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1.

The grace period is over: Problem Sets must
be delivered on time to be graded.

. Hand in the last delayed Problem sets by

Monday 4th of November at noon.

Hand in today’s Problem Set by Monday 4t of
November at noon.

Extra credit for spotting typos!

Start considering which advanced problem you
want to solve. However, there will be a few
more.

Correction: Where, A,, = (m|U|0) are the Kraus operators.



Recap: The concept of single mode a A

quantum channel T et
Po . p ) )
A U d = o L Of
penv
Trace out

An input state interacts with an environment state via a unitary operation. Then
the degrees of freedom of the output are traced out and we get the final state.

Map £(.) must be:
1. Trace preserving.

The whole procedure can be written as: pr = L(po)

—

Trace preserving: So that the output is a valid CPTP maps,
density matrix (necessary).
Completely positive: So that it maps positive =~
semidefinite operators of any number of modes to
semidefinite positive operators (necessary).

transform
any valid density operator

—
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Recap: Kraus Operators e NSy
~ I ~
Po I n T P . .
: U I I — Po L Pf
0) 1 '
| \ 4 \4
| Pin ; non-entangled Pout Trace out

|
L —» We can always assume that the environment is set to vacuum (to be proven later).

_ R Orthonormal and complete basis, consisting of
Eigensystem of po: {|k)}, Ax}=® vectors|k)(not necessarily Fock states). Positive
eigenvalues \y .

pin = D _ Ak[k0) (kO]
k

pous = ¥ _ MUK KOITT = Y~ Ae(nm|U|k0) (kO[T T [n'm) |[pm) (n'm/
k

! /
kn,mmn’,m

We plug in the identity operator twice (left and
right of the unitary operator). The identity
operator can be written in any basis (we used the
eigenvectors of Po).
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Recap: Kraus Operators (continued) nE e
pous = Y MeUIKOYKOIUT = Y~ A(nm|U|k0) (kO|UT|n'm/)|nm) (n'm/
k k.nm,n’,m’

Trace out lower output mode: pf = Z Ak (nm|U|k0Y(kO|U T |n/m)|n) (n/]

!
k.n,m,n

Last expression is rewritten: pf = Z flmﬁoﬁin = L(po)
m

Where, A,, = (m|U|0) are the Kraus operators.
Kraus operators are “partial projections” of the unitary operators on an orthonormal and
complete basis. They are not necessarily unitary themselves.

To have a valid CPTP, the Kraus operators must satisfy: Z ﬁ:[nﬁm = f

where f is the identity operator. i



Recap: The pure loss channel 'Z-'X‘i'
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Po i
0 (=)

pure loss

" 1—Tl 0 . L [ .
e \/( T Lot A= \/(1 T ™) 4t

Choose a basis to represent your unitary, do partial projection. In the same
basis express the Krauss operators. See if you get the same result.




Today'’s plan:

A

THE UNIVERSITY
OF ARIZONA

1.

3.

4

Symmetric logarithmic derivatives.

. More examples on single mode QFI.

Multiple parameters QFI.
. Attainability of the QFI.

Upper bounding the QFI.



Single parameter, unbiased estimator, ZAS
Crameér-Rao bound e

- 1 A o 1
(0 —6)) > - [(mngé‘”;a))z] ((0—0)") > . [_82 lnL(m;B)]

062
((0 — )2y > I~1(9) Fisher information (FI): I(f) =E [

_ 0°InL(x;6)
002

A

1
| 2
. — >
For n independent measurements: ((9 9”») > = R [ 02 In L(:z:;ﬁ')]
_ nt | ——5p2

max [

O*F(p(0),p(0 + €))
Oe?

H(9) = —2

e=0
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Single parameter example e s
: 101 :
: —if ,
1v _vi et |n, e~ 0n
) = = (In0) +|0n)) [Wy) = ﬂ( [n0) + e~*|0n))

NOON state (entangled)

F(e) = [(Tp|Tpr |2 =.|. = 2cos2(ne)

H=-2

FF@E)|  _ | _gn? . B2 The QFI behaves like energy’2,
O¢? —o therefore one expects better estimation
performance. Heisenberg limit

7

Problem 78: Calculate the fidelity and the QFI.



Symmetric logarithmic derivatives (single ZAS
parameters) e NSy

Let a classical distribution P = {p’}, j=1,2,...

What is the distance between the distribution P and P+dP? ’ ’
P+dP={p +dp’}, j=1,2,...

We need the notion of metric: ds® =) _ g;xdp’dp"

Let two classical random variables A and B. Then their correlation (or mean value):

(AB) =" A;Bpg’* .
I k= Ok
: p’
(AB) = ZAJ'Bﬂﬂ - 57 . (dpj)fz
j ds® = Z jdpzdp = Z i = ij(d11r1pj)2
Jk J J

We take the derivative wrt to the parameter 6:

2 2
ds\ 2 dlnp; 2 , . d_S _ ‘ dlnp; — 1(0
(@) = E Pj ( 7 J) You've seen ;hllz fl?(r;mg)a bgfore (d(’?) E :py ( do ( )
. 3 J
3 ey




Symmetric logarithmic derivatives (single A
pa ramete rS), Contl N ued THE UNIVERSI®TY

OF ARIZONA
(5 50 (22) 10 s a0

In quantum mechanics, probability distributions are upgraded to density operators. But
what happens to its derivatives?

H(8) = tr (,591’}2)
l The operator which represents the
derivative
Final state (with the unknown

parameter imprinted on it)

(LRD)
. 61n ﬁg

. o op R
= Lpg, then we go back to a classical-like case: % =Lpg=L=—,

0po
00

If ——

The QFl is given by the symmetric logarithmic derivatives (SLD): Problem 79:
Prove that the
0pp 1 . SLD is Hermitian

20 = 3 ([A,,ag + ﬁgf,) Lyapunov equation, which we solve for L i it
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Let us have a multiple unknown parameters to be estimated simultaneously:
9 = (61,...,0N)

For multiple parameters the generalization is straightforward.

2 -
via Fidelity:  H,, — _2‘2 1‘:9(5) €= (e1,---, €n)

€i9% |—g One SLD for each parameter:

1 o ~ A 8;’35 B 1 /7~ . o

via SLD’s: H;; = §tr [pg (LiLj + LjLz')i| 80, 2 (Lipg‘+ Pg;‘Lz')

From numbers (single parameter), we go to matrices (multiple parameters). The CRB
now is a matrix inequality in the positive semidefinite sense:

Cov(@)>I"'>H!
Where all Fisher matrices are positive semidefinite (eigenvalues non-negative) and
symmetric, just like the covariance matrices. The off-diagonal elements represent

correlated error.

The QFl is attainable when: [L;, L;] = 0 (one shot), and tr (ﬁg[ii, ﬁj]) =0
(asymptotic limit of many measurements). In that case the measurement
(POVM) is given by the eigenvectors of the SLD’s.

For single parameter problems:[f,, f,] — 0. The single parameter QFI is always attainable.




Multiple Parameters Attainability (continued):mm@@
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8%1n P(%; 0)

96,00, | -

CFl: L,J:E —

d1n P(Z;6) 81n P(Z;0)
00; 00,

These are metrics on the parametric space of probability distributions (or
density matrices) parametrized by 4 :

ds? = d(P,P +dP)* =) I;;d6"df’
]
ds2 = d(pg, by + dpg)> = >  Hi;df*de’

1J

If the SLD’s commute then the evolution of each parameter becomes
indipedent and therefore the problem becomes classical-like.



Upper Bound on the QF] A

THE UNIVERSITY

OF ARIZONA
Ql:l:H QFI: H
Aﬁo Us i i ﬁf(qi o Ly —?—ﬁf@)
Penv :
QFl:vF

F > H because F accounts for information lost in the environment. Specifically, for
single parameter estimation the QFI is the CFI optimized over all measurements.
Between F and H, F corresponds to a maximization over a larger set of
measurements since it involves a larger Hilbert space. Therefore, a larger
maximum might exist (worst case the F=H).

Article | Published: 27 March 2011

General framework for estimating the
ultimate precision limit in noisy
quantum-enhanced metrology

B. M. Escher &, R. L. de Matos Filho & L. Davidovich

Nature Physics T,406-411(2011) | Cite this article



Upper Bound on the QFI: Unitary A

Equivalence of Kraus operators e
Apo U T o L oy
penv

Trace out

Po A P A A
A U A — Po L Pf
penv V

Trace out Unitary Equival f Kraus operators
NS | A nitary Equivalence of Krau
Pr= ZKmPOKmE L(py)
m

The channel remains the same: We are free to use whichever basis we like for
jim: (m\(j]l) to represent the environment on.

Problem 80: Prove the unitary equivalence of

Arbitrary basis on which the .
Kraus operators rigorously.

environment is represented.



Upper Bound on the QFI: Unitary A
Equivalence of Kraus operators (continued) e

ﬁO A ﬁf . )
Ug = Po Ly Pf

P
penv

Trace out

pf = Z A poAl, = L(po)

Po . Pf . )

P
penv

Trace out

pr= ZKmPOK = L(py)

The unitary V on the environment can have dependence on the same
parameters as the unitary U which implements the interaction! Nothing
prohibits that.



Upper Bound on the QFI: Unitary A
Equivalence of Kraus operators (continued) s

QFI: H

lir

Po o
(o] ‘quﬁ

L

pr= ZKmPOK = L(po)

Traceout  The Kraus operators will have ¢
QFI: F(¢) dependence.

|
|
penv |
|
v

If we minimize the bound F with respect to V, we find an upper bound to QFl.
Actually if we optimize over all possible V’s, the bound is attainable, i.e., in that
way we can calculate the QFI H. In general this is a difficult task...

The intuition behind it is that V, will “clear up” information on unknown the
parameter in the output environment mode, and make clear what is going on on
the upper output mode.

Article | Published: 27 March 2011

General framework for estimating the
ultimate precision limit in noisy
quantum-enhanced metrology

B. M. Escher &, R. L. de Matos Filho & L. Davidovich

Nature Physics 7,406-411 (2011) | Cite this article



Upper Bound on the QFI: Unitary A
Equivalence of Kraus operators (continued) ey

pO [Af pf pO [A] ¥ o
penv ﬁenv 4
A N Trace out T Trace out
Py = ZAm)OOAm = L(po) p = ZKmﬁoffm: L(po)
v '

Another way to understand the unitary equivalence of Kraus operators: The
purification of a mixed state (in this case ﬁf), is not unique.

The purification of a state has higher QFI. This is apparent from Uhlmann’s
theorem (one way to define fidelity):

F(p,0) = ma,x|(¢p|¢ )| Maximization over all
¥s) possible purifications.

Problem 81: Argue we the inequality F'(p, &) > |(1/)p|tpg)| is valid. Then prove that the
purification of a state has greater QFI than the initial mixed state (consider single parameter
estimation). You should use the fidelity based definition of the QFI.
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Study the papers:

Article ‘ Published: 27 March 2011

General framework for estimating the| Bounding the quantum limits of precision for phase estimation with

ultimate precision limit in noisy l0ss and thermal noise
Christos N. Gagatsos, Boulat A. Bash, Saikat Guha, and Animesh Datta
quantum-enhanced metrology Phys. Rev. A 96, 062306 — Published 4 December 2017

B. M. Escher &, R. L. de Matos Filho & L. Davidovich

Nature Physics 7,406-411(2011) | Citethisarticle

For single phase estimation only under the thermal loss channel, find a
better bound than mine! (difficult problem, but probably publishable.)



QF I upper bound for phase estimation over A

a thermal loss channel THE UNIvERSITY
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lossy thermal-noise channel oy thena s chasel Ot ied anplifer

: . Ay ! po A 5y 0)

()= S T S L

V& pO — " (B) ! ‘ . T

: Pih ‘ : w

relerence From intuition | use phase unitaries to
e : “clear up” information from the both the
& environments (because the unknown
State ~ . . .

Drraron Misasieient 0 parameter is phase). | optimize over (z,¥)
and | get a nice bound, which is not the
best possible.
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General comments on the QFI approach Aw
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In general the strategy is as follows:

i. We're given a sensing task of multiple parameters.
ii. Calculate the QFI.

iii. See if the QFI is attainable.

iv. If a POVM which attains the QFI exists, find it.

The “most reasonable thing” would be to optimize the CFI over all measurements:
Extremely difficult, ergo the approach above.

Even worse, nothing guarantees that even if a POVM which attains the QFI exists, that
this POVM will be a reasonable (implementable by usual techiques) one. In many, cases
we calculate the CFI for measurements we can do, and then compare them to the QFI.



Next lectures: Further topics on quantum ZAS
estimation theory e NSy

1. More on SLD’s.

2. If there’s interest: More on derivations (let me know,
or come and find me to discuss more math).

3. More useful QFI formulas for special cases:
I. Pure states and unitary dynamics (SLD).
li. Gaussian states (Fidelity).

4. Examples/applications.
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