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Recap (partial) of previous lectures 

1.Description of a Gaussian state on phase
space (covariance matrix, first moments).

2.Covariance matrix and first moments
transformations.

3.First impact with the CV teleportation.



Outline of Lecture 15

1. Gaussian measurements (Homodyne/Heterodyne).
2. Revisiting CV teleportation.
3. Von Neumann entropy of Gaussian states.
4. Introduction to fidelity.



Homodyne detection
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𝐼𝐼1
𝐼𝐼2

⇒ 𝑞𝑞𝑚𝑚

= 𝑞𝑞𝑚𝑚Hom.(�𝑞𝑞𝑖𝑖𝑖𝑖, �̂�𝑝𝑖𝑖𝑖𝑖)
(�𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜1, �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜1)
(�𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜2, �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜2)

Operator transformations in the Heisenberg picture. 𝑞𝑞𝐿𝐿𝐿𝐿
is a classical field (~109 photons), therefore 𝑝𝑝𝐿𝐿𝐿𝐿 ≈ 0.

𝐼𝐼1 − 𝐼𝐼2 =
1
2 �𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜12 + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜12 − �𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜22 + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜22 = 𝑞𝑞𝐿𝐿𝐿𝐿 �𝑞𝑞𝑖𝑖𝑖𝑖

= 𝑞𝑞𝐿𝐿𝐿𝐿 �𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑐𝑐 𝑞𝑞𝐿𝐿𝐿𝐿𝑞𝑞𝑚𝑚
Problem 62: Verify this 
equation.

Problem 63: Find 𝐼𝐼1 − 𝐼𝐼2 for 
𝜙𝜙 = 𝜋𝜋/2.

𝑐𝑐: constant. It has to do with post-
processing. We’ll take it to be 𝑐𝑐 = 1.
𝑞𝑞𝐿𝐿𝐿𝐿: just a known number since it’s 
locally defined, classical field (not 
operator).



Heterodyne detection (Dual homodyne)
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�𝑞𝑞𝑖𝑖𝑖𝑖 & �̂�𝑝𝑖𝑖𝑖𝑖

|0〉

Hom.

Hom.

𝜙𝜙 = 0 → 𝑞𝑞𝑚𝑚
𝜙𝜙 = 𝜋𝜋/2 → 𝑝𝑝𝑚𝑚

Heterodyne measurement: Using a balanced beam splitter, the field is split into 
two beams. Then a homodyne measurement is performed on each output mode. 
Vacuum in the lower input port is inevitable, therefore the cost of measuring 
simultaneously position and momentum is added noise.

Recall: 
• The outcome of (many) homodyne measurements is the Wigner function.
• The outcome of (many) heterodyne measurements is the 𝑄𝑄 function.

�⃗�𝑥 = (�⃗�𝑞 − 𝑑𝑑𝑞𝑞 �⃗�𝑝 − 𝑑𝑑𝑝𝑝)

Therefore, heuristically, if the CM of the detected field is 𝑉𝑉, the correlation matrix 
in the 𝑄𝑄 function will be Γ = 𝑉𝑉 + 𝐼𝐼

2
(for Gaussian states only), the identity matrix 

accounts for added noise.

Heterodyne and dual homodyne give the same statistics.



CV teleportation
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BS1 BS2

Hom. Mes. Displacing



Fidelity
Uhlmann’s fidelity between two states �𝜌𝜌1 and �𝜌𝜌2: 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 = 𝑡𝑡𝑡𝑡 �𝜌𝜌1 �𝜌𝜌2 �𝜌𝜌1

(Some) properties:
1. It is symmetric: 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 =𝐹𝐹 �𝜌𝜌2, �𝜌𝜌1 . (also a metric property)
2. Invariant under unitaries: 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 =𝐹𝐹 𝑈𝑈 �𝜌𝜌1𝑈𝑈†,𝑈𝑈�𝜌𝜌2𝑈𝑈† .

3. It holds: 0 ≤ 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 ≤ 1. (also a metric property)
4. 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 = 1 if and only if �𝜌𝜌1 = �𝜌𝜌2. (also a metric property)

Problem 64: Prove property 2. Use the fact that for any unitary operator 𝑈𝑈 and positive operator 
𝐴𝐴, 𝑈𝑈𝐴𝐴𝑈𝑈† = 𝑈𝑈 𝐴𝐴𝑈𝑈†.  

It is a measure of how “close” two density operators are. However it is not a metric 
since it doesn’t satisfy the triangle inequality.  

Special cases:
1. If �𝜌𝜌1, �𝜌𝜌2 = 0, �𝜌𝜌1 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖 𝑖𝑖 〈𝑖𝑖| , �𝜌𝜌2 = ∑𝑖𝑖 𝜇𝜇𝑖𝑖 𝑖𝑖 〈𝑖𝑖| then 𝐹𝐹 �𝜌𝜌1, �𝜌𝜌2 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖. 
2. If both states are pure: 𝐹𝐹(|Ψ〉, |Φ〉) = |〈Ψ|Φ〉|.
3. If one of the states is pure:  𝐹𝐹(|Ψ〉, �𝜌𝜌) = 〈Ψ| �𝜌𝜌|Φ〉.



Fidelity of Gaussian states 

Advanced Problem 5: Part I
Study and present the proof of the main result (Eqs. 14, 15, and 16) in 
Phys. Rev. Lett. 115, 260501 and sup. material.

There, they give the formula for the fidelity between any two Gaussian 
states (pure or mixed).  

⇒ ⋯



Fidelity in the CV teleportation scheme
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For one mode Gaussian states (𝑉𝑉,𝑑𝑑) and ( �𝑉𝑉, �̃�𝑑): 𝐹𝐹 = 𝐹𝐹0 exp(−1
4
𝛿𝛿𝑇𝑇 𝑉𝑉 + �𝑉𝑉 𝛿𝛿)

From slide 6, we can find the �𝑉𝑉 (since there 
we found �𝑞𝑞3(𝑡𝑡3) and �̂�𝑝3(t3))

Example: �𝜌𝜌 = 𝛼𝛼 〈𝛼𝛼|

→

𝑡𝑡 → ∞: 𝐹𝐹 = 1, perfect teleportation.
𝑡𝑡 = 0: 𝐹𝐹 = 0.5, teleportation becomes a classical measurement
and state preparation scheme with 𝐹𝐹 = 0.5. Necessary lower
bound for successful teleportation.



Advanced Problem 5: Part II
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Take |𝐺𝐺〉 to be some pure single mode Gaussian state, with given covariance 
matrix and zero displacements (1st moments=0). Also consider that both 
homodyne measurements results give 0 outcome (so that you don’t have to 
perform any displacements). Calculate the fidelity 𝐹𝐹(| 〉, �𝜎𝜎) between the final 
and initial state.

Trace out

If you choose Adv. Prob. 5, you must solve both parts I & II



von Neumann entropy

The entropy associated with a (quantum) density operator �𝜌𝜌:
𝑆𝑆 �𝜌𝜌 = −𝑡𝑡𝑡𝑡( �𝜌𝜌 ln �𝜌𝜌) which in general is not trivial to find.
If the eigenvalues of �𝜌𝜌 are 𝜆𝜆𝑖𝑖 the von Neumann entropy is:
𝑆𝑆 �𝜌𝜌 = −∑𝑖𝑖 𝜆𝜆𝑖𝑖 ln 𝜆𝜆𝑖𝑖 Problem 65: Go from Eq. (2) to Eq. (3). Can you think of any other 

measure of uncertainty of mixdness for the density operator?

The Shannon entropy measures the uncertainty of a classical probability distribution. In 
quantum mechanics, the equivalent quantity to a classical distribution is the density operator.

(we always take 0 ln 0 = 0)

Properties:
1. The vN entropy is non-negative. It is zero only for pure states.
2. The vN entropy is invariant under unitaries: 𝑆𝑆 𝑈𝑈 �𝜌𝜌𝑈𝑈† = 𝑆𝑆( �𝜌𝜌). 
3. 𝑆𝑆 �𝜌𝜌1 ⊗ �𝜌𝜌2 ⊗⋯⊗ �𝜌𝜌𝑁𝑁 = 𝑆𝑆 �𝜌𝜌1 + 𝑆𝑆 �𝜌𝜌2 + ⋯+ 𝑆𝑆( �𝜌𝜌𝑁𝑁).
4. The state that maximizes the vN entropy is the 𝜌𝜌 = 𝐼𝐼/𝑑𝑑 (completely mixed state), 

where 𝑑𝑑 is the dimension of the Hilbert state. For that case 𝑆𝑆 𝜌𝜌 = 𝑙𝑙𝑙𝑙 𝑑𝑑.
5. For a pure state �𝜌𝜌𝐴𝐴𝐴𝐴, then 𝑆𝑆 �𝜌𝜌𝐴𝐴 = 𝑆𝑆 �𝜌𝜌𝐴𝐴 . Where �𝜌𝜌𝐴𝐴 = 𝑡𝑡𝑡𝑡𝐴𝐴 �𝜌𝜌𝐴𝐴𝐴𝐴 and �𝜌𝜌𝐴𝐴 = 𝑡𝑡𝑡𝑡𝐴𝐴 �𝜌𝜌𝐴𝐴𝐴𝐴 .
6. 𝑆𝑆 ∑𝑖𝑖 𝑝𝑝𝑖𝑖 �𝜌𝜌𝑖𝑖 = 𝐻𝐻 𝑝𝑝𝑖𝑖 + ∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑆𝑆( �𝜌𝜌𝑖𝑖). Where 𝐻𝐻 . is the Shannon entropy, 𝑝𝑝𝑖𝑖 is a 

probability distribution, and the density operators �𝜌𝜌𝑖𝑖 have support on orthogonal 
subspaces.

7. 𝑆𝑆 ∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑖𝑖 〈𝑖𝑖| ⊗ �𝜌𝜌𝑖𝑖 = 𝐻𝐻 𝑝𝑝𝑖𝑖 + ∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑆𝑆( �𝜌𝜌𝑖𝑖). Where 𝑝𝑝𝑖𝑖 is a probability distribution, 𝑖𝑖 is 
an orthogonal basis for a system 𝐴𝐴, and �𝜌𝜌𝑖𝑖 is any set of density ops for another 
system 𝐵𝐵

(2)

(3)



von Neumann Entropy of Gaussian states

vNE is invariant under unitary operations (as it depends only on the density operator’s 
eigenvalues). In the phase space description we translated unitary operators to 
symplectic transformations. Therefore, in the Gaussian regime, the vNE is invariant 
under symplectic transformations and the vNE of any Gaussian state will be given by 
the eigenvalues of some multimode thermal state.

𝑆𝑆 �𝜌𝜌𝑜𝑜𝑡 = 𝑆𝑆 �𝜌𝜌𝑜𝑜𝑡,1 ⊗ �𝜌𝜌𝑜𝑜𝑡,2 ⊗⋯⊗ �𝜌𝜌𝑜𝑜𝑡,𝑁𝑁 = 𝑆𝑆 �𝜌𝜌𝑜𝑜𝑡,1 + 𝑆𝑆 �𝜌𝜌𝑜𝑜𝑡,2 + ⋯+ 𝑆𝑆( �𝜌𝜌𝑜𝑜𝑡,𝑁𝑁)

Thermal states are diagonal on Fock basis → Easy to find the vNE.

𝑔𝑔 𝑥𝑥 = � 𝑥𝑥 + 1 ln 𝑥𝑥 + 1 − 𝑥𝑥 ln 𝑥𝑥 , 𝑥𝑥 > 0
0, 𝑥𝑥 = 0

Problem 66: Prove it

𝑀𝑀𝑖𝑖: thermal of photons of the 𝑖𝑖𝑜𝑜𝑡 mode.



von Neumann Entropy of Gaussian states

Symplectic eigenvalues of any CM 𝑉𝑉: 𝑉𝑉 = 𝑆𝑆 𝑉𝑉𝑜𝑜𝑡,𝑁𝑁𝑆𝑆𝑇𝑇

To calculate the vNE of a Gaussian state, we must simply find the symplectic
eigenvalues and feed it to the 𝑔𝑔(. ) function.



Upcoming topics

1. Recap of most of the staff we discussed so far.
2. Non-Gaussian states: why they are important and what 

are they. Cat states. Photon subtraction.
3. Probabilistic, noiseless amplification.
4. Discrete variables teleportation and application of fidelity.
5. More optical circuits other than teleportation (e.g. 

entanglement swapping).
6. Introduction to metrology/sensing (using the fidelity as 

starting point to introduce the quantum Fisher information 
metric).
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