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Recap of lectures 11&12

We’ve seen how to transform the modes of a field, i.e, the 
annihilation operator �𝛼𝛼𝑖𝑖 of the 𝑖𝑖-th mode of a field for:
– Phase shifting, beam splitter, SMS, TMS, and general 

Bogoliubov transformation.
– We obtained the thermal state from tracing out one part 

of the TMSV.
– We saw the thermal state in Fock basis and coherent 

basis.
– We saw that the TMS can work as a quantum limited 

amplifier.



Outline of Lecture 13

1. From unitary Gaussian transformations to symplectic
transformations.

2. The covariance matrix, the first moments, and the 
Wigner function.

3. The (symplectic) transformation of the covariance 
matrix and the first moments.

4. Towards CV teleportation.



From unitary Gaussian transformations to 
symplectic transformations



From unitary Gaussian transformations to 
symplectic transformations

Continuing in the same way we find:

Problem 53: derive the 
matrix S, starting from the 
Bogoliubov transformation



The symplectic matrix

If a matrix S satisfies the condition:

then we call it symplectic.

What does it mean?

Problem 54: Derive these relations starting from 

Therefore the condition that all symplectic matrices satisfy, has the physical 
meaning that the transformed field should satisfy commutation relations.



Notation and commutation relations 

We will work with the so called qqpp representation, which means 
that we will organize our vectors in the following manner:

Operators The commutation relations in the qqpp
representation are:

Problem 55: Prove that in the qpqp representation, the commutation relation is:

Where: 



Going from density operators to phase space

Most general Gaussian 
density operator

Gibbs matrix Just vectors (numbers)

𝑑𝑑𝑎𝑎𝑇𝑇 are the 
displacements in the 
qqpp representation

All exponentials are at most quadratic (i.e. Gaussian) and the FT is a linear 
transformation, therefore the outcome will still be quadratic. 

Wigner function



Wigner function of Gaussian states

Displacements
or first moments

Covariance matrix (CM) 
elements or second moments

For an 𝑁𝑁 mode field, the covariance matrix is an 𝑁𝑁 × 𝑁𝑁 positive definite, symmetric, real matrix. It 
must additionally satisfy: 

The CM captures the “shape” of the state in phase space while the displacements corresponds to
how far from the origin of the axes the state is. The Wigner function is a complete description
of the state, is normalized to 1, and gives the correct mean values of observables.

The extra condition stems from the commutation relation (i.e. uncertainty 
principle) and it gives the minimum permitted volume in phase space

Problem 56: Prove that this equation remains the same under symplectic
transformations. 



Vacuum state & coherent state
Single mode vacuum: (why is this state Gaussian?)
Remember:

Coherent state:

Just displaced vacuum.



Thermal state (non displaced)
Problem 57: Calculate the 
covariance matrix (CM) for the 
thermal state and write down 
the Wigner function. Will the 
CM change if we perform a 
displacement? Why?



Gaussian unitaries in phase space

A given Gaussian state with first moments 𝑑𝑑 and CM 𝑉𝑉, under symplectic
transformations is transformed as:

Recall that 𝑆𝑆, is not an operator, is a matrix.

Exploiting the first moments’ transformation, we 
transform the CM.



Single-mode transformations
Displacement

Therefore it leaves the CM the same, the only thing 
that changes are the first moments.

Phase shift (Rotation)
If we apply the general formula obtained earlier, and plug the Bogoliubov
transformation in: 

Single-mode squeezing (phases set to π/2)

Again, we have derived
everything in the Heisenberg
picture. Now we only have to
substitute in the general formula.

Orthogonal: passive 
element

Non-orthogonal: active 
element



Two-modes transformation
Beam splitter

Two mode squeezer (with phase set to π/2)

Block BBlock A

Heisenberg

Symplectic

Orthogonal: passive 
element

Non-orthogonal: active 
element



Two mode squeezer decomposition

The TMS is decomposed into a sequence of a beamsplitter, single
mode squeezers (with opposite squeezing direction), and another beam
splitter which is the transpose of the 1st one.



Symplectic diagonalization and some other 
general statements

Williamson’s theorem:
Any positive semi-definite matrix can 
decomposed as:

Where 𝑆𝑆 is symplectic. 

The symplectic eigenvalues are given by the 
ordinary eigenvalues of:

Euler’s theorem:
Any symplectic matrix 𝑆𝑆 can be 
decomposed as:

Where 𝑂𝑂,𝑃𝑃 are orthogonal and 
symplectic and Δ is diagonal.

The above two theorems say that we can derive any Gaussian transformation by 
a sequence of beam splitters and phases (the 𝑃𝑃 matrix), squeezing (the Δ
matrices), and beam splitters and phases again (the 𝑂𝑂 matrix). Then we displace.

Always symplectic

Any pure state We apply said recipe to vacuum (which has diagonal CM).
Any mixed state We apply said recipe to a non-displaced thermal state 
(which has diagonal CM).



Problem 58
Initially we have the vacuum state | ⟩0 . Find the covariance matrix and 
the first moments. If:
i. We squeeze first and then we displace.
ii. We displace first and then we squeeze.
iii. Can you find the same result as the one we found in the 

Heisenberg picture? Which way you think is easier?



Towards CV teleportation
… Not the full thing yet since we still need to talk about CV measurements…

Problem 58: Calculate the CM and first moments where the red line is.

1/2

1/2

Unknown squeezed displaced state to be teleported



Upcoming topics

Next lecture:

1. Partial trace (tracing out) on the CM level. More on thermal states and
symplectic decomposition. Entropy of a Gaussian state.

2. Calculating mean values of observables using the Wigner function.
3. Homodyne measurement and finishing off the CV teleportation
4. (If there’s time) Non-Gaussian states:

– Fock states
– Cat states
– Post selection and photon addition/subtraction
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