

Photonic Quantum Information Processing OPTI 647: Lecture 18

Christos Gagatsos Saikat Guha

October 22, 2019 College of Optical Sciences Meinel 501A

Announcements

- Final presentations schedule:
 - December 17 [OSC 307 at 9.00 (TBC)].
 - We'll have an external examiner (it might be some visitor).
 - Keep calm.

Plan for today: Second order non-linear optics.

- How can we create non-classical light beams that exhibit the signatures we've discussed in our one-mode and multi-mode analyses?
- In particular, we will study spontaneous parametric downconversion (SPDC) and optical parametric amplification (OPA) in second-order nonlinear crystals
- These closely-related processes have been and continue to be the primary vehicles for generating non-classical light beams in the lab

- Given our interest in the system-theoretic aspects of photonic quantum information processing and lack of a serious EM theory pre-requisite, we will not get into too much detail
 - focus on the coupled-mode equations characterization of collinear configurations, i.e., we shall suppress transverse spatial effects
 - Nevertheless, we will be able to get to the basic physics of these interactions and provide continuous-time versions of the non-classical signatures that we discussed in single-mode, two-mode and n-mode forms
- Today, we will begin with a classical analysis. Thereafter we will extend to a quantum analysis.

Second-order nonlinear optics

Spontaneous parametric down conversion (SPDC)

- Strong pump at frequency, $\omega_P=\omega_S+\omega_I$
- No input at signal frequency, ω_S
- No input at idler frequency, ω_I
- Nonlinear mixing in $\chi^{(2)} \operatorname{crystal} \operatorname{produces} \operatorname{signal}$ and idler outputs

- *Downconversion*—because, the signal and idler light arises from a higher-frequency pump beam.
- Parametric—because the downconversion is due to the presence of the pump modifying the effective material parameters encountered by the fields propagating at the signal and idler frequencies.
- Spontaneous—because there is no illumination of the crystal's input facet at the signal and idler frequencies.

- In SPDC, the z = 0 signal and idler frequencies are unexcited, i.e., in their vacuum states. Action of pump in conjunction with the crystal's nonlinearity is responsible for the excitation at these frequencies at z = I. Need quantum analysis to understand SPDC
- We will get a hint of the quantum interpretation because the signal and idler frequencies, in the classical theory, will obey $\omega_P = \omega_S + \omega_I$
 - Rewriting it as, $\hbar\omega_P = \hbar\omega_S + \hbar\omega_I$, suggests that a **photon fission** process—in which a single pump photon spontaneously downconverts into a signal photon plus an idler photon such that energy is conserved—is what is happening in SPDC. In fact, such is the case.

Classical electromagnetic theory

Maxwell's Equations in free space

Faraday's law of induction

Gauss' laws

$$\nabla \times \vec{E}(\vec{r},t) = -\mu_0 \frac{\partial}{\partial t} \vec{H}(\vec{r},t) \qquad \nabla \cdot \vec{D}(\vec{r},t) = \rho(\vec{r},t)$$

$$\nabla \times \vec{H}(\vec{r},t) = \frac{\partial}{\partial t} \vec{D}(\vec{r},t) + \vec{J}(\vec{r},t) \quad \nabla \cdot \mu_0 \vec{H}(\vec{r},t) = 0$$

Ampere's law with Maxwell's correction

- flux densities D, B vs. field intensities E, H $\vec{B}(\vec{r},t) = \mu_0 \vec{H}(\vec{r},t) \qquad \vec{D}(\vec{r},t) = \epsilon_0 \vec{E}(\vec{r},t)$
- Speed of light in vacuum, $c=1/\sqrt{\epsilon_0\mu_0}$

Constitutive relations in dielectric

- The electric and magnetic flux densities D, B are related to the field intensities E, H via the so-called constitutive relations
- For simple homogeneous isotropic dielectrics

$$D = \epsilon E$$

$$E = \epsilon_0 (1 + \chi)$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ henry/m}$$

$$B = \mu H$$

$$\mu = \mu_0 (1 + \chi_m)$$

$$c_0 = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3 \times 10^8 \text{ m/sec}, \quad \eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \text{ ohm}$$

- Susceptibilities χ , χ_m are measures of electric and magnetic polarization properties of the material

$$\vec{D}(\vec{r},t) = \epsilon_0 \vec{E}(\vec{r},t) + \epsilon_0 \chi \vec{E}(\vec{r},t) = \epsilon_0 \vec{E}(\vec{r},t) + \vec{P}(\vec{r},t)$$

P: dielectric polarization (average electric dipole moment per m³)

$$\epsilon_{\rm rel} = \frac{\epsilon}{\epsilon_0} = 1 + \chi$$
, $\mu_{\rm rel} = \frac{\mu}{\mu_0} = 1 + \chi_m$

• Refractive index, $n = \sqrt{\epsilon_{\rm rel} \mu_{\rm rel}}$

- For
$$\mu_{
m rel}=1,$$
 $n=\sqrt{1+\chi}$

• Taking curl of Faraday's law, using the vector identity, $\nabla \times [\nabla \times \vec{F}(\vec{r},t)] = \nabla [\nabla \cdot \vec{F}(\vec{r},t)] - \nabla^2 \vec{F}(\vec{r},t)$,

$$\nabla [\nabla \cdot \vec{E}(\vec{r},t)] - \nabla^2 \vec{E}(\vec{r},t) = -\mu_0 \frac{\partial}{\partial t} [\nabla \times \vec{H}(\vec{r},t)] = -\mu_0 \frac{\partial^2}{\partial t^2} \vec{D}(\vec{r},t)$$

• For +z propagating field, it simplifies to:

$$\frac{\partial^2}{\partial z^2}\vec{E}(z,t) - \mu_0 \frac{\partial^2}{\partial t^2}\vec{D}(z,t) = \vec{0}.$$

– For free-space, $\vec{D}(z,t) = \epsilon_0 \vec{E}(\zeta,t)$

– Hence, $\frac{\partial^2}{\partial z^2}\vec{E}(z,t) - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vec{E}(z,t) = \vec{0}$

Solution to:
$$\frac{\partial^2}{\partial z^2}\vec{E}(z,t) - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vec{E}(z,t) = \vec{0}$$

+z-propagating plane wave

$$\vec{E}(z,t) = f(t-z/c)\vec{i}_f$$

is a solution to:
$$\frac{\partial^2}{\partial z^2} \vec{E}(z,t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(z,t) = \vec{0}$$

– For arbitrary time function f(t) and unit vector \vec{i}_f in the x-y plane

• We will use the temporal frequency domain:

$$\vec{\mathcal{F}}(\vec{r},\omega) = \int \mathrm{d}t \, \vec{F}(\vec{r},t) e^{j\omega t} \quad \leftrightarrow \quad \vec{F}(\vec{r},t) = \int \frac{\mathrm{d}\omega}{2\pi} \, \vec{\mathcal{F}}(\vec{r},\omega) e^{-j\omega t}$$

• The constitutive law for a linear dielectric is: $\vec{\mathcal{D}}(\vec{r},\omega) = \epsilon_0 [1 + \chi^{(1)}(\omega)] \vec{\mathcal{E}}(\vec{r},\omega)$ $\vec{\mathcal{P}}(\vec{r},\omega) = \epsilon_0 \chi^{(1)}(\omega) \vec{\mathcal{E}}(\vec{r},\omega)$ need not be parallel to the electric field

 $oldsymbol{\chi}^{(1)}(\omega), \, ext{is a frequency-dependent tensor}$ Linear susceptibility

If E is polarized along a principal axis of the cryst $\vec{B}(\vec{r},\omega)=\epsilon_0 n^2(\omega)\vec{\mathcal{E}}(\vec{r},\omega)$

• If we take the Fourier transform, and presume fields with no (x,y) dependence with an electric field polarized along a principal axis, we obtain the **Helmholtz equation**

$$\frac{\partial^2}{\partial z^2}\vec{\mathcal{E}}(z,\omega) + \frac{\omega^2 n^2(\omega)}{c^2}\vec{\mathcal{E}}(z,\omega) = \vec{0}.$$

The +z-going plane-wave solution to this equation is

$$\vec{\mathcal{E}}(z,\omega) = \operatorname{Re}[\vec{E}e^{-j(\omega t - kz)}].$$

where $k \equiv \omega n(\omega)/c$ and \vec{E} is a constant vector in the x-y plane.

• For a nonlinear dielectric, constitutive relation:

$$\vec{\mathcal{D}}(\vec{r},\omega) = \epsilon_0 [1 + \boldsymbol{\chi}^{(1)}(\omega)] \vec{\mathcal{E}}(\vec{r},\omega) + \vec{\mathcal{P}}_{\rm NL}(\vec{r},\omega)$$

where $\chi^{(1)}(\omega)$ is the medium's *linear* susceptibility tensor at frequency ω and $\vec{\mathcal{P}}_{NL}(\vec{r},\omega)$ is the *nonlinear* polarization, i.e., $\vec{\mathcal{P}}_{NL}(\vec{r},\omega)$ is a nonlinear function of the electric field.

- Assuming +z-going plane wave whose electric field is polarized along a principal axis of the $\chi^{(1)}$ tensor,

$$\frac{\partial^2}{\partial z^2}\vec{\mathcal{E}}(z,\omega) + \frac{\omega^2 n^2(\omega)}{c^2}\vec{\mathcal{E}}(z,\omega) = -\mu_0\omega^2\vec{\mathcal{P}}_{\rm NL}(z,\omega)$$

 LHS includes medium's linear behavior, nonlinear character appearing as a source term on RHS. General solutions for arbitrary nonlinearities are beyond our reach

Coupled mode theory for secondorder non-linearity

- Material's nonlinear polarization arises from a secondorder nonlinearity
- Assume E field propagating from z = 0 to z = I in the nonlinear crystal consists of three +z-going monochromatic plane waves: frequency- ω_P pump beam; frequency- ω_S signal beam; and frequency- ω_I idler beam. We will assume that:
 - $-\omega_P = \omega_S + \omega_I$
 - pump is very strong while the signal and idler are very weak
 - Allowing—as will be necessary to account for the tensor properties of the second-order susceptibility—the pump, signal, and idler to have different linear polarizations along the crystal's principal axes, we will take the E field to be:

Pump, signal and idler plane-wave modes

Assume monochromatic pump, signal and idler

$$\vec{E}(z,t) = \underbrace{\operatorname{Re}[A_{S}(z)e^{-j(\omega_{S}t-k_{S}z)}]\vec{i}_{S}}_{\text{signal}} + \underbrace{\operatorname{Re}[A_{I}(z)e^{-j(\omega_{I}t-k_{I}z)}]\vec{i}_{I}}_{\text{idler}} + \underbrace{\operatorname{Re}[A_{P}e^{-j(\omega_{P}t-k_{P}z)}]\vec{i}_{P}}_{\text{pump}}, \text{ for } 0 \le z \le l.$$

$$-k_m = \omega_m n_m(\omega_m)/c$$
 for $m = S, I, P$

wave numbers of the signal, idler, and pump fields in terms of the refractive indices of their respective linear polarizations, \vec{i}_m which are all in the x-y plane

- Non-depleting pump, A_P is a constant
- Slowly-varying (in z) signal and idler complex amplitudes

• Constitutive Law for 2nd-Order Nonlinear Crystal: $\vec{D}(\vec{r},t) = \epsilon_0 \vec{E}(\vec{r},t) + \vec{P}(\vec{r},t)$

The first 3 terms are due to linear susceptibility. Except for the possibly different signal, idler, and pump polarizations, it is the threewave version of what we showed before for a linear dielectric. The last two terms represent the effect of the material's second-order nonlinear susceptibility. we have suppressed the frequency dependence and tensor character

\approx	$\frac{\epsilon_0 n_S^2(\omega_S) A_S(z) e^{-j(\omega_S t - k_S z)} + cc}{2} \vec{i}_S$
+	$\frac{\epsilon_0 n_I^2(\omega_I) A_I(z) e^{-j(\omega_I t - k_I z)} + cc}{2} \vec{i}_I$
+	$\frac{\epsilon_0 n_P^2(\omega_P) A_P e^{-j(\omega_P t - k_P z)} + cc}{2} \vec{i}_P$
+	$\frac{\epsilon_0 \chi^{(2)} A_I^*(z) A_P e^{-j[(\omega_P - \omega_I)t - (k_P - k_I)z]} + cc}{2} \vec{i}_S$
+	$\frac{\epsilon_0 \chi^{(2)} A_S^*(z) A_P e^{-j[(\omega_P - \omega_S)t - (k_P - k_S)z]} + cc}{2} \vec{i}_I$

$$\begin{aligned} \frac{\partial^2}{\partial z^2} \Big(A_S(z) e^{-j(\omega_S t - k_S z)} \vec{i}_S + A_I(z) e^{-j(\omega_I t - k_I z)} \vec{i}_I + A_P e^{-j(\omega_P t - k_P z)} \vec{i}_P \Big) \\ &- \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Big(n_S^2(\omega_S) A_S(z) e^{-j(\omega_S t - k_S z)} \vec{i}_S \\ &+ n_I^2(\omega_I) A_I(z) e^{-j(\omega_I t - k_I z)} \vec{i}_I + n_P^2(\omega_P) A_P e^{-j(\omega_P t - k_P z)} \vec{i}_P \Big) \\ &- \frac{\chi^{(2)}}{c^2} \frac{\partial^2}{\partial t^2} \Big(A_I^*(z) A_P e^{-j[(\omega_P - \omega_I) t - (k_P - k_I) z]} \vec{i}_S \\ &+ A_S^*(z) A_P e^{-j[(\omega_P - \omega_S) t - (k_P - k_S) z]} \vec{i}_I \Big) = \vec{0}. \end{aligned}$$

• Performing z differentiation to the first line,

$$\begin{aligned} \frac{\partial^2}{\partial z^2} \Big(A_S(z) e^{-j(\omega_S t - k_S z)} \vec{i}_S + A_I(z) e^{-j(\omega_I t - k_I z)} \vec{i}_I + A_P e^{-j(\omega_P t - k_P z)} \vec{i}_P \Big) \\ &= \left[-k_S^2 A_S(z) + 2jk_S \frac{\mathrm{d}A_S(z)}{\mathrm{d}z} \right] e^{-j(\omega_S t - k_S z)} \vec{i}_S \\ &+ \left[-k_I^2 A_I(z) + 2jk_I \frac{\mathrm{d}A_I(z)}{\mathrm{d}z} \right] e^{-j(\omega_I t - k_I z)} \vec{i}_I - k_P^2 A_P e^{-j(\omega_P - k_P z)} \vec{i}_P \end{aligned}$$

where we have employed the slowly-varying envelope approximation to suppress terms involv $\frac{\partial^2}{\partial z^2} A_m(z)$ for m = S, I.

 Performing the t differentiations on the second and third lines,

$$-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\left(n_{S}^{2}(\omega_{S})A_{S}(z)e^{-j(\omega_{S}t-k_{S}z)}\vec{i}_{S}+n_{I}^{2}(\omega_{I})A_{I}(z)e^{-j(\omega_{I}t-k_{I}z)}\vec{i}_{I}\right)$$

+ $n_{P}^{2}(\omega_{P})A_{P}e^{-j(\omega_{P}t-k_{P}z)}\vec{i}_{P}\right)$
= $k_{S}^{2}A_{S}(z)e^{-j(\omega_{S}t-k_{S}z)}\vec{i}_{S}+k_{I}^{2}A_{I}(z)e^{-j(\omega_{I}t-k_{I}z)}\vec{i}_{I}+k_{P}^{2}A_{P}e^{-j(\omega_{P}t-k_{P}z)}\vec{i}_{P}$

where we have used $k_m = \omega_m n_m(\omega_m)/c$ for m = S, I, P.

Solving the Helmholtz equation...(contd.)

• Plugging back both terms in, we get

$$\left(2jk_{S} \frac{\mathrm{d}A_{S}(z)}{\mathrm{d}z} e^{-j(\omega_{S}t-k_{S}z)} + \frac{\chi^{(2)}\omega_{S}^{2}}{c^{2}} A_{I}^{*}(z)A_{P}e^{-j[\omega_{S}t-(k_{P}-k_{I})z]} \right) \vec{i}_{S}$$

$$+ \left(2jk_{I} \frac{\mathrm{d}A_{I}(z)}{\mathrm{d}z} e^{-j(\omega_{I}t-k_{I}z)} + \frac{\chi^{(2)}\omega_{I}^{2}}{c^{2}} A_{S}^{*}(z)A_{P}e^{-j[\omega_{I}t-(k_{P}-k_{S})z]} \right) \vec{i}_{I} = \vec{0}_{S}$$

 SPDC systems in which the signal and idler are in orthogonal linear polarizations. The above equation reduces to two "coupled-mode equations":

$$\frac{\mathrm{d}A_S(z)}{\mathrm{d}z} = j \frac{\omega_S \chi^{(2)} A_P}{2cn_S(\omega_S)} A_I^*(z) e^{j\Delta kz}$$
$$\frac{\mathrm{d}A_I(z)}{\mathrm{d}z} = j \frac{\omega_I \chi^{(2)} A_P}{2cn_I(\omega_I)} A_S^*(z) e^{j\Delta kz},$$

for $0 \le z \le l$, where $\Delta k \equiv k_P - k_S - k_I$.

• should be solved subject to given initial conditions, $\{A_S(0), A_I(0)\} \rightarrow \{A_S(l), A_I(l)\}$

- yielding,

$$\vec{E}(z,t) = \operatorname{Re}[A_{S}(l)e^{-j(\omega_{S}t-k_{S}l-\omega_{S}(z-l)/c)}]\vec{i}_{S} + \operatorname{Re}[A_{I}(l)e^{-j(\omega_{I}t-k_{I}l-\omega_{I}(z-l)/c)}]\vec{i}_{I}$$
$$+ \operatorname{Re}[A_{P}e^{-j(\omega_{P}t-k_{P}l-\omega_{P}(z-l)/c)}]\vec{i}_{P},$$

– where for z > l, regular free-space propagation prevails

- Why quantum analysis of SPDC will be needed?
 - If we set, $A_S(0) = A_I(0) = 0$, we get $A_S(l) = A_I(l) = 0$
 - and hence, $\vec{E}(z,t) = \operatorname{Re}[A_P e^{j(\omega_P t k_P l \omega_P(z-l)/c)}]\vec{i}_P$ for z > l.

THE UNIVERSITY OF ARIZONA

Conversion to photon-unit fields

- Time-averaged powers on photodetector active area, \mathcal{A} $S_m(z) = \frac{c\epsilon_0 n_m(\omega_m)\mathcal{A}}{2} |A_m(z)|^2, \quad \text{for } m = S, I, P$
- Photon-unit ($\sqrt{\text{photons/sec}}$) fields, $S_m(z) = \hbar \omega_m |A_m(z)|^2$, for m = S, I, P
- Photon-units coupled mode equations:

$$\frac{\mathrm{d}A_S(z)}{\mathrm{d}z} = j\kappa A_I^*(z)e^{j\Delta kz}$$
$$\frac{\mathrm{d}A_I(z)}{\mathrm{d}z} = j\kappa A_S^*(z)e^{j\Delta kz}$$

$$\kappa \equiv \sqrt{\frac{\hbar\omega_S\omega_I\omega_P}{2c^3\epsilon_0 n_S(\omega_S)n_I(\omega_I)n_P(\omega_P)\mathcal{A}}} \,\chi^{(2)}A_P$$

is a complex-valued coupling constant that is proportional to the pump's complex envelope and the crystal's second-order nonlinear

for 0 < z < l, where

Solution to photon-unit coupled mode equations

• Solution is given by,

$$A_{S}(l) = \left[\left(\cosh(pl) - \frac{j\Delta kl}{2} \frac{\sinh(pl)}{pl} \right) A_{S}(0) + j\kappa l \frac{\sinh(pl)}{pl} A_{I}^{*}(0) \right] e^{j\Delta kl/2}$$
$$A_{I}(l) = \left[\left(\cosh(pl) - \frac{j\Delta kl}{2} \frac{\sinh(pl)}{pl} \right) A_{I}(0) + j\kappa l \frac{\sinh(pl)}{pl} A_{S}^{*}(0) \right] e^{j\Delta kl/2},$$

where

$$p \equiv \sqrt{|\kappa|^2 - (\Delta k/2)^2},$$

– can be verified by substitution back into the coupled mode equations

Phase matching

- Inside the crystal, the monochromatic signal, idler, and pump beams—at frequencies ω_S, ω_I , and ω_P , respectively, propagate at their phase velocities given by, $v_m(\omega_m) = \omega_m/k_m$ for m = S, I, P.
- The nonlinear interaction governed by the coupledmode equations is said to be **phase matched** when we have $\Delta k = k_P - k_S - k_I = 0$, i.e., when $\omega_P/v_P = \omega_S/v_S + \omega_I/v_I$
- For a phase-matched system,

$$\frac{\mathrm{d}A_S(z)}{\mathrm{d}z} = j\kappa A_I^*(z) \quad \text{and} \quad \frac{\mathrm{d}A_I(z)}{\mathrm{d}z} = j\kappa A_S^*(z), \quad \text{for } 0 \le z \le l$$

phase angle of the coupling between the signal and idler remains the same throughout the interaction. On the other hand, when phase-matching is violated, the phase of the coupling between the signal and idler rotates as these fields propagate

Type-II phase-matched operation at degeneracy

- Phase Matching for Efficient Coupling: $\Delta k=0$
 - Conservation of photon momentum: $k_P = k_S + k_I$

– Type-II system:
$$\vec{i}_S = \vec{i}_x, \, \vec{i}_I = \vec{i}_y$$

- Operation at Frequency Degeneracy: $\omega_S = \omega_I = \omega_P/2$
- Solution for the phase-matched case:

$$A_{S}(l) = \cosh(|\kappa|l)A_{S}(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_{I}^{*}(0)$$
$$A_{I}(l) = \cosh(|\kappa|l)A_{I}(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_{S}^{*}(0).$$

Solution for the phase-matched case:

$$A_S(l) = \cosh(|\kappa|l)A_S(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_I^*(0)$$

$$A_I(l) = \cosh(|\kappa|l)A_I(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_S^*(0)$$

shows increasing amounts of signal-idler coupling with increasing $|\kappa|l$, i.e., with increasing pump power or crystal length. In contrast, far from phase matching—when $|\Delta k/2| \gg |\kappa|$ —we get $p \approx j |\Delta k|/2$, whence

Solution far from phase matching:

$$A_S(l) \approx \left[\left[\cos(\Delta kl/2) - j\sin(\Delta kl/2) \right] A_S(0) + j\kappa l \frac{\sin(\Delta kl/2)}{\Delta kl/2} A_I^*(0) \right] e^{j\Delta kl/2}$$

$$A_I(l) \approx \left[\left[\cos(\Delta kl/2) - j\sin(\Delta kl/2) \right] A_I(0) + j\kappa l \frac{\sin(\Delta kl/2)}{\Delta kl/2} A_S^*(0) \right] e^{j\Delta kl/2}$$

$A_S(l) \approx A_S(0)$ and $A_I(l) \approx A_I(0)$, when $|\Delta kl/2| \gg 1$,

i.e., when the crystal is long enough that the phase mismatch rotates the signal-idler coupling phase through many 2pi cycles

- Photon fission: $\hbar\omega_P = \hbar\omega_S + \hbar\omega_I$
- Photons being produced in pairs reminds us of the two-mode parametric amplifier that we studied earlier in the semester. That system was governed by a two-mode Bogoliubov transformation:

$$\hat{a}_{S}^{\text{out}} = \mu \hat{a}_{S}^{\text{in}} + \nu \hat{a}_{I}^{\text{in}\dagger}$$
 and $\hat{a}_{I}^{\text{out}} = \mu \hat{a}_{I}^{\text{in}} + \nu \hat{a}_{S}^{\text{in}\dagger}$, where $|\mu|^{2} - |\nu|^{2} = 1$.

See the solution to the phase-matched case with,

$$A_{S}(l) = \cosh(|\kappa|l)A_{S}(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_{I}^{*}(0)$$

$$A_{I}(l) = \cosh(|\kappa|l)A_{I}(0) + j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)A_{S}^{*}(0)$$

$$\mu \equiv \cosh(|\kappa|l) \quad \text{and} \quad \nu \equiv j\frac{\kappa}{|\kappa|}\sinh(|\kappa|l)$$

SPDC with quantum analysis

• Coupled mode equations of field operators,

$$\frac{\partial \hat{A}_{S}(z,\omega)}{\partial z} = j\kappa \hat{A}_{I}^{\dagger}(z,\omega)e^{j\omega\Delta k'z}$$
$$\frac{\partial \hat{A}_{I}(z,\omega)}{\partial z} = j\kappa \hat{A}_{S}^{\dagger}(z,\omega)e^{j\omega\Delta k'z}$$

– Solution:

$$\begin{split} \hat{A}_{S}(l,\omega) &= \\ & \left[\left(\cosh(pl) - \frac{j\omega\Delta k'l}{2} \frac{\sinh(pl)}{pl} \right) \hat{A}_{S}(0,\omega) + j\kappa l \frac{\sinh(pl)}{pl} \hat{A}_{I}^{\dagger}(0,\omega) \right] e^{j\omega\Delta k'l/2} \\ \hat{A}_{I}(l,\omega) &= \\ & \left[\left(\cosh(pl) - \frac{j\omega\Delta k'l}{2} \frac{\sinh(pl)}{pl} \right) \hat{A}_{I}(0,\omega) + j\kappa l \frac{\sinh(pl)}{pl} \hat{A}_{S}^{\dagger}(0,\omega) \right] e^{j\omega\Delta k'l/2}, \end{split}$$

where

$$p \equiv \sqrt{|\kappa|^2 - (\omega \Delta k'/2)^2}.$$

• To verify these satisfy commutation relations, define

$$\mu(\omega) = \left(\cosh(pl) - \frac{j\omega\Delta k'l}{2}\frac{\sinh(pl)}{pl}\right)e^{j\omega\Delta k'l/2}$$
$$\nu(\omega) = j\kappa l\frac{\sinh(pl)}{pl}e^{j\omega\Delta k'l/2},$$

- so the coupled mode equations become:

 $|\mu(\omega)|$

$$\begin{split} \hat{A}_{S}(l,\omega) &= \mu(\omega)\hat{A}_{S}(0,\omega) + \nu(\omega)\hat{A}_{I}^{\dagger}(0,\omega) \\ \hat{A}_{I}(l,\omega) &= \mu(\omega)\hat{A}_{I}(0,\omega) + \nu(\omega)\hat{A}_{S}^{\dagger}(0,\omega) \\ |^{2} - |\nu(\omega)|^{2} &= \left[\cosh^{2}(pl) + \left(\frac{\omega\Delta k'}{2p}\right)^{2}\sinh^{2}(pl)\right] - \left(\frac{|\kappa|}{p}\right)^{2}\sinh^{2}(pl) \\ &= \cosh^{2}(pl) - \sinh^{2}(pl) = 1, \text{ hence, a two-mode Bogoliubov transformation that ensures proper commutator preservation.} \end{split}$$

- 1. Next lecture: Continue today's discussion.
- Recap on Gaussian formalism on phase space. Quantum channels. Description of measurements. (3-4 lectures).
- 3. Quantum sensing (3-4 lectures).
- 4. Soft introduction to Optical Quantum Computers (2-3 lectures).
- 5. Quantum discrimination (1-2 lectures).
- 6. Quantum Communications (2-3 lectures).