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Introduction

The final major question we shall address this semester is the following. How can
we create non-classical light beams that exhibit the signatures we’ve discussed in
our simple one-mode and two-mode analyses? In particular, we will study spon-
taneous parametric downconversion and optical parametric amplification in second-
order nonlinear crystals. These closely-related processes have been and continue to
be the primary vehicles for generating non-classical light beams. Given our inter-
est in the system-theoretic aspects of quantum optical communication—and our lack
of a serious electromagnetic fields prerequesite—we shall tread lightly, focusing on
the coupled-mode equations characterization of collinear configurations, i.e., we shall
suppress transverse spatial e↵ects. Nevertheless, we will be able to get to the basic
physics of these interactions and provide continuous-time versions of the non-classical
signatures that we discussed in single-mode and two-mode forms earlier this term.
Today, however, we will begin with a treatment within the classical domain. In the
two lectures to follow we will convert today’s material into the quantum domain, and
then explore the implications of that quantum characterization.

Spontaneous Parametric Downconversion

Slide 3 shows a conceptual picture of spontaneous parametric downconversion (SPDC).
A strong laser-beam pump is applied to the entrance facet (at z = 0) of a crystalline
material that possesses a second-order (�(2)) nonlinearity. We will only concern our-
selves with continuous-wave (cw) pump fields, so this pump beam will be taken to
be monochromatic at frequency !

P

. Even though the only light applied to the crys-
tal is at frequency !

P

, three-wave mixing in this nonlinear material can result in
the production of lower-frequency signal and idler waves, with center frequencies !

S
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and !
I

, respectively, that emerge—along with the transmitted pump beam—from the
crystal’s output facet (at z = l). This process is downconversion, because the signal
and idler light arises from a higher-frequency pump beam. The process is deemed
parametric, because the downconversion is due to the presence of the pump modifying
the e↵ective material parameters encountered by the fields propagating at the signal
and idler frequencies. It is called spontaneous , because there is no illumination of
the crystal’s input facet at the signal and idler frequencies. Of course, this zero-field
input statement is correct in a classical physics description of slide 3. We know, from
our quantum description of the electromagnetic field, that the positive-frequency field
operator at the crystal’s input facet must include components at both the signal and
idler frequencies. In SPDC, the z = 0 signal and idler frequencies are unexcited, i.e.,
in their vacuum states. The action of the pump beam in conjunction with the crys-
tal’s nonlinearity is responsible for the excitation at these frequencies that is seen at
z = l. Thus, although a quantum analysis will be required to understand the SPDC
process, we will devote the rest of today’s e↵ort to a classical treatment of the slide 3
configuration. Nevertheless, we shall get a hint of the quantum future because the
signal and idler frequencies, in the classical theory, will obey !

S

+ !
I

= !
P

. Zero-
valued input fields at the signal and idler frequencies cannot account for the energy
in non-zero signal and idler output fields. Instead, the energy present in these output
fields must come from the pump beam. Rewriting the preceding frequency condition
as ~!

S

+~!
I

= ~!
P

at least suggests that a photon fission process—in which a single
pump photon spontaneously downconverts into a signal photon plus an idler photon
such that energy is conserved—is what is happening in SPDC. In fact, such is the
case.

Maxwell’s Equations in a Nonlinear Dielectric Medium

We will start our classical analysis of electromagnetic wave propagation in a �(2)

medium from bedrock: Maxwell’s equations for propagation in a source-free region
of a nonlinear dielectric. In di↵erential form, and without assuming any constitutive
laws, we have that

r⇥ ~E(~r, t) = � @

@t
~B(~r, t), Faraday’s law (1)

r · ~D(~r, t) = 0, Gauss’ law (2)

r⇥ ~H(~r, t) =
@

@t
~D(~r, t), Ampère’s law (3)

r · ~B(~r, t) = 0, Gauss’ law for the magnetic flux density, (4)

where ~E(~r, t) is the electric field, ~D(~r, t) is the displacement flux density, ~H(~r, t) is
the magnetic field, and ~B(~r, t) is the magnetic flux density. All of these fields are real
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valued and in SI units. For dielectrics, we can take

~B(~r, t) = µ
0

~H(~r, t), (5)

where µ
0

is the permeability of free space, as one of the material’s constitutive laws.
The other free-space constitutive law is

~D(~r, t) = ✏
0

~E(~r, t), (6)

where ✏
0

is the permittivity of free space.1 However, for the nonlinear dielectric of
interest here we will use

~D(~r, t) = ✏
0

~E(~r, t) + ~P (~r, t), (7)

where ~P (~r, t) is the material’s polarization, which is a nonlinear function of the electric
field.

Our initial objective is to reduce Maxwell’s equations to a wave equation for a
+z-propagating plane wave. Taking the curl of Faraday’s law, employing the vector
identity

r⇥ [r⇥ ~F (~r, t)] = r[r · ~F (~r, t)]�r2 ~F (~r, t), (8)

and Ampère’s law, we get

r[r · ~E(~r, t)]�r2 ~E(~r, t) = �µ
0

@

@t
[r⇥ ~H(~r, t)] = �µ

0

@2

@t2
~D(~r, t). (9)

For a +z-propagating plane wave whose electric field is orthogonal to the z axis, the
preceding result simplifies to

@2

@z2
~E(z, t)� µ

0

@2

@t2
~D(z, t) = ~0. (10)

Before moving on to propagation in the nonlinear medium, let’s examine the wave
solutions to Eq. (10) in free space and in a linear dielectric. Using ~D(z, t) = ✏

0

~E(⇣, t),
for free space, Eq. (10) becomes

@2

@z2
~E(z, t)� 1

c2
@2

@t2
~E(z, t) = ~0, (11)

where we have used c = 1/
p
✏
0

µ
0

. It easily verified—recall Lecture 17—that

~E(z, t) = f(t� z/c)~i
f

, (12)

1In terms of ✏0 and µ0 we have that c = 1/
p
✏0µ0 is the speed of light in vacuum, as shown in

Lecture 17.
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is a solution to Eq. (11) for an arbitrary time function f(t) and unit vector ~i
f

in the
x-y plane.2 Moreover, this field is a +z-going plane wave, as was noted in Lecture 17.

Now suppose that we are interested in propagation through a linear dielectric. In
this case, and for the nonlinear case to follow, it is best to go to the temporal-frequency
domain, i.e., we define the Fourier transform of a field ~F (~r, t) by

~F(~r,!) =

Z
dt ~F (~r, t)ej!t. (13)

The sign convention here is in keeping with our quantum-optics notion of what con-
stitutes a positive-frequency field, viz., the inverse transform integral is

~F (~r, t) =

Z
d!

2⇡
~F(~r,!)e�j!t. (14)

The constitutive law for a linear dielectric is

~D(~r,!) = ✏
0

[1 + �(1)(!)]~E(~r,!), (15)

where the linear susceptibility, �(1)(!), is a frequency-dependent tensor, so that the
polarization,

~P(~r,!) = ✏
0

�(1)(!)~E(~r,!), (16)

need not be parallel to the electric field. The tensor nature of the linear susceptibility
is the anisotropy that we exploited in our discussion, earlier this semester, of wave
plates. Thus, if ~E(~r,!) is polarized along a principal axis of the crystal—as we shall
assume in what follows—we have that

~D(~r,!) = ✏
0

n2(!)~E(~r,!), (17)

is the appropriate constitutive relation, where n(!) is the refractive index at frequency
! for the chosen polarization. Now, if we take the Fourier transform of Eq. (10) and
presume fields with no (x, y) dependence with an electric field polarized along a
principal axis, we obtain the Helmholtz equation

@2

@z2
~E(z,!) + !2n2(!)

c2
~E(z,!) = ~0. (18)

The +z-going plane-wave solution to this equation is

~E(z,!) = Re[ ~Ee�j(!t�kz)]. (19)

where k ⌘ !n(!)/c and ~E is a constant vector in the x-y plane.

2To show that Eq. (11) provides a solution to Maxwell’s equations in free space, however, more

work is needed. Faraday’s law should be used to derive the associated magnetic field, ~H(z, t), and

then it should be verified that ~E(z, t) and ~H(z, t) are solutions to the full set of Maxwell’s equations.
See Lecture 17 for more details.
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For a nonlinear dielectric we shall employ the following frequency-domain consti-
tutive relation:

~D(~r,!) = ✏
0

[1 + �(1)(!)]~E(~r,!) + ~P
NL

(~r,!), (20)

where �(1)(!) is the medium’s linear susceptibility tensor at frequency ! and ~P
NL

(~r,!)
is the nonlinear polarization, i.e., ~P

NL

(~r,!) is a nonlinear function of the electric field.
Assuming, as before, a +z-going plane wave whose electric field is polarized along a
principal axis of the �(1)(!) tensor, Eq. (18) becomes

@2

@z2
~E(z,!) + !2n2(!)

c2
~E(z,!) = �µ

0

!2 ~P
NL

(z,!), (21)

for the nonlinear dielectric. The left-hand side of this equation includes the medium’s
linear behavior, with its nonlinear character appearing as a source term on the right-
hand side. General solutions to this equation—for arbitrary nonlinearities—are be-
yond our reach. In the next section, however, we show how to do a coupled-mode
analysis that, when converted to quantum form in Lecture 21, will allow us to under-
stand how SPDC produces non-classical light.

Coupled-Mode Equations

Here we shall delve deeper into propagation through a nonlinear dielectric when that
material’s nonlinear polarization arises from a second-order nonlinearity. Unlike the
preceding section, which tried to work in generality, we will now assume that the
electric field propagating from z = 0 to z = l in the nonlinear crystal consists of three
+z-going monochromatic plane waves: the frequency-!

P

pump beam; the frequency-
!
S

signal beam; and the frequency-!
I

idler beam. Furthermore, we will assume
that !

P

= !
S

+ !
I

and that the pump is very strong while the signal and idler are
very weak. Allowing—as will be necessary to account for the tensor properties of
the second-order susceptibility—the pump, signal, and idler to have di↵erent linear
polarizations along the crystal’s principal axes, we will take the electric field to be

~E(z, t) = Re[A
S

(z)e�j(!St�kSz)]~i
S| {z }

signal

+Re[A
I

(z)e�j(!I t�kIz)]~i
I| {z }

idler

+ Re[A
P

e�j(!P t�kP z)]~i
P| {z }

pump

, for 0  z  l. (22)

In this expression: k
m

= !
m

n
m

(!
m

)/c for m = S, I, P gives the wave numbers of
the signal, idler, and pump fields in terms of the refractive indices, n

m

(!
m

), of their
respective linear polarizations, ~i

m

, which are all in the x-y plane. More importantly,
for what will follow, the signal and idler complex envelopes, A

S

(z) and A
I

(z), are
slowly-varying functions of z, i.e., they change very little on the scale of their field
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component’s wavelength.3 Also, the strong pump field has been taken to be non-
depleting, i.e., its complex envelope, A

P

, is a constant.4 These assumptions are
consistent with SPDC operation.

For the constitutive relation associated with the preceding electric field we will
assume that

~D(z, t) ⇡ ✏
0

n2

S

(!
S

)A
S

(z)e�j(!St�kSz) + cc

2
~i
S

+
✏
0

n2

I

(!
I

)A
I

(z)e�j(!I t�kIz) + cc

2
~i
I

+
✏
0

n2

P

(!
P

)A
P

e�j(!P t�kP z) + cc

2
~i
P

+
✏
0

�(2)A⇤
I

(z)A
P

e�j[(!P�!I)t�(kP�kI)z] + cc

2
~i
S

+
✏
0

�(2)A⇤
S

(z)A
P

e�j[(!P�!S)t�(kP�kS)z] + cc

2
~i
I

, (23)

where cc denotes complex conjugate. The first three terms on the right in Eq. (23)
are due to the material’s linear susceptibility. Except for the possibly di↵erent signal,
idler, and pump polarizations, it is the three-wave version of what we exhibited in
the previous section for a linear dielectric. The last two terms represent the e↵ect
of the material’s second-order nonlinear susceptibility, �(2). Strictly speaking, this
susceptibility is a frequency-dependent tensor that produces a nonlinear polarization
~P
NL

(z, t) when it is multiplied by the product of two electric-field frequency compo-
nents. In writing Eq. (23) we have suppressed the frequency dependence and tensor
character by our choice of fixed frequencies and polarizations in Eq. (22), and we
have only included second-order terms that appear at the signal or idler frequencies,
as these are the frequencies that will be of interest in what follows, viz., they represent
coupling between the signal and idler which is mediated by the presence of the strong
pump beam in the nonlinear crystal.

Let us substitute Eq. (23) into Eq. (10) and exploit the linear independence of
ej!t and e�j!t for ! 6= 0 to restrict our attention to the positive-frequency terms. We

3This assumption goes by the acronym SVEA, i.e., the slowly-varying envelope approximation.
4Strictly speaking, this no-depletion assumption cannot be exactly correct, as the pump beam

supplies the energy for the signal and idler outputs in SPDC. It is a good approximation for SPDC,
however, because the signal and idler outputs in typical operation are much weaker than the pump
beam.
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then find that the electric-field complex envelopes must obey

@2

@z2

⇣
A

S

(z)e�j(!St�kSz)~i
S

+ A
I

(z)e�j(!I t�kIz)~i
I

+ A
P

e�j(!P t�kP z)~i
P

⌘

� 1

c2
@2

@t2

⇣
n2

S

(!
S

)A
S

(z)e�j(!St�kSz)~i
S

+ n2

I

(!
I

)A
I

(z)e�j(!I t�kIz)~i
I

+ n2

P

(!
P

)A
P

e�j(!P t�kP z)~i
P

⌘

� �(2)

c2
@2

@t2

⇣
A⇤

I

(z)A
P

e�j[(!P�!I)t�(kP�kI)z]~i
S

+ A⇤
S

(z)A
P

e�j[(!P�!S)t�(kP�kS)z]~i
I

⌘
= ~0. (24)

Performing the z di↵erentiations on the first line of Eq. (24) gives

@2

@z2

⇣
A

S

(z)e�j(!St�kSz)~i
S

+ A
I

(z)e�j(!I t�kIz)~i
I

+ A
P

e�j(!P t�kP z)~i
P

⌘

=


�k2

S

A
S

(z) + 2jk
S

dA
S

(z)

dz

�
e�j(!St�kSz)~i

S

+


�k2

I

A
I

(z) + 2jk
I

dA
I

(z)

dz

�
e�j(!I t�kIz)~i

I

� k2

P

A
P

e�j(!P�kP z)~i
P

, (25)

where we have employed the slowly-varying envelope approximation to suppress terms
involving @

2

@z

2Am

(z) for m = S, I. Performing the t di↵erentiations on the second and
third lines of Eq. (24) yields

� 1

c2
@2

@t2

⇣
n2

S

(!
S

)A
S

(z)e�j(!St�kSz)~i
S

+ n2

I

(!
I

)A
I

(z)e�j(!I t�kIz)~i
I

+ n2

P

(!
P

)A
P

e�j(!P t�kP z)~i
P

⌘

= k2

S

A
S

(z)e�j(!St�kSz)~i
S

+ k2

I

A
I

(z)e�j(!I t�kIz)~i
I

+ k2

P

A
P

e�j(!P t�kP z)~i
P

, (26)

where we have used k
m

= !
m

n
m

(!
m

)/c for m = S, I, P . Using Eqs. (25) and (26) in
Eq. (24) leads to term cancellations5 that reduce the latter equation to

✓
2jk

S

dA
S

(z)

dz
e�j(!St�kSz) +

�(2)!2

S

c2
A⇤

I

(z)A
P

e�j[!St�(kP�kI)z]

◆
~i
S

+

✓
2jk

I

dA
I

(z)

dz
e�j(!I t�kIz) +

�(2)!2

I

c2
A⇤

S

(z)A
P

e�j[!I t�(kP�kS)z]

◆
~i
I

= ~0, (27)

5These cancellations are to be expected, as the terms in question are those for a linear dielectric
and km = !mnm(!m)/c gives the plane-wave solutions for such media.
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where we have used !
P

= !
S

+ !
I

.
We will be interested in SPDC systems in which the signal and idler are in or-

thogonal linear polarizations. In this case, the preceding equation can be decomposed
into two coupled-mode equations:6

dA
S

(z)

dz
= j

!
S

�(2)A
P

2cn
S

(!
S

)
A⇤

I

(z)ej�kz (28)

dA
I

(z)

dz
= j

!
I

�(2)A
P

2cn
I

(!
I

)
A⇤

S

(z)ej�kz, (29)

for 0  z  l, where �k ⌘ k
P

� k
S

� k
I

. Equations (28) and (29) should be solved
subject to given initial conditions at z = 0, i.e., given values for A

S

(0) and A
I

(0).
Once A

S

(l) and A
I

(l) are found, the resulting electric field for z > l is then

~E(z, t) = Re[A
S

(l)e�j(!St�kS l�!S(z�l)/c)]~i
S

+ Re[A
I

(l)e�j(!I t�kI l�!I(z�l)/c)]~i
I

+ Re[A
P

e�j(!P t�kP l�!P (z�l)/c)]~i
P

, (30)

i.e., free-space plane-wave propagation prevails.7 Here we can see why quantum
mechanics is needed to properly understand the SPDC process shown on slide 3. If
A

S

(0) = A
I

(0) = 0, in our classical analysis, then we get A
S

(l) = A
I

(l) = 0 from our
coupled-mode equations,8 and hence ~E(z, t) = Re[A

P

ej(!P t�kP l�!P (z�l)/c)]~i
P

for z > l.

Solution to the Coupled-Mode Equations

So far we have been working with Maxwell’s equations—and hence have developed
coupled-mode equations—in SI units, i.e., the complex envelopes A

S

(z), A
I

(z), and
A

P

have V/m units. Before solving the coupled-mode equations, it will be convenient
for us to convert them to photon units, so as to ease the transition we will make—in
Lecture 21—from the classical solution to the quantum version. The key to making
this conversion is power flow.

Consider a monochromatic, +z-going plane wave in an isotropic linear dielectric
whose electric and magnetic fields are

~E(z, t) = Re[Ae�j(!t�kz)]~i
x

and ~H(z, t) = Re[c✏
0

n(!)Ae�j(!t�kz)]~i
y

. (31)

6If we regard the signal-frequency and idler-frequency components of the total field as modes,
then these equations clearly couple them through the action of the strong pump beam and the
crystal’s �(2) nonlinearity.

7Our analysis assumes that anti-reflection coatings have been applied to the crystal’s entrance
and exit facets.

8If this statement is not immediately obvious, see the next section, in which we present solutions
to the photon-units form of the coupled-mode equations
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The time-average power (in W) crossing an area A in a constant-z plane is

S(z) =
c✏

0

n(!)A
2

|A|2. (32)

Were A to be written in
p

photons/s units—for the chosen area A—we would get9

S(z) = ~!|A|2 (33)

for the time-average power (in W) crossing the same area. It follows that

A|p
photons/s

=

r
c✏

0

n(!)A
2~! A|

V/m

. (34)

Making this substitution in Eqs. (28) and (29) leads to the photon-units coupled-mode
equations,

dA
S

(z)

dz
= jA⇤

I

(z)ej�kz (35)

dA
I

(z)

dz
= jA⇤

S

(z)ej�kz, (36)

for 0  z  l, where

 ⌘

s
~!

S

!
I

!
P

2c3✏
0

n
S

(!
S

)n
I

(!
I

)n
P

(!
P

)A �(2)A
P

(37)

is a complex-valued coupling constant that is proportional to the pump’s complex
envelope and the crystal’s second-order nonlinear susceptibility.

The preceding photon-units coupled-mode equations have the following solution,

A
S

(l) =

✓
cosh(pl)� j�kl

2

sinh(pl)

pl

◆
A

S

(0) + jl
sinh(pl)

pl
A⇤

I

(0)

�
ej�kl/2 (38)

A
I

(l) =

✓
cosh(pl)� j�kl

2

sinh(pl)

pl

◆
A

I

(0) + jl
sinh(pl)

pl
A⇤

S

(0)

�
ej�kl/2, (39)

where
p ⌘

p
||2 � (�k/2)2, (40)

as the reader may want to verify by substituting these results into the coupled-mode
equations. Equations (38) and (39) have two interesting features that are worth

9We have chosen
p
photons/s units, which require us to account for a cross-sectional area, to

avoid needing an explicit area factor when we examine the continuous-time photodetection statistics
of our SPDC model.
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noting at this time. The first concerns phase matching. The second is a prelude to
our quantum treatment of SPDC.

Inside the crystal, the monochromatic signal, idler, and pump beams—at frequen-
cies !

S

,!
I

, and !
P

, respectively, propagate at their phase velocities, v
m

(!
m

) = !
m

/k
m

for m = S, I, P . The nonlinear interaction governed by the coupled-mode equa-
tions Eqs. (35) and (36) is said to be phase matched when �k = 0, i.e., when
!
P

/v
P

= !
S

/v
S

+ !
I

/v
I

. For a phase-matched system the coupled-mode equations
simplify to

dA
S

(z)

dz
= jA⇤

I

(z) and
dA

I

(z)

dz
= jA⇤

S

(z), for 0  z  l, (41)

which shows that the phase angle of the coupling between the signal and idler remains
the same throughout the interaction. On the other hand, when phase-matching is
violated, the phase of the coupling between the signal and idler rotates as these
fields propagate through the crystal. As a result, the solution to the phase-matched
coupled-mode equations,

A
S

(l) = cosh(||l)A
S

(0) + j


|| sinh(||l)A
⇤
I

(0) (42)

A
I

(l) = cosh(||l)A
I

(0) + j


|| sinh(||l)A
⇤
S

(0), (43)

shows increasing amounts of signal-idler coupling with increasing ||l, i.e., with in-
creasing pump power or crystal length. In contrast, far from phase matching—when
|�k/2| � ||—we get p ⇡ j|�k|/2, whence

A
S

(l) ⇡

[cos(�kl/2)� j sin(�kl/2)]A

S

(0) + jl
sin(�kl/2)

�kl/2
A⇤

I

(0)

�
ej�kl/2 (44)

A
I

(l) ⇡

[cos(�kl/2)� j sin(�kl/2)]A

I

(0) + jl
sin(�kl/2)

�kl/2
A⇤

S

(0)

�
ej�kl/2,(45)

which further reduce to

A
S

(l) ⇡ A
S

(0) and A
I

(l) ⇡ A
I

(0), (46)

when |�kl/2| � 1, i.e., when the crystal is long enough that the phase mismatch,
�k 6= 0, rotates the signal-idler coupling phase through many 2⇡ cycles. Phase
matching is critical to SPDC; in terms of photon fission, for every 106 pump photons,
we may get only one signal-idler pair from a phase-matched interaction.

Photon fission is a good place to start our comments about the quantum form of
the coupled-mode equations. We have already noted that !

P

= !
S

+ !
I

is consis-
tent with the photon-fission energy conservation principle: ~!

P

= ~!
S

+ ~!
I

. The
momentum of a +z-going single photon at frequency ! is +z-directed with magni-
tude ~!. Thus our phase-matching condition, k

P

= k
S

+ k
I

, becomes photon-fission
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momentum conservation, ~k
P

= ~k
S

+ ~k
I

, when applied at the single-photon level.
Photons being produced in pairs smacks of the two-mode parametric amplifier that we
studied earlier in the semester. That system was governed by a two-mode Bogoliubov
transformation,

âout
S

= µâin
S

+ ⌫âin†
I

and âout
I

= µâin
I

+ ⌫âin†
S

, where |µ|2 � |⌫|2 = 1. (47)

Comparing Eq. (47) with Eqs. (42) and (43) reveals a great similarity. Indeed, if
we change field complex envelopes and their conjugates to annihilation operators
and creation operators, respectively, the latter two equations become a two-mode
Bogoliubov transformation with10

µ ⌘ cosh(||l) and ⌫ ⌘ j


|| sinh(||l). (48)

The Road Ahead

In the next lecture we shall develop the quantum treatment of SPDC and the optical
parametric amplifier (OPA), which is SPDC enhanced by placing the nonlinear crys-
tal inside a resonant optical cavity. We shall also begin studying the non-classical
behavior that can be seen in continuous-time photodetection using the outputs from
SPDC and the OPA.

10Even for the general case of �k 6= 0, changing the field complex envelopes and their conjugates
into annihilation and creation operators, respectively, converts the classical coupled-mode input-
output relation into a two-mode Bogoliubov transformation. When |�kl/2| � 1, however, that
two-mode Bogoliubov transformation will have µ ⇡ 1 and ⌫ ⇡ 0.
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Introduction

In today’s lecture we will continue—and complete—our analysis of spontaneous para-
metric downconversion (SPDC) by converting the classical treatment from Lecture 20
into a continuous-time field operator theory. As was done in Lecture 20, we shall as-
sume continuous-wave (cw) pumping with no pump depletion, and a collinear type-II
configuration in which the signal and idler fields are +z-going plane waves that are
orthogonally polarized. Moreover, we shall assume that the signal and idler center
frequencies are both ωP/2, i.e., half the pump frequency.1 This frequency degeneracy

1Whereas the analysis in Lecture 20 assumed single-frequency signal and idler beams, the quan-
tum theory requires that we include all frequencies, hence our identification of center frequencies
for these beams.
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of the signal and idler is not required for some nonclassical effects that can be ob-
tained from SPDC, but is necessary for others, e.g., quadrature-noise squeezing. Thus
it is worthwhile imposing this condition at the outset. Once we have established the
quantum theory for SPDC, we will add cavity enhancement to convert the downcon-
verter into an optical parametric amplifier (OPA). The OPA analysis that we shall
perform will employ a simpler, lumped-element theory for the nonlinear interaction
in the χ(2) material that will quickly lead to a Gaussian-state characterization which
gives rise to quadrature-noise squeezing. In Lecture 22, we shall finish our survey
of the nonclassical signatures produced by χ(2) interactions. There we shall consider
Hong-Ou-Mandel interferometry and the generation of polarization-entangled photon
pairs from SPDC, along with the photon-twins behavior of the signal and idler beams
from an OPA.

Classical Theory of Spontaneous Parametric Downconversion

Slide 3 reprises our conceptual picture of spontaneous parametric downconversion. A
strong, linearly-polarized (along ~iP ) cw laser-beam pump at frequency ωP is applied
to the entrance facet (at z = 0) of a length-l crystalline material that possesses a
χ(2) nonlinearity. The action of the pump beam in conjunction with the crystal’s
nonlinearity couples lower-frequency—signal and idler—beams that we shall assume
to be linearly polarized along orthogonal directions ~iS = ~ix (signal) and ~iI = ~iy
(idler), respectively, with common center frequency ωP/2. In Lecture 20 we treated
the signal, idler, and (non-depleting) pump inside the crystal as monochromatic plane
waves, with positive-frequency, photon-units fields given by

E
(+)
S (z, t) = AS(z)e−j(ωP t/2−kSz) (1)

E
(+)
I (z, t) = AI(z)e−j(ωP t/2−kIz) (2)

E
(+)
P (z, t) = AP e

−j(ωP t−kP z). (3)

respectively, for the polarization components of interest. In this representation,
~ωP |AS(z)|2/2 and ~ωP |AI(z)|2/2 are the signal and idler powers flowing across the
z plane, for 0 ≤ z ≤ l. For z > l, free-space propagation applies, i.e., the positive-
frequency, photon-units signal, idler, pump fields in that region are

E
(+)
S (z, t) = AS(l)e−j(ωP (t−(z−l)/c)/2−kS l) (4)

E
(+)
I (z, t) = AI(l)e

−j(ωP (t−(z−l)/c)/2−kI l) (5)

E
(+)
P (z, t) = AP e

−j(ωP (t−(z−l)/c)−kP l). (6)

The coupled-mode equations that the signal and idler satisfy inside the nonlinear

2



crystal were shown last time to be

dAS(z)

dz
= jκA∗I(z)ej∆kz (7)

dAI(z)

dz
= jκA∗S(z)ej∆kz, (8)

for 0 ≤ z ≤ l. Here: ∆k ≡ kP (ωP ) − kS(ωP/2) − kI(ωP/2) quantifies the phase-
mismatch between the signal, idler, and pump beams in terms of their respective
dispersion relations, { kj(ω) ≡ ωnj(ω)/c : j = S, I, P } with {nj(ω) : j = S, I, P }
denoting the refractive indices for the relevant polarization components; and

κ ≡

√
~ωSωIωP

2c3ε0nS(ωS)nI(ωI)nP (ωP )A
χ(2)AP (9)

is a complex-valued coupling constant that is proportional to the pump’s complex
envelope and the crystal’s second-order nonlinear susceptibility. The general solution
to these equations is

AS(l) =

[(
cosh(pl)− j∆kl

2

sinh(pl)

pl

)
AS(0) + jκl

sinh(pl)

pl
A∗I(0)

]
ej∆kl/2 (10)

AI(l) =

[(
cosh(pl)− j∆kl

2

sinh(pl)

pl

)
AI(0) + jκl

sinh(pl)

pl
A∗S(0)

]
ej∆kl/2, (11)

where
p ≡

√
|κ|2 − (∆k/2)2. (12)

However, to get the most efficient interaction, we need phase-matched operation, i.e.,
∆k = 0, in which case the solution to Eqs. (7) and (8) reduces to

AS(l) = cosh(|κ|l)AS(0) + j
κ

|κ|
sinh(|κ|l)A∗I(0) (13)

AI(l) = cosh(|κ|l)AI(0) + j
κ

|κ|
sinh(|κ|l)A∗S(0), (14)

indicating increasing amounts of signal-idler coupling with increasing |κ|l, i.e., with
increasing pump power or crystal length.

Quantum Theory of Spontaneous Parametric Downconversion

At the end of Lecture 20 we noted that the SPDC’s frequency-sum condition, ωP =
ωS+ωI , and its phase-matching condition, kP = kS+kI , could be interpreted as energy
conservation and momentum conservation, respectively, for a photon fission process in
which a single pump photon divides into a signal photon and an idler photon. We also
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noted, in that lecture, that the solutions to the coupled-mode equations, which we
reprised in the previous section, are a two-mode Bogoluibov transformation, similar
to what we saw earlier in the semester for our two-mode optical parametric amplifier.
It is now time for us to go beyond these precursors and establish the quantum field-
operator theory for cw collinear SPDC at frequency degeneracy.2

Suppose that Ê
(+)
S (z, t) and Ê

(+)
I (z, t) for 0 ≤ z ≤ l are the positive-frequency,

photon-units +z-going plane-wave field operators for the ~ix and ~iy polarization com-
ponents of the signal and idler, respectively.3 Because we must preserve δ-function
commutators for the signal and idler field operators leaving the nonlinear crystal, we
must include all frequencies in them. Hence we shall take Ê

(+)
S (z, t) and Ê

(+)
I (z, t) to

have the following Fourier decompositions:

Ê
(+)
S (z, t) =

∫
dω

2π
ÂS(z, ω)e−j[(ωP /2+ω)t−kS(ωP /2+ω)z], (15)

Ê
(+)
I (z, t) =

∫
dω

2π
ÂI(z, ω)e−j[(ωP /2−ω)t−kI(ωP /2−ω)z]. (16)

In these expressions, ÂS(z, ω) is the plane-wave field-component annihilation operator
for the signal beam at frequency shift ω from frequency degeneracy, and ÂI(z, ω) is
the plane-wave field-component annihilation operator for the idler beam at frequency
shift −ω from frequency degeneracy.4 At the crystal’s entrance and exit facets, the
signal and idler fields operators must have the following non-zero commutators that
apply for free-space fields,

[Ê
(+)
S (z, t), Ê

(+)†
S (z, u)] = [Ê

(+)
I (z, t), Ê

(+)†
I (z, u)] = δ(t− u), for z = 0, l, (17)

which imply that

[ÂS(z, ω), Â†S(z, ω′)] = [ÂI(z, ω), Â†I(z, ω
′)] = 2πδ(ω − ω′), for z = 0, l, (18)

are the only non-zero frequency-domain commutators at the crystal’s input and out-
put. Any proper quantized form of the coupled-mode equations and their solutions
must preserve these commutator brackets.

2The basic concepts we shall develop can be extended to non-degenerate, non-collinear operation,
but we shall not do so.

3A full field-operator treatment should include all spatial modes, not just the +z-going plane-
wave modes, and both polarizations for all such modes. However, we shall limit our consideration
to these polarizations of the +z-going signal and idler plane waves. For coherent (homodyne or
heterodyne) detection measurements, spatial and polarization mode selection automatically occurs
by choice of the local oscillator, so our assumption is easily enforced in such measurement scenarios.
For direct detection, however, other spatial modes and polarizations may have to be included,
depending on the SPDC and measurement configuration.

4This sign convention is convenient because the coupled-mode equations for classical versions of
these Fourier decompositions link AS(z, ω) to A∗I(z, ω) and vice versa.
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We shall assume that the downconverter is phase-matched at frequency degener-
acy, viz.,

∆k(ω) ≡ kP (ωP )− kS(ωP/2 + ω)− kI(ωP/2− ω), (19)

satisifes ∆k(0) = 0, and that group-velocity dispersion can be neglected, so that

∆k(ω) ≈ ω∆k′ (20)

holds, where

∆k′ ≡ d∆k

dω

∣∣∣∣
ω=0

= − dkS(ωP/2 + ω)

dω

∣∣∣∣
ω=0

− dkI(ωP/2− ω)

dω

∣∣∣∣
ω=0

. (21)

Emboldened by last lecture’s comment about Bogoliubov transformations, as well
as our earlier quantization of the classical harmonic oscillator, we shall assume that
ÂS(z, ω) and ÂI(z, ω) obey the following coupled-mode equations:

∂ÂS(z, ω)

∂z
= jκÂ†I(z, ω)ejω∆k′z (22)

∂ÂI(z, ω)

∂z
= jκÂ†S(z, ω)ejω∆k′z, (23)

for 0 ≤ z ≤ l, where κ is the same coupling constant from the classical theory, i.e.,
Eq. (9).5 These equations have the following solution, cf. Eqs. (10) and (11):

ÂS(l, ω) =[(
cosh(pl)− jω∆k′l

2

sinh(pl)

pl

)
ÂS(0, ω) + jκl

sinh(pl)

pl
Â†I(0, ω)

]
ejω∆k′l/2 (24)

ÂI(l, ω) =[(
cosh(pl)− jω∆k′l

2

sinh(pl)

pl

)
ÂI(0, ω) + jκl

sinh(pl)

pl
Â†S(0, ω)

]
ejω∆k′l/2,(25)

where
p ≡

√
|κ|2 − (ω∆k′/2)2. (26)

To verify that these solution preserve free-space commutator brackets, let us define

µ(ω) =

(
cosh(pl)− jω∆k′l

2

sinh(pl)

pl

)
ejω∆k′l/2 (27)

ν(ω) = jκl
sinh(pl)

pl
ejω∆k′l/2, (28)

5We have assumed that the strong, non-depleting pump is in a coherent state such that—as in
the case of the local oscillator beam for homodyne and heterodyne detection—it acts classically in
SPDC.
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so that Eqs. (24) and (25) become

ÂS(l, ω) = µ(ω)ÂS(0, ω) + ν(ω)Â†I(0, ω) (29)

ÂI(l, ω) = µ(ω)ÂI(0, ω) + ν(ω)Â†S(0, ω). (30)

Now, because

|µ(ω)|2 − |ν(ω)|2 =

[
cosh2(pl) +

(
ω∆k′

2p

)2

sinh2(pl)

]
−
(
|κ|
p

)2

sinh2(pl) (31)

= cosh2(pl)− sinh2(pl) = 1, (32)

Eqs. (29) and (30) are a two-mode Bogoliubov transformation that ensures proper
commutator preservation.6

Gaussian-State Characterization of SPDC

Equations (29) and (30) allow us an immediate insight into the joint state of the signal
and idler produced by spontaneous parametric downconversion, i.e., the joint state
of the signal and idler beams emerging from the crystal at z = l when the signal and
idler inputs at z = 0 are in their vacuum states. In particular, the linearity of these
equations, combined with the fact that the vacuum state is zero-mean and Gaussian,
tells us that the signal and idler outputs will be in a zero-mean jointly Gaussian
state. Hence they are completely characterized by their phase-insensitive and phase-
sensitive correlation functions, of which the only non-zero ones are 〈Â†S(l, ω)ÂS(l, ω′)〉,
〈Â†I(l, ω)ÂI(l, ω

′)〉, and 〈ÂS(l, ω)ÂI(l, ω
′)〉. These correlations are easily computed,

e.g., for the signal’s phase-insensitive correlation function we have that

〈Â†S(l, ω)ÂS(l, ω′)〉

= 〈[µ∗(ω)Â†S(0, ω) + ν∗(ω)ÂI(0, ω)][µ(ω′)ÂS(0, ω′) + ν(ω′)Â†I(0, ω
′)]〉 (33)

= µ∗(ω)µ(ω′)〈Â†S(0, ω)ÂS(0, ω′)〉+ µ∗(ω)ν(ω′)〈Â†S(0, ω)Â†I(0, ω
′)〉

+ ν∗(ω)µ(ω′)〈ÂI(0, ω)ÂS(0, ω′)〉+ ν∗(ω)ν(ω′)〈ÂI(0, ω)Â†I(0, ω
′)〉. (34)

Now, because the input fields are in their vacuum states, all their normally-ordered
correlation functions vanish, so, using the commutator (18), we get

〈ÂI(0, ω)Â†I(0, ω
′)〉 = 2πδ(ω − ω′), (35)

6Our proof has assumed that p is real valued, i.e., it applies for frequencies low enough to give
|ω∆k′/2| ≤ |κ|. At higher frequencies, where |ω∆k′/2| > |κ| prevails, p becomes imaginary, but a
similar calculation—left to the reader—will show that Eqs. (29) and (30) still constitute a two-mode
Bogoliubov transformation and hence commutator preserving.
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whence
〈Â†S(l, ω)ÂS(l, ω′)〉 = 2π|ν(ω)|2δ(ω − ω′). (36)

Similar calculations yield

〈Â†I(l, ω)ÂI(l, ω
′)〉 = 2π|ν(ω)|2δ(ω − ω′), (37)

and
〈ÂS(l, ω)ÂI(l, ω

′)〉 = 2πµ(ω)ν(ω)δ(ω − ω′), (38)

for the other correlation functions that we need.
For future use it will be valuable to find the phase-insensitive and phase-sensitive

correlation functions for the baseband signal and idler field operators defined by

Ê
(+)
S (l, t) = ÊS(t)e−j(ωP t/2−kS(ωP /2)l) and Ê

(+)
I (l, t) = ÊI(t)e

−j(ωP t/2−kI(ωP /2)l).
(39)

Using the Fourier relations

ÊS(t) =

∫
dω

2π
ÂS(l, ω)e−jω(t−k′S l), (40)

ÊI(t) =

∫
dω

2π
ÂI(l, ω)ejω(t+k′I l), (41)

where

k′S ≡
dkS(ωP/2 + ω)

dω

∣∣∣∣
ω=0

and k′I ≡
dkI(ωP/2− ω)

dω

∣∣∣∣
ω=0

, (42)

together with the frequency-domain correlation functions derived above, we find that
the non-zero correlations of the baseband field operators are stationary—dependent
on time-difference only—and given by

K
(n)
SS (τ) ≡ 〈Ê†S(t+ τ)ÊS(t)〉 =

∫
dω

2π
|ν(ω)|2ejωτ (43)

K
(n)
II (τ) ≡ 〈Ê†I(t+ τ)ÊI(t)〉 =

∫
dω

2π
|ν(−ω)|2ejωτ (44)

K
(p)
SI (τ) ≡ 〈ÊS(t+ τ)ÊI(t)〉 =

∫
dω

2π
µ(−ω)ν(−ω)ejω(τ+∆k′l), (45)

with (n) denoting the phase-insensitive (normally-ordered) auto-correlation functions
and (p) denoting the phase-sensitive cross-correlation function. We have made all of
these expressions employ ejωτ inverse Fourier kernels so that—in keeping with our
definition of noise spectral densities for real-valued classical random processes—we
can say that

S(n)
SS (ω) = |ν(ω)|2, S(n)

II (ω) = |ν(−ω)|2, and S(p)
SI (ω) = µ(−ω)ν(−ω)ejω∆k′l, (46)
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are their corresponding spectral densities.
Physically, S(n)

SS (ω)/2π is the average photon-flux per unit bilateral bandwidth (in

rad/s) in the signal beam at frequency ωP/2+ω, and S(n)
II (ω)/2π is the average photon-

flux per unit bilateral bandwidth (in rad/s) in the idler beam at frequency ωP/2−ω.
These functions are usually referred to as the fluorescence spectra of the signal and
idler, respectively. SPDC is usually performed in the regime wherein |κ|l� 1 so that
we can employ p ≈ jω|∆k′|/2 at all relevant detunings from degeneracy, i.e., for all ω
values of interest. This low-gain condition leads to the following approximations for
the Bogoliubov functions in the vicinity of frequency degeneracy7

µ(ω) ≈ 1 and ν(ω) ≈ jκl
sin(ω∆k′l/2)

ω∆k′l/2
ejω∆k′l/2. (47)

It follows that the signal and idler fluorescence spectra are equal, and given by

S(n)
SS (ω) = S(n)

II (ω) ≈ |κ|2l2
(

sin(ω∆k′l/2)

ω∆k′l/2

)2

. (48)

Thus, they peak at ω = 0, i.e., frequency degeneracy, where the phase-matching
condition is satisfied. More importantly, we see that these fluorescence spectra are
consistent with the photon fission interpretation of SPDC, in that the signal beam’s
fluorescence spectrum at ωP/2 + ω equals the idler beam’s fluorescence spectrum at

ωP/2−ω. The phase-sensitive cross-spectral density, S(p)
SI (ω), in the low-gain regime,

is

S(p)
SI (ω) ≈ jκl

sin(ω∆k′l/2)

ω∆k′l/2
ejω∆k′l/2. (49)

We shall work further with these low-gain spectra, and their associated correlation
functions, in Lecture 22, when we study the Hong-Ou-Mandel dip and SPDC genera-
tion of polarization-entangled photon pairs. For the rest of today’s lecture, however,
we will turn our attention to cavity-enhanced SPDC, i.e., the optical parametric am-
plifier.

The Doubly-Resonant Optical Parametric Amplifier

To go beyond the low-gain regime in cw SPDC we need the optical parametric ampli-
fier (OPA), shown schematically on slide 10 as a χ(2) crystal inside an optical cavity
formed by two mirrors. These mirrors are anti-reflection coated for the pump fre-
quency ωP , so the pump makes a single pass, from left to right, through through
the crystal. We will assume that the mirror on the left is a perfect reflector at the
frequency ωP/2, while the mirror on the right is lossless and highly reflecting at

7These approximations violate strict commutator preservation, i.e., |µ(ω)|2 − |ν(ω)|2 = 1 is only
satisfied to first order in |κ|.
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this frequency. As a result, the spontaneously generated signal and idler photons—
resulting from frequency-degenerate downconversion in the χ(2) crystal—bounce back
and forth between the mirrors many times before exiting through the highly-reflecting
mirror. This optical feedback process greatly enhances the nonlinear interaction by
making the crystal act as though it was much longer than it is. Of course, this feed-
back is only effective when it is positive feedback, which in this case means that ωP/2
must be a resonant frequency of the cavity, i.e., the roundtrip phase delay inside
the cavity at frequency ωP/2 must be an integer multiple of 2π. In what follows we
shall assume that the cavity is resonant for both the signal and idler polarizations at
frequency ωP/2.

Although it is possible to analyze this OPA arrangement by imposing cavity mir-
rors around the SPDC analysis we’ve given earlier in this lecture, a much simpler
route to getting to the essential physics employs a lumped-element treatment for in-
tracavity modes that are resonant at frequency ωP/2 for both the signal and idler
(~ix and ~iy) polarizations. We shall use Êin

S (t) and Êin
I (t) to denote the vacuum-state,

baseband field operators of the relevant signal and idler polarizations that are inci-
dent on the cavity in slide 10 from the right, while âS(t) and âI(t) will be the photon
annihilation operators for the associated intracavity modes.8 The equations of motion
for the OPA system then turn out to be(

d

dt
+ Γ

)
âS(t) = GΓâ†I(t) +

√
2ΓÊin

S (t) (50)(
d

dt
+ Γ

)
âI(t) = GΓâ†S(t) +

√
2ΓÊin

I (t), (51)

where 0 < G < 1 is the normalized OPA gain9 and Γ > 0 is the linewidth of the
signal and idler intracavity modes. Once Eqs. (50) and (51) have been solved for
the intracavity modes as functions of the input field operators, the baseband field
operators for the signal and idler outputs follow from

Êout
S (t) =

√
2ΓâS(t)− Êin

S (t) and Êout
I (t) =

√
2ΓâI(t)− Êin

I (t). (52)

Frequency-domain techniques—as we used above to obtain our SPDC input-
output relations—can be used to derive the following two-mode Bogoliubov relation
between the Fourier transforms10 of the input and output field operators,

Êout
S (Ω) = µ(Ω)Ê in

S (Ω) + ν(Ω)Ê in†
I (Ω) (53)

Êout
I (Ω) = µ∗(Ω)Ê in

I (Ω) + ν∗(Ω)Ê in†
S (Ω), (54)

8The field operators Êin
m(t) for m = S, I have the usual δ-function commutator with their adjoints,

[Êin
m(t), Êin†

m (u)] = δ(t − u) for m = S, I, while the intracavity annihilation operators âm(t) for
m = S, I have the canonical commutation relation, [âm(t), â†m(t)] = 1 for m = S, I, with their
adjoints.

9Here, G2 = PP /PT , where PP is the pump power and PT is the threshold power, i.e., the pump
power value for which the OPA breaks into oscillation and becomes an optical parametric oscillator.

10Our sign convention for these transforms is ÊS(Ω) =
∫

dt ÊS(t)ejΩt and ÊI(Ω) =
∫

dt ÊI(t)e−jΩt.
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where

µ(Ω) ≡ 1 +G2 + Ω2/Γ2

1−G2 − Ω2/Γ2 − 2jΩ/Γ
(55)

ν(Ω) ≡ 2G

1−G2 − Ω2/Γ2 − 2jΩ/Γ
. (56)

It easily shown that |µ(Ω)|2 − |ν(Ω)|2 = 1 and that Eqs. (53) and (54) give rise to
the proper commutator brackets. More importantly, Eqs.(53) and (54) are linear
and their driving terms are vacuum-state field operators. It follows that Êout

S (t) and
Êout
I (t) will be in a zero-mean jointly Gaussian state. Paralleling the approach used

to find the correlation functions for spontaneous parametric downconversion, we can
show that this jointly Gaussian state is completely characterized by the following
spectral densities and stationary correlation functions:

S(n)
mm(Ω) =

∫
dτ K(n)

mm(τ)e−jΩτ = |ν(Ω)|2 (57)

=
4G2

(1−G2 − Ω2/Γ2)2 + 4Ω2/Γ2
, for m = S, I, (58)

S(p)
SI (Ω) =

∫
dτ K

(p)
SI (τ)e−jΩτ = µ∗(Ω)ν(Ω) (59)

=
2G(1 +G2 + Ω2/Γ2)

(1−G2 − Ω2/Γ2)2 + 4Ω2/Γ2
, (60)

and

K(n)
mm(τ) = 〈Êout†

m (t+ τ)Êout
m (t)〉 =

GΓ

2

[
e−(1−G)Γ|τ |

1−G
− e−(1+G)Γ|τ |

1 +G

]
, for m = S, I,(61)

K
(p)
SI (τ) = 〈Êout

S (t+ τ)Êout
I (t)〉 =

GΓ

2

[
e−(1−G)Γ|τ |

1−G
+
e−(1+G)Γ|τ |

1 +G

]
. (62)

In the next section, we will show how the preceding spectra lead to quadrature-noise
squeezing.

Quadrature-Noise Squeezing from an OPA

From our previous work on two-mode parametric amplifiers, we expect that the ±45◦

polarizations at the output of our continuous-time OPA should exhibit quadrature-
noise squeezing. Let’s show that this is so for the +45◦ case. The baseband field
operator for this polarization is

Êout
+45(t) ≡ Êout

S (t) + Êout
I (t)√

2
. (63)
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This field operator is in a zero-mean Gaussian state whose phase-insensitive and
phase-sensitive correlation functions are

K(n)(τ) ≡ 〈Êout†
+45 (t+ τ)Êout

+45(t)〉 =
K

(n)
SS (τ) +K

(n)
II (τ)

2
(64)

=
GΓ

2

[
e−(1−G)Γ|τ |

1−G
− e−(1+G)Γ|τ |

1 +G

]
, (65)

and

K(p)(τ) ≡ 〈Êout
+45(t+ τ)Êout

+45(t)〉 =
K

(p)
SI (τ) +K

(p)
SI (−τ)

2
(66)

=
GΓ

2

[
e−(1−G)Γ|τ |

1−G
+
e−(1+G)Γ|τ |

1 +G

]
, (67)

respectively. The spectral densities associated with these correlation functions are

S(n)(Ω) ≡
∫

dτ K(n)(τ)e−jΩτ = |ν(Ω)|2 (68)

S(p)(Ω) ≡
∫

dτ K(p)(τ)e−jΩτ = µ∗(Ω)ν(Ω). (69)

Now, consider the balanced homodyne measurement system—shown on slide 11–
for detecting the θ-quadrature of Êout

+45(t). Here we have assumed unity quantum
efficiency photodetectors, and omitted the low-pass filter. From our continuous-time
theory of homodyne detection we know that the photocurrent difference ∆i(t) has
statistics that are equivalent to those of the operator

∆î(t) = 2q

√
PLO

~ωP/2
Re[Êout

+45(t)e−jθ]. (70)

Because Êout
+45(t) is in a zero-mean, statistically-stationary Gaussian state, the homo-

dyne measurement will yield a zero-mean, stationary Gaussian random process whose
covariance function is

K∆i∆i(τ) ≡ 〈∆i(t+ τ)∆i(t)〉 (71)

= q2 PLO

~ωP/2
{δ(τ) +K(n)(τ) +K(n)(−τ) + 2Re[K(p)(τ)e−2jθ]}. (72)

The photocurrent-noise spectral density that will be observed using a spectrum ana-
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lyzer at the homodyne system’s output is thus

S∆i∆i(Ω) =

∫
dτ K∆i∆i(τ)e−jΩτ (73)

= q2 PLO

~ωP/2
[1 + 2|ν(Ω)|2 + 2Re(µ∗(Ω)ν(Ω)e−2jθ)] (74)

= q2 PLO

~ωP/2
|µ(Ω) + ν(Ω)e−2jθ|2. (75)

Were Êout
+45(t) in a coherent state, this homodyne receiver’s photocurrent-noise spectral

density would be

S∆i∆i(Ω)|CS = q2 PLO

~ωP/2
, (76)

representing the shot-noise limit of semiclassical theory. The normalized photocurrent-
noise spectral density,

S∆i∆i(Ω)

S∆i∆i(Ω)|CS

= |µ(Ω) + ν(Ω)e−2jθ|2, (77)

contains contains phase-sensitive noise that, as shown in the left panel on slide 12,
goes well below the shot-noise level at θ = ±π/2 for Ω = 0. As shown in the right
panel on slide 12, the strongest quadrature-noise squeezing is limited to frequencies
below the cavity linewidth.

The Road Ahead

In the next lecture we shall use the results developed today for SPDC and the OPA
to study additional signatures of nonclassical light that can be obtained from these
nonlinear optical systems. Of particular interest will be Hong-Ou-Mandel interferom-
etry, as it relates to the important notion of distinguishability. We will also connect
our treatment of SPDC with the concept of a biphoton.
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