA receiver

IiNS

SNRQ,OPA — m M ~ WT : number of temporal modes



Optimal copy-by-copy measurement .Z.F\.\_.
IS worse by 3 dB from optimal THE NS
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We saw this curious 3 dB difference in the pure-state case. Is this a
general feature in binary state discrimination? ' Advanced Problem 17 (open)

0 | |
ALY s k=0.01
/CB\ _4; : 5 o~ NS — 0.0]. |
g e Np =1
= -6 0
= .
o “~
= -8 ~ o~ FNsM/4NE
— k= Coherent-state transmitter >
x 8 —10r . 1
- ———__ Chernoff (upper) bound ‘
Qﬂ on minimum Pr(error) e
o000 Homodyne Receiver
S .
a0 -14 x
'_‘O SPDC transmitter L .
-16 OPA Receiver ~ Q—K,NS M/NB . c‘\‘
""" Separable Helstrom measurement . &
-18 o= Chernoff (upper) bound ‘\ - [
on minimum Pr(error) “ é' K'NS M/QNB
_20 ] |
5 0.2 5.4 5.6 5.8 6 6.2 6.4

log(K)
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780 nm DM; _ signal. BS
Laslll—~  — w M 8 — P @ ()
SPDC 7, pc,Pol DCF
> CWDM o
sl oy L1530 o EDFA] PG,
W e o
DM o LN
50 Idl DSF CWDM
i, DM, -~ ¢
| = ) DM > pC
DM,  Filter <= opa 2 3

ASE: amplified spontaneous emission; BS: beam splitter;

CWDM: corse wavelength-division multiplexer; D: detector;

DCEF: dispersion-compensating fiber; DM: dichroic mirror; DSF: dispersion-shifted LEAF fiber;
EDFA: erbium-doped fiber amplifier; OPA: optical parametric amplifier; PC: polarization controller;
PM: phase modulator; Pol: polarizer; SMF: single-mode fiber;

SPDC: spontaneous parametric down conversion; Z: zoom-lens systems

Z. Zhang et al., Phys. Rev. Lett. 114, 110506 (2015)



SNR measurements le
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Quantum vs Classical SNR SNR vs Receiver gain

0.01 0.02 0.03 0.04
Transmissivity

Environmental loss: 14 dB; Noise background: 75 dB
Quantum sensing outperforms optimum classical sensing

Z. Zhang et al., Phys. Rev. Lett. 114, 110506 (2015)



Microwave quantum radar le
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* The high-noise requirement makes microwave-wavelength
operation a naturally-suited regime for quantum illumination

* Quantum advantage most pronounced at a high enough M. To
get to a given M ~ WT, since W is lower (than optical), higher
integration time T is needed. Applications with long dwell time?

mechanical
resonator

-~ drwen field
D

microwave optical
cavity cavity

driven field
(<)

=

. . 7 Opyz:
microwave signal Plicy; .
g W 1qy, .
. detection

Ch converter
reflected “

microwave signal ed dn.C Barzanjeh, Guha, Weedbrook, Vitali,
] reflel Ggndd Shapiro, Pirandola,

2\
optic? Phys. Rev. Lett. 114, 080503 (2015)




Optimal quantum receiver design
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Calculating minimum probability of error for discriminating

states in {P:, |1;) }is conceptually simple

But structured receiver designs that achieve optical state
discrimination at the quantum minimum error, are far and

Binary coherent states,{| — a),|a)},|a]* = N

few

— Minimum error probability (equal priors), P, .., = % [1 —V1- e—4N]

— Dolinar’s receiver [1973]: OPTI 595B

Photon arrivals

E*T =N
: S(8) + s 8 R R
\
v F Y Optimal feedback
s(t)—>P—> j () = ——
versus A T R0
E >
| AWG - J_A__ 4 .TA_ YA = =Y L)
_ EO ] Detector PPP rate: B [ I P B —— ¢
A(t) = [s(t) + ux ()] L L O
u(t) = VI = ¢ ANUT
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Sum frequency generation (SFG): H; = kg Z (b

asma,mH}ag a} )

m=1

Inspired by Dolinar receiver: feedback using squeezing instead of displacement

FF I
Mea

:?'l

surements

!_ 6Sm 2
| |
- S(rk)
e -SFG -

vacu

um

Measurement

Ny

>

SFG x
4| FF-SFG
65 7.0 75 80 8.5
Suggested Log (M)
reading

Zhuang, Zhang, Shapiro, Phys. Rev. Lett. 118, 040801 (2017)



One-versus-Two Target Detection .Z.F\.\_u
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A
ORay = D 0 = pbray

0

)

E

=5 -2

s
Does this quantum —~ 4l
illumination o
improvement prevail in = entangled state

l<b) coherent state .
imaging problems? =~ -6 6 dB in error
More complex optical &~ NS — 0.01 exponent
sensing / discrimination S '

a0 -8 K = 0001
tasks? o

—~ Np =1

35 5 55 6 6.5
logy(M)

S. Guha and J. H. Shapiro, QCMC 2010, arXiv:1012.2548v1



Upcoming topics Aw
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* Quantum limits of optical communications
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