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Announcements
• Final presentations schedule:

– December 17 [OSC 307 at 9.00 (TBC)].
– We’ll have an external examiner (it might be some visitor).
– Keep calm.

Plan for today: Second order non-linear optics.



Quantum analysis of non-linear optics

• How can we create non-classical light beams 
that exhibit the signatures we’ve discussed in 
our one-mode and multi-mode analyses?

• In particular, we will study spontaneous 
parametric downconversion (SPDC) and optical 
parametric amplification (OPA) in second-order 
nonlinear crystals

• These closely-related processes have been and 
continue to be the primary vehicles for 
generating non-classical light beams in the lab



Plan for today and Thursday

• Given our interest in the system-theoretic aspects 
of photonic quantum information processing and 
lack of a serious EM theory pre-requisite, we will 
not get into too much detail
– focus on the coupled-mode equations characterization 

of collinear configurations, i.e., we shall suppress 
transverse spatial effects 

– Nevertheless, we will be able to get to the basic physics 
of these interactions and provide continuous-time 
versions of the non-classical signatures that we 
discussed in single-mode, two-mode and n-mode forms

• Today, we will begin with a classical analysis. 
Thereafter we will extend to a quantum analysis.



Second-order nonlinear optics
• Spontaneous parametric down conversion (SPDC)

– Strong pump at frequency,
– No input at signal frequency,
– No input at idler frequency,
– Nonlinear mixing in        crystal produces signal and idler 

outputs

pump

signal

idler



Spontaneous parametric down 
conversion (SPDC)

• Downconversion—because, the signal and idler 
light arises from a higher-frequency pump beam. 

• Parametric—because the downconversion is 
due to the presence of the pump modifying the 
effective material parameters encountered by 
the fields propagating at the signal and idler 
frequencies.

• Spontaneous—because there is no illumination 
of the crystal’s input facet at the signal and idler 
frequencies.



Classical analysis of SPDC

• In SPDC, the z = 0 signal and idler frequencies are 
unexcited, i.e., in their vacuum states. Action of 
pump in conjunction with the crystal’s nonlinearity is 
responsible for the excitation at these frequencies at 
z = l. Need quantum analysis to understand SPDC

• We will get a hint of the quantum interpretation 
because the signal and idler frequencies, in the 
classical theory, will obey
– Rewriting it as,                                   , suggests that a 

photon fission process—in which a single pump photon 
spontaneously downconverts into a signal photon plus an 
idler photon such that energy is conserved—is what is 
happening in SPDC. In fact, such is the case.



Classical electromagnetic theory

• Maxwell’s Equations in free space

• flux densities D, B vs. field intensities E, H

• Speed of light in vacuum,

Gauss’ lawsFaraday’s law of induction

Ampere’s law with Maxwell’s correction



Constitutive relations in dielectric

• The electric and magnetic flux densities D, B are 
related to the field intensities E, H via the so-called 
constitutive relations 

• For simple homogeneous isotropic dielectrics

• Susceptibilities χ, χm are measures of electric and 
magnetic polarization properties of the material 

P: dielectric polarization 
(average electric dipole 
moment per m3)



Susceptibilities and refractive index

• Speed of light in dielectric,

• Refractive index,

– For 



Reduce to: +z-propagating plane wave

• Taking curl of Faraday’s law, using the vector 
identity,                                                                ,

• For +z propagating field, it simplifies to:

– For free-space,

– Hence,



Solution to:

• +z-propagating plane wave

is a solution to:

– For arbitrary time function f(t) and unit vector    in the 
x-y plane



EM theory in a linear dielectric medium

• We will use the temporal frequency domain:

• The constitutive law for a linear dielectric is:

Linear susceptibility

need not be parallel to the electric field 

If E is polarized along a principal axis of the crystal,



Helmholtz equation

• If we take the Fourier transform, and presume 
fields with no (x,y) dependence with an electric 
field polarized along a principal axis, we obtain 
the Helmholtz equation



Non-linear dielectric

• For a nonlinear dielectric, constitutive relation:

• Assuming +z-going plane wave whose electric field is 
polarized along a principal axis of the        tensor,

– LHS includes medium’s linear behavior, nonlinear character 
appearing as a source term on RHS. General solutions for 
arbitrary nonlinearities are beyond our reach



Coupled mode theory for second-
order non-linearity

• Material’s nonlinear polarization arises from a second-
order nonlinearity

• Assume E field propagating from z = 0 to z = l in the 
nonlinear crystal consists of three +z-going 
monochromatic plane waves: frequency- pump 
beam; frequency- signal beam; and frequency-
idler beam. We will assume that:
–
– pump is very strong while the signal and idler are very weak
– Allowing—as will be necessary to account for the tensor 

properties of the second-order susceptibility—the pump, 
signal, and idler to have different linear polarizations along 
the crystal’s principal axes, we will take the E field to be:



Pump, signal and idler plane-wave modes

• Assume monochromatic pump, signal and idler

–
wave numbers of the signal, idler, and pump fields in terms 
of the refractive indices of their respective linear 
polarizations,       which are all in the x-y plane 
– Non-depleting pump,        is a constant 
– Slowly-varying (in z) signal and idler complex amplitudes



Linear and non-linear polarization terms

• Constitutive Law for 2nd-Order Nonlinear Crystal:

The first 3 terms are due to 
linear susceptibility. Except 
for the possibly different 
signal, idler, and pump 
polarizations, it is the three-
wave version of what we 
showed before for a linear 
dielectric. The last two terms 
represent the effect of the 
material’s second-order 
nonlinear susceptibility. we 
have suppressed the 
frequency dependence and 
tensor character 



Solving the Helmholtz equation…



Solving the Helmholtz equation…(contd.)

• Performing z differentiation to the first line,

where we have employed the slowly-varying envelope 
approximation to suppress terms involving                 for m 
= S, I. 



Solving the Helmholtz equation…(contd.)

• Performing the t differentiations on the second 
and third lines,



Solving the Helmholtz equation…(contd.)

• Plugging back both terms in, we get

• SPDC systems in which the signal and idler are in 
orthogonal linear polarizations. The above equation 
reduces to two “coupled-mode equations”:



Coupled mode equations

• should be solved subject to given initial conditions,

– yielding,

– where for         , regular free-space propagation prevails
• Why quantum analysis of SPDC will be needed?

– If we set,                       ,      we get
– and hence,



Conversion to photon-unit fields
• Time-averaged powers on photodetector active area,     

• Photon-unit (                      ) fields,

• Photon-units coupled mode equations:

is a complex-valued coupling 
constant that is proportional to the 
pump’s complex envelope and the 
crystal’s second-order nonlinear 

 



Solution to photon-unit coupled 
mode equations

• Solution is given by,

– can be verified by substitution back into the coupled 
mode equations



Phase matching
• Inside the crystal, the monochromatic signal, idler, 

and pump beams—at frequencies                , 
respectively, propagate at their phase velocities 
given by,                             for                       .

• The nonlinear interaction governed by the coupled-
mode equations is said to be phase matched when 
we have                                      , i.e., when

• For a phase-matched system,

phase angle of the coupling between the signal and idler remains the same 
throughout the interaction. On the other hand, when phase-matching is violated, the 
phase of the coupling between the signal and idler rotates as these fields propagate 

   



Type-II phase-matched operation at 
degeneracy

• Phase Matching for Efficient Coupling: 
– Conservation of photon momentum: 
– Type-II system:
– Operation at Frequency Degeneracy: 

• Solution for the phase-matched case:



Non-phase matched case

i.e., when the crystal is long enough that the phase mismatch rotates the signal-idler 
coupling phase through many 2pi cycles 

Solution for the phase-matched case:

Solution far from phase matching:



Prelude to quantum analysis

• Photon fission:
• Photons being produced in pairs reminds us of the 

two-mode parametric amplifier that we studied 
earlier in the semester. That system was governed 
by a two-mode Bogoliubov transformation: 

• See the solution to the phase-matched case with,



SPDC with quantum analysis

• Coupled mode equations of field operators,

– Solution:



Solution to quantum analysis (contd)

• To verify these satisfy commutation relations, define

– so the coupled mode equations become:

hence, a two-mode Bogoliubov transformation 
that ensures proper commutator preservation. 



Plan for the rest of this course

1. Next lecture: Continue today’s discussion.
2. Recap on Gaussian formalism on phase space. 

Quantum channels. Description of 
measurements. (3-4 lectures).

3. Quantum sensing (3-4 lectures).
4. Soft introduction to Optical Quantum 

Computers (2-3 lectures).
5. Quantum discrimination (1-2 lectures).
6. Quantum Communications (2-3 lectures).
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