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Announcements

• Apologies for being late on grading HWs!
• The final presentations will be mid-December.

– Schedule & dates TBD: By alphabetical order of last 
names.

– Will invite an external examiner.



Recap
• Multimode Gaussian quantum optics

– State: 
• Covariance matrix and Wigner function of n-mode Gaussian state
• Gaussian state is one whose Wigner function is Gaussian

– Transformation: 
• 1-mode Bogoliubov transformation as a unitary (squeezing)
• Unitary operators corresponding to displacement and squeezing; 

they generate all 1-mode Gaussian transformation
• n-mode linear optical transformation into n(n-1)/2 beamsplitters
• Decomposition of arbitrary Gaussian transformation (an n-mode 

Bogoliubov transformation) as: n-mode linear-optical circuit  n 
squeezers  n-mode linear optical circuit

• General n-mode Gaussian state = n-mode Bogoliubov
transformation applied on n mode vacuum state

– Measurement:
• 1-mode homodyne, heterodyne; General development to follow



Recap (continued)

• New tools
– “Tracing out a mode”: quantum state of a sub-system: 

Two-mode squeezed vacuum, tracing out a mode 
gives a thermal state

• Applications
– Continuous-variable teleportation (in progress)

• Notation
– Saikat:                        ,

• Quadrature commutator:
• Quadrature variance of vacuum state:

– Christos:                            ,
• Quadrature commutator: 
• Quadrature variance of vacuum state:



Gaussian transformations: Phase
Schroedinger picture: state evolves under a unitary operation

Useful when calculating the output state directly

Example: input coherent state:

Heisenberg picture: operators evolve under a unitary operation; 
check to see, commutators preserved

Useful in transforming characteristic functions

Example: input coherent state:



Gaussian transformations: beamsplitter

Schroedinger

Heisenberg



Gaussian transformations: Displacement

Example: input coherent state:

Schroedinger

Heisenberg



Gaussian transformations: Squeezing
Schroedinger

Heisenberg

Squeezing is 
not passive. It 
adds photons

Mean photon number,



Gaussian transformations: two-mode 
squeezing (entangling operation)

Schroedinger

Two-mode squeezed state,

Heisenberg

Two-mode squeezed vacuum,



Phase-insensitive Linear Amplifier

Two-mode squeezer: unitary

PIA, gain G

Phase insensitive amplifier: not unitary (irreversible)

Thermal state with mean 
photon number (G-1)



Phase-insensitive Linear Amplifier

PIA, gain G

Phase insensitive amplifier: not unitary (irreversible)

If the input to the PIA is a coherent state,                            , prove that 
the output is the following mean-shifted thermal state:

Problem 68

Quadrature variance of        :     



Beamsplitter and loss

• Beam splitter is a unitary

• Photon loss is not a unitary

Beamsplitter: unitary

Loss: not unitary (irreversible)

Photon loss



Gaussian transformations

• Phase (1  1)
–

• Beam splitter (2  2)
–

• Squeezing (1  1)
–

• Displacement (1  1)
–

General n-mode 
passive linear 
optical 
transformation General zero-

mean Gaussian 
unitary 
(Bogoliubov
transformation)

General 
Gaussian 
transformation



n-mode zero-mean Gaussian unitary

(passive linear-
optic circuit:
beamsplitters
and phase-
shifters)

(passive linear-
optic circuit:
beamsplitters
and phase-
shifters)

Williamson’s symplectic theorem

Braunstein, Squeezing as an irreducible resource, 
Phys. Rev. A 71, 055801 (2005)

Gaussian Gaussian

You learnt how to transform the covariance 
matrix (CM) of input state to that of output



Symplectic decomposition

An n-mode 
zero-mean 
Gaussian state

Lasers, SPDCs, all passive 
linear optics (beamsplitters, 
polarizers, wave plates, 
diffusers), coherent detection, 
linear amplifiers (EDFA), OPAs

An n-mode symplectic transformation

Williamson’s symplectic theorem

Braunstein, Squeezing as an irreducible resource, 
Phys. Rev. A 71, 055801 (2005)

(passive linear-
optic circuit:
beamsplitters
and phase-
shifters)

(passive linear-
optic circuit:
beamsplitters
and phase-
shifters)



From Gaussian to Non-Gaussian 
transformations
It is apparent, that if we want to access any transformation we must include non-
quadratic Hamiltonians. But how much non-Gausianity is necessary? 

�𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑗𝑗 = 𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 quadratures of the e/m field
�𝑞𝑞𝑖𝑖 → Generator of momentum displacement
𝑝̂𝑝𝑖𝑖 → Generator of position displacement
�Φ𝑖𝑖 = �𝑞𝑞𝑖𝑖2 + 𝑝̂𝑝𝑖𝑖2 → Phase generator
𝑆̂𝑆𝑖𝑖 = 1

2
�𝑞𝑞𝑖𝑖𝑝̂𝑝𝑖𝑖 + 𝑝̂𝑝𝑖𝑖 �𝑞𝑞𝑖𝑖 →Squeezing generator 

⋮

|0〉

|0〉

|0〉

|0〉

When we change position to the operators, we basically have to commute (BCH relation) 
their generating Hamiltonians.

Hamiltonians of single mode 
generators



From Gaussian to Non-Gaussian 
transformations
By commuting the single mode Gaussian (quadratic) Hamiltonians �𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑖𝑖 , �Φ𝑖𝑖 , 𝑆̂𝑆𝑖𝑖, we 
can produce any other single mode Hamiltonian, but nothing else.

To include any number of modes 𝑁𝑁 > 1, we just need �𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑖𝑖 , �Φ𝑖𝑖 , 𝑆̂𝑆𝑖𝑖 and a beam splitter 
�𝐵𝐵𝑖𝑖𝑖𝑖 = 𝑝̂𝑝𝑖𝑖 �𝑞𝑞𝑗𝑗 − �𝑞𝑞𝑖𝑖𝑝̂𝑝𝑗𝑗. In that way we can construct any multimode Gaussian Hamiltonian, 
which will be given by commutating the operators {�𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑖𝑖 , �Φ𝑖𝑖 , 𝑆̂𝑆𝑖𝑖 , �𝐵𝐵𝑖𝑖𝑖𝑖}. Recall: Reck
decomposition.



From Gaussian to Non-Gaussian 
transformations

If we include just one, single mode, non-quadratic Hamiltonian �𝐾𝐾𝑖𝑖 , it is enough to
construct any non-quadratic Hamiltonian by commutation relations of
{�𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑖𝑖 , �Φ𝑖𝑖 , 𝑆̂𝑆𝑖𝑖 , �𝐵𝐵𝑖𝑖𝑖𝑖 , �𝐾𝐾𝑖𝑖}. For example Kerr non-linearity �𝐾𝐾𝑖𝑖 = �𝑞𝑞𝑖𝑖2 + 𝑝̂𝑝𝑖𝑖2

2 . Any other non-
quadratic Hamiltonian �𝐾𝐾𝑖𝑖 would do the job.

[Lloyd&Braunstein Quantum Computation over Continuous Variables, Vol. 82, Num. 8, p. 1784 (1999)]

Intuition/proof: for �𝐾𝐾𝑖𝑖 = �𝑞𝑞𝑖𝑖2 + 𝑝̂𝑝𝑖𝑖2
2, when trying to commute �𝐾𝐾𝑖𝑖 with the Gaussian set 

{�𝑞𝑞𝑖𝑖 , 𝑝̂𝑝𝑖𝑖 , �Φ𝑖𝑖 , 𝑆̂𝑆𝑖𝑖 , �𝐵𝐵𝑖𝑖𝑖𝑖}, you’ll need commutations of the form:
�𝑞𝑞𝑖𝑖3, 𝑝̂𝑝𝑖𝑖𝑚𝑚 �𝑞𝑞𝑖𝑖𝑛𝑛 = 𝑖𝑖𝑝̂𝑝𝑖𝑖𝑚𝑚+2 �𝑞𝑞𝑖𝑖𝑛𝑛−1 + lower order terms

𝑝̂𝑝𝑖𝑖3, 𝑝̂𝑝𝑖𝑖𝑚𝑚 �𝑞𝑞𝑖𝑖𝑛𝑛 = 𝑖𝑖𝑝̂𝑝𝑖𝑖𝑚𝑚−1 �𝑞𝑞𝑖𝑖𝑛𝑛+2 + lower order terms

The exponent is increasing



Gaussian transformations not universal. 
Need any one non-Gaussian unitary

• Self-Kerr (1  1)
–

• Phase (1  1)
–

• Beam splitter (2  2)
–

• Squeezing (1  1)
–

• Displacement (1  1)
–

General 
Gaussian

Single mode 
non-Gaussian

General 
non-Gaussian



Gaussian transformations not universal. 
Need any one non-Gaussian unitary

• Cubic phase (1  1)
–

• Phase (1  1)
–

• Beam splitter (2  2)
–

• Squeezing (1  1)
–

• Displacement (1  1)
–

General 
Gaussian

Single mode 
non-Gaussian

General 
non-Gaussian



Quantum state of n bosonic modes
Classical
Gaussian

Classical
Non-Gaussian

Non-Classical
Gaussian

Non-Classical
Non-Gaussian

Classical states: 
They have P representation.

Gaussian states:
Gaussian (quadratic )Wigner function. 

Reports on mathematical 
physics Vol. 6, No. 2, 1976

Hudson’s theorem:
If a Wigner function of a pure state is positive,
then the state is (and its Wigner function of
course), is Gaussian. The converse is also
valid.

e.g. thermal states
e.g. a statistical mixture 
of two coherent states

e.g. squeezed states e.g. superposition of 
coherent states (cats) 



Photodetection on a coherent state

Single-mode coherent state of this mode:

M-mode coherent state of the modes:
Orthogonal 
temporal modes

Let us choose #slices, M such that,



Reinterpret ideal photodetection as 
detecting slices 
• Single time slice seen as a beam-splitter

• M-1 BSs in a sequence,



Photon detection statistics of a 
coherent state pulse

For each detector: Each detector’s output is a statistically-
independent binary-outcome random variable

Continuum limit of this statistics is a Poisson 
Point Process with arrival rate,



Photon detection on squeezed state pulse

Work out the photo-detection statistics of detecting a squeezed-
state pulse in [0, T] with ideal photon detection. You may take,

Advanced Problem 7



Upcoming topics

• Non Gaussian states
– Photon subtraction and cat states

• A few more applications and advanced problems
• Revision of symplectic Gaussian formalism 

and introduction to quantum channels.
• The list of possible forthcoming applications or 

further theoretical tools is growing. Go back to 
the slides of previous lectures and tell me if you 
have a preference (email me or in person).
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