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Announcements Z&w

OF ARIZONA

* Final presentations schedule:
— December 17 [OSC 307 at 9.00 (TBC)].
— We'll have an external examiner (it might be some visitor).
— Keep calm.

Plan for today: Second order non-linear optics.



Quantum analysis of non-linear optics ZXW
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 How can we create non-classical light beams
that exhibit the signatures we’ve discussed In
our one-mode and multi-mode analyses”?

 |n particular, we will study spontaneous
parametric downconversion (SPDC) and optical
parametric amplification (OPA) in second-order
nonlinear crystals

* These closely-related processes have been and
continue to be the primary venhicles for
generating non-classical light beams in the lab



Plan for today and Thursday Aw

OF ARIZONA

« Given our interest in the system-theoretic aspects
of photonic quantum information processing and
lack of a serious EM theory pre-requisite, we will
not get into too much detail

— focus on the coupled-mode equations characterization
of collinear configurations, i.e., we shall suppress
transverse spatial effects

— Nevertheless, we will be able to get to the basic physics
of these interactions and provide continuous-time
versions of the non-classical signatures that we
discussed in single-mode, two-mode and n-mode forms

* Today, we will begin with a classical analysis.
Thereafter we will extend to a quantum analysis.



Second-order nonlinear optics le
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« Spontaneous parametric down conversion (SPDC)

v(2)

‘ signal
b

idler

2z =10 z =

— Strong pump at frequency, Wp = Wg + Wy
— No input at signal frequency, Ws
— No input at idler frequency, Wy

— Nonlinear mixing in X crystal produces signal and idler
outputs



Spontaneous parametric down ZAS
conversion (SPDC) THe Uiy

« Downconversion—because, the signal and idler
light arises from a higher-frequency pump beam.

» Parametric—because the downconversion is
due to the presence of the pump modifying the
effective material parameters encountered by
the fields propagating at the signal and idler
frequencies.

» Spontaneous—because there is no illumination
of the crystal’s input facet at the signal and idler
frequencies.
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Classical analysis of SPDC T
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* In SPDC, the z = 0 signal and idler frequencies are
unexcited, i.e., in their vacuum states. Action of
pump in conjunction with the crystal’s nonlinearity is
responsible for the excitation at these frequencies at
z = |. Need quantum analysis to understand SPDC

« We will get a hint of the quantum interpretation
because the signal and idler frequencies, in the
classical theory, will obey wp = wg + wy

— Rewriting it as, hiwp = hwg + hwj, suggests that a
photon fission process—in which a single pump photon
spontaneously downconverts into a signal photon plus an
idler photon such that energy is conserved—is what is
happening in SPDC. In fact, such is the case.



Classical electromagnetic theory A
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« Maxwell's Equations in free space

Faraday’s law of induction Gauss’ laws
— 8 — ~ /- —
V x E(F,t) = —MOEH(F, t) V- D(7,t) = p(T,1)

V x H(Ft) = %ﬁ(ﬁ O+ JF ) V- poH(Ft) =0

Ampere’s law with Maxwell’s correction
* flux densities D, B vs. field intensities E, H
B(F,t) = poH (7, t) D(7,t) = egE(7, t)

» Speed of light in vacuum, ¢ = 1/, /€q 1o



Constitutive relations in dielectric Z&w
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* The electric and magnetic flux densities D, B are
related to the field intensities E, H via the so-called
constitutive relations

* For simple homogeneous isotropic dielectrics

€o = 8.854 x 107'? farad/m

D = €E € =¢€p(1+x)
Lo = 41 X 10~/ henry/m

B=uH |p=po(l+xm) : e
=3 X 10° m/sec, No = 623770hm

Co =

JHo€o
» Susceptibilities ¥, X, are measures of electric and
magnetic polarization properties of the material

5(77, t) — Eoﬁ(F, t) + €0XE_)(7?, t) P: dielectric polarization

(average electric dipole

— EQE(F, t) + ﬁ(ﬁ t) moment per m3)
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Susceptibilities and refractive index sy
» Speed of light in dielectric, ¢ = L
JHE
€= =1+X, M= =1+X
rel €0 ’ rel 1o m

 Refractive index, n = \/€rellrel

— For firel = 1,

n=vITx



Reduce to: +z-propagating plane wave Aw
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« Taking curl of Faraday’s law, using the vector
identity, V x [V x F(7,t)] = V[V - F(7,t)] — V2E(F, 1),

0 - 0° =

IV X H(7 0] = oy

Z—Moat D( t)

« For +z propagating field, it simplifies to:
0% - 0% =

azzE( 2 8t2D( =0
— For free-space, D(z,t) = E((, t)

0% 5 1 0% - S
— Hence, —E(z,t) — ——E( t) =0

022

c2 Ot2
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Solution to: 3558 - 5
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* +z-propagating plane wave

E(z,t) = f(t — z/c)is

2
is a solution to: — F/(z,t) —

022 _2

S—E(z, t)=0

— For arbitrary time function f(t) and unit vector Zf in the

X-y plane



EM theory in a linear dielectric medium Z&w
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* We will use the temporal frequency domain:
dw =

F(7w) = /dtﬁ(ﬁ t)elt <=2 F(r,t) = %]—“(ﬁw)e—jwt

 The constitutive law for a linear dielectric is:
D(7,w) = eo[1 + x (W) E(F, w)
73(77, CU) — eox(l)(w)g(F, CU) need not be parallel to the electric field

X(l)(w), is a frequency-dependent tensor Linear susceptibility

If E is polarized along a principal axis of the Crys@(ﬁ w) = 607?,2 (w)f('?, w)
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lelmholtz equation THE UNVERSIT
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* |f we take the Fourier transform, and presume
fields with no (x,y) dependence with an electric
field polarized along a principal axis, we obtain
the Helmholtz equation

0% - w?n?(w) =

@S(z,w) + E(z,w) = 0.

The +2-going plane-wave solution to this equation is

c2

—

E(z,w) = Re[Ee Wik,

where k = wn(w)/c and E is a constant vector in the z-y plane.



Non-linear dielectric wa
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 For a nonlinear dielectric, constitutive relation:

D(F,w) = 6|1 + X (W)|E(F,w) + Puw(F, w)

where x((w) is the medium’s linear susceptibility tensor at frequency w and Py (7, w)
is the nonlinear polarization, i.e., Py (7, w) is a nonlinear function of the electric field.

* Assuming +z-going plane wave whose electric field is
polarized along a principal axis of the x tensor,

0% S wn?(w) 5 -

@S(Z,w) | 2 E(z,w) = —pow Pnr(z,w)

— LHS includes medium’s linear behavior, nonlinear character
appearing as a source term on RHS. General solutions for

arbitrary nonlinearities are beyond our reach




Coupled mode theory for second- ZAS
order non-linearity e NSy

« Material’s nonlinear polarization arises from a second-
order nonlinearity

« Assume E field propagating fromz =0to z =1 in the
nonlinear crystal consists of three +z-going
monochromatic plane waves: frequency-wp pump
beam; frequency-w g signal beam; and frequency- Wy
idler beam. We will assume that:

- Wp = Wg T+ Wr
— pump is very strong while the signal and idler are very weak

— Allowing—as will be necessary to account for the tensor
properties of the second-order susceptibility—the pump,
signal, and idler to have different linear polarizations along
the crystal’s principal axes, we will take the E field to be:



Pump, signal and idler plane-wave modes Z&w
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* Assume monochromatic pump, signal and idler

E(Z', t) — Be[AS(Z)e—j(wst—ksz)]ZSJ+\lf{e[AI(Z)e—j(wIt—kIz)]fZ}

J/

signal idler

—

-+ Re[Ape_j(th_sz)]Zp, for 0 < z <.

\ . >4

Y

pump

— k. = WiNp (W) /c for m = S, 1, P
wave numbers of the signal, idler, and pump fields in terms

of the refractive indices of their respective linear
polarizations, ¢,, which are all in the x-y plane

— Non-depleting pump, Ap is a constant
— Slowly-varying (in z) signal and idler complex amplitudes
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Linear and non-linear polarization terms  .coese
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» Constitutive Law for 2nd-Order Nonlinear Crystal:

—

The first 3 terms are due to
linear susceptibility. Except
for the possibly different
signal, idler, and pump
polarizations, it is the three-
wave version of what we
showed before for a linear
dielectric. The last two terms
represent the effect of the
material’s second-order
nonlinear susceptibility. we
have suppressed the
frequency dependence and
tensor character

2

D(7,t) = egE(F, t) + P(7, )

eon%(wg) Ag(z)e i Wst=ks2) 1 cc

2 'S
eon?(wr)Ap(z)eIWwrt=kiz) 4 cc
2 "
€onp (Wp)Ape_j(th_sz) + cC -
2 P
EOX(Z)A?(Z)Ape_j[(wp_wI)t_(kP_kI)z] + cC -
2 '
EOX(Z)AE«(Z)Ape_j[(wp_wS)t_(kP_kS)z] _l_ CC —
(7}

2
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Solving the Helmholtz equation... e
O? . | ] | _’
o Z(AS( Je _J(MSt—kSZ)?:S_i_AI(Z)e_J(wIt—kIZ)iI_I_Ape—](wpt—kpz)ip)
&
1 52 o
T2 (nS(UJS)AS( ) j(wst—kg )?/S

+ n?(UJI)AI(Z) —j(wrt— kIZ)Z _|_nP(wP)A e—J(th—sz)g’P)

(2) 2 | )
_ Xc2 atQ (A;(z)Ape_J[(wP—wI)t—(k:P—k;I)z]zS

+ AS( )Ape_J[(wP wg)t—(kp— ks)] )_0
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Solving the Helmholtz equation...(contd.) A

« Performing z differentiation to the first line,
o2 | L | L . S
52 (Ag(z)e_J(wst_ksz)ig — AI(z)e_J(“”t_kfz)iI + Ape_j(wpt_kpz)ip)
dAg(2)
dz
dA;(z)
dz

— —k%AS(Z) + 27kg ] e_j(wst_ksz)z_')g

+ | —k7A(2) + 25k; ] e~ wrt=hiz)j 2 Ape~Iwrmkra)j,

where we have employed the slowly-varying envelope

approximation to suppress terms invoIv%Am(z) form
=35, |.
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Solving the Helmholtz equation...(contd.) ..o

OF ARIZONA

« Performing the t differentiations on the second
and third lines,

1 52 | . | B
__2@ (n%(wS)AS(z)e—J(WSt—kSZ)Z'S i n?(CUI)A[(Z)Q_J(wIt_kIZ)iI
C

+ n3 (wp)Ape_j(“’Pt_sz)fp)

—

_ kgAS(Z)e—j(wst—kSZ);S 4 k?AI(Z)e—j(wIt—kIZ)ZI 1+ k%APB—j(WPt—kPZ)ZP

where we have used k,, = wynpm(wn)/c for m =S, 1, P.



Solving the Helmholtz equation...(contd.) Aw
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* Plugging back both terms in, we get

dA . (2)(,?2 . -
(2jk3 S(Z) e—](wst—ksz) + X wsAi;(Z)Ape—j[wst—(kp_kI)z]) ig

dz c2

dAI(Z) 6—j(w1t—k12) + X(z)w%
dz c2

« SPDC systems in which the signal and idler are in
orthogonal linear polarizations. The above equation
reduces to two “coupled-mode equations™:

dAgs(z) wex P Ap

+ (2]]6] Ag(Z)Ape_j[wIt—(kP—kS)z]) ZI = 6,

_ A* jAkz
dz J 2cng(ws) 1(z)e
dAI(Z) .CUIX(Z)AP Ak
dz / 2en(wr) s(2)e”,

for 0 < z <[, where Ak = kp — kg — kj.



Coupled mode equations Z&w
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* should be solved subject to given initial conditions,

{AS(O)7 AI(O)} — {AS(Z)v Al(l)}

— yielding,
5(27 t) = Re[Ag(l)e_j(“’st_ksl_‘”S(z_”/c)]z_"g 4 Re[AI(l)e—j(wrt—kzl—wr(z—l)/c)]{I
4 }{e[AApe—j(wpt—k;pl—c.up(z—l)/c)]ZP7

— where forz > [, regular free-space propagation prevails
* Why quantum analysis of SPDC will be needed?

— If we set, Ag(0) = A;(0) =0, we get Ag(l) = A;(l) =

— and hence, E(z,t) = Re[Ap e (wpt—hpl-wp(:- l)/c] for z > (.



Conversion to photon-unit fields Aw
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« Time-averaged powers on photodetector active area, A

Spa(2) = Ceonmé“’m)“‘l An(2)|2, form=S,I,P

* Photon-unit (\/photons/sec) fields,
Smlz) = fwm|Am(z)|2, form=S5,1,P
* Photon-units coupled mode equations:

A .
V) jray(z)erss
“ for 0 < z <[, where
dAI(Z) . * ) z
1z = jrAG(z)e’2F

is a complex-valued coupling
B hwgwrwp (2) constant that is proportional to the
KR — 3 X AP
2c3€egns(

WS)”I (WI)TZP(WP)A pump’s complex envelope and the
crystal’s second-order nonlinear




Solution to photon-unit coupled ZAS
mode equations e

« Solution is given by,

' i Akl sinh(pl inh(pl 1
As(t) = | (coshipr) — PRFENEIY 4 ) 1 PP e ] iy

: 2 pl pl |

' Akl s inh (pl 1.

| p D |

p=VIsP — (Ak/2)2,

— can be verified by substitution back into the coupled
mode equations
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Phase matching THE UNIVERSITY
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* Inside the crystal, the monochromatic signal, idler,
and pump beams—at frequencies wgs,w;, and wp,
respectively, propagate at their phase velocities
given by, v, (wy,) = wp/k, for m = S, 1, P.

* The nonlinear interaction governed by the coupled-
mode equations is said to be phase matched when
we have Ak = kp — ks —k;r =0, i.e., when
wp/vp = ws/vg + wr/vr

* For a phase-matched system,

dAs(z) ., dA;(z)
e = jkAj(2) and p

phase angle of the coupling between the signal and idler remains the same
throughout the interaction. On the other hand, when phase-matching is violated, the
phase of the coupling between the signal and idler rotates as these fields propagate

= jkAL(z), for 0 <z <1




Type-ll phase-matched operation at A
degeneracy THE UNVERSITY
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« Phase Matching for Efficient Coupling: Ak = 0

— Conservation of photon momentum: kp = ks + kj
— Type-ll system: is =iz, i1 =iy
— Operation at Frequency Degeneracy: ws = w; = wp/2

« Solution for the phase-matched case:

K

%]

K

Ag(l) = cosh(|k|l)As(0) + 5

sinh (||1) A%(0)

Ar(l) = cosh(|x[l)A7(0) +J

sinh (||1)A%(0)

%]



Non-phase matched case

A
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Solution for the phase-matched case:

Ag(l) = cosh(|s|l)Ag(0) + j = sinh

%]

Ar(l) = cosh(||l)A7(0) + —smh

(1%11)A7(0)
(I%1) A (0)

shows increasing amounts of signal-idler coupling Wlth increasing ||, i.e., with in-
creasing pump power or crystal length. In contrast, far from phase matching—when
|Ak/2| > |k|—we get p = j|Ak|/2, whence

Solution far from phase matching:

Ag(l) ~

Q

Ar(l)

As(1)

lcos(AkL/2) — jsin(AklL/2)] Ag(0) + jrl

(cos(AKL/2) — jsin(AkL/2)A(0) + jxl

sin(Akl/2)

Akl/2
sin(Akl/2)

AKl/2

%AS(O) and Aj(l) ~ AI(O), when ‘Akl/2‘ > 1,

A*(O)

A (0)

ejAkl/Z

ejAkl/Z

I.e., when the crystal is long enough that the phase mismatch rotates the signal-idler
coupling phase through many 2pi cycles
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Prelude to quantum analysis T
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« Photon fission: hiwp = hwgs + hw;

* Photons being produced in pairs reminds us of the
two-mode parametric amplifier that we studied
earlier in the semester. That system was governed
by a two-mode Bogoliubov transformation:

a2 = pa +va™  and @™ = pa + val’,  where |2 — [y = 1.

« See the solution to the phase-matched case with,
As(l) = cosh(|s|l)Ag(0) + j— sinh(|x|l)A%(0)

%]
K

Ar(l) = cosh(|s]1)A;(0) + j— sinh(|x|1) A%(0)

%]
K
sinh(|x|l)
i

= cosh(|k|l) and v=j



SPDC with quantum analysis

A
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* Coupled mode equations of field operators,

6/15 <y W oA . /
( ) ) _ ]H:A}(Z’w)eijkz
0z
A (2, w A o
( ) ) _ ]HZATS(Z,CU)S‘?Q}Akz
0z
— Solution:
As(l,W) =
KCOSh(pl) _ Jwak] Smh(pl))fls((), w) + jkl sinh(p) Ao, w)] gIwAK'l/2
2 pl pl
AI(Z,W) =
KCOSh(Pl) _JwAk Smh(pl))zzlf((), w) + jkl sinh(pl) AL (o, w)] eIWARL/2
where

p = ]AI? = WAk 2)2.



Solution to quantum analysis (contd) Aw
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 To verify these satisfy commutation relations, define

wAK'l sinh (pl o
ulw) = (cosh(pl)—‘jw2 Smpl(p))eijklﬂ

v(w) = gkl Sinil(p ) pIWAK'L/2

— so the coupled mode equations become:
Ag(l, LU) — M(W)AS(Ov W) + V(w) }
Af(l,w) = pw)A(0,w) + v(w)AL(0,w)

)

(@)~ ()P = [cosh%pn ¥ (%) sinh2<pz>] - (‘%‘)me(pg

= cosh’(pl) — sinh®(pl) = 1, hence, a two-mode Bogoliubov transformation
that ensures proper commutator preservation.



Plan for the rest of this course Aw
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1. Next lecture: Continue today’s discussion.

2. Recap on Gaussian formalism on phase space.
Quantum channels. Description of
measurements. (3-4 lectures).

3. Quantum sensing (3-4 lectures).

4. Soft introduction to Optical Quantum
Computers (2-3 lectures).

5. Quantum discrimination (1-2 lectures).
6. Quantum Communications (2-3 lectures).
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