Photonic Quantum Information Processing OPTI 647: Lecture 9

Saikat Guha

September 24, 2019

Associate Professor
College of Optical Sciences Meinel 523

Announcements

- Topics to be covered today
- Phase space picture of squeezed states
- Heterodyne detection
- Quantum description of beamsplitter and phase
- Quantum enhanced phase estimation
- Outlook of the next few lectures

Recap of Lecture 8: Characteristic functions $\mathbb{A} \mathbb{A}$ versus probability distributions

$\chi_{W}\left(\zeta^{*}, \zeta\right)=\operatorname{tr}\left(\hat{\rho} e^{-\zeta^{*} \hat{a}+\zeta \hat{a}^{\dagger}}\right)$ $\chi_{A}\left(\zeta^{*}, \zeta\right)=\operatorname{tr}\left(\hat{\rho} e^{-\zeta^{*} \hat{a}} e^{\zeta \hat{a}^{\dagger}}\right)$

$$
\chi_{W}(\zeta)=e^{|\zeta|^{2} / 2} \chi_{A}(\zeta)=e^{-|\zeta|^{2} / 2} \chi_{N}(\zeta)
$$

$$
\chi_{A}(\zeta)=\int Q(\alpha) e^{\zeta \alpha^{*}-\zeta^{*} \alpha} d^{2} \alpha
$$

Always a proper probability density

$$
\begin{aligned}
& \text { function; pdf for ideal heterodyne } \\
& \text { detection OR dual homodyne detection } \rightarrow Q(\alpha)=\frac{1}{\pi^{2}} \int \chi_{A}(\zeta) e^{-\zeta \alpha^{*}+\zeta^{*} \alpha} d^{2} \zeta
\end{aligned}
$$

May not be a proper probability density function. Negativity used to show a state is non-classical. Not all non-classical states have a negative Wigner function

$$
\begin{aligned}
\chi_{W}(\zeta) & =\int W(\alpha) e^{\zeta \alpha^{*}-\zeta^{*} \alpha} d^{2} \alpha \\
\rightarrow W(\alpha) & =\frac{1}{\pi^{2}} \int \chi_{W}(\zeta) e^{-\zeta \alpha^{*}+\zeta^{*} \alpha} d^{2} \zeta
\end{aligned}
$$

Always a proper probability density function when it exists. The states for which a proper P function exists are called classical states

$$
\begin{aligned}
\chi_{N}(\zeta) & =\int P(\alpha) e^{\zeta \alpha^{*}-\zeta^{*} \alpha} d^{2} \alpha \\
\rightarrow P(\alpha) & =\frac{1}{\pi^{2}} \int \chi_{N}(\zeta) e^{-\zeta \alpha^{*}+\zeta^{*} \alpha} d^{2} \zeta
\end{aligned}
$$

$$
\langle n| \hat{\rho}|m\rangle=\frac{1}{\pi} \int \chi_{A}(\zeta)\langle n| e^{-\zeta \hat{a}^{\dagger}} e^{\zeta^{*} \hat{a}}|m\rangle d^{2} \zeta=\frac{1}{\pi} \int \chi_{A}(\zeta) \sqrt{\frac{n!}{m!}}(-\zeta)^{m-n} L_{n}^{(m-n)}\left(|\zeta|^{2}\right) d^{2} \zeta
$$

Recap of Lecture 8

 $-\langle\alpha| F\left(a^{\dagger}, a\right)|\beta\rangle=F^{(n)}\left(\alpha^{*}, \beta\right)\langle\alpha \mid \beta\rangle$

- Anti-normally ordered form, $G\left(\hat{a}, \hat{a}^{\dagger}\right) \equiv \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} g_{n m} \hat{a}^{n} \hat{a}^{\dagger m}$
- Characteristic function for coherent state, $\hat{\rho}=|\alpha\rangle\langle\alpha|$ - $\chi_{N}\left(\zeta^{*}, \zeta\right)=\operatorname{tr}\left(\hat{\rho} e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^{*} \hat{a}}\right)=e^{\zeta \alpha^{*}-\zeta^{*} \alpha}$ is Gaussian
- Circularly symmetric \equiv number diagonal $\hat{\rho}=\sum^{\infty} p_{n}|n\rangle\langle n|$
- If a state is classical (has a proper P function), ${ }^{n}=$
- Number detection statistics; $\left\langle\Delta \hat{N}^{2}\right\rangle \geq\langle\hat{N}\rangle$
- Quadrature (homodyne) detection statistics; $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle \geq 1 / 4$

Recap of Lecture 8

- Measurement of the $\hat{a} \operatorname{POVM}, \hat{\Pi}(\alpha) \equiv \frac{|\alpha\rangle\langle\alpha|}{\pi}, \quad$ for $\alpha \in \mathcal{C}$
- Distribution of output, $Q(\alpha)=\langle\alpha| \hat{\rho}|\alpha\rangle / \pi \equiv \hat{\rho}^{(n)}\left(\alpha^{*}, \alpha\right) / \pi$
- (classical) characteristic function of this distribution

$$
M_{\alpha_{1}, \alpha_{2}}\left(j v_{1}, j v_{2}\right)=\int e^{j v_{1} \alpha_{1}+j v_{2} \alpha_{2}} Q(\alpha) d^{2} \alpha=\left.\chi_{A}\left(\zeta^{*}, \zeta\right)\right|_{\zeta=j v / 2}
$$

- \hat{a} POVM on squeezed state $|\beta ; \mu, \nu\rangle$, assume $\mu, \nu \in \mathbb{R}$
- $\chi_{A}\left(\zeta^{*}, \zeta\right)=e^{\left(\zeta \mu+\zeta^{*} \nu\right) \beta^{*}-\left(\zeta^{*} \mu+\zeta \nu\right) \beta-|\zeta|^{2} \mu^{2}-\operatorname{Re}\left(\zeta^{2}\right) \mu \nu}$: Gaussian
$-M_{\alpha_{1}, \alpha_{2}}\left(j v_{1}, j v_{2}\right)=\left.\chi_{A}\left(\zeta^{*}, \zeta\right)\right|_{\zeta=j v / 2}=e^{j v_{1}(\mu-\nu) \beta_{1}-v_{1}^{2} \sigma_{1}^{2} / 2} e^{j v_{2}(\mu+\nu) \beta_{2}-v_{2}^{2} \sigma_{2}^{2} / 2}$
- Recall, for $p_{X}(x)=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}, M_{X}(j v)=e^{j v \mu-v^{2} \sigma^{2} / 2}$
- Measurement outcomes $\left(\alpha_{1}, \alpha_{2}\right)$: S.I. Gaussian with:

$$
\begin{array}{ll}
\left\langle\alpha_{1}\right\rangle=(\mu-\nu) \beta_{1} \\
\left\langle\Delta \alpha_{1}^{2}\right\rangle \equiv \sigma_{1}^{2}=\frac{(\mu-\nu)^{2}+1}{4} & \left\langle\alpha_{2}\right\rangle=(\mu+\nu) \beta_{2} \\
& \left\langle\Delta \alpha_{2}^{2}\right\rangle \equiv \sigma_{2}^{2}=\frac{(\mu+\nu)^{2}+1}{4}
\end{array}
$$

- Gaussian state: characteristic fns. are Gaussian. Mean fields and quadrature variances completely define the state

Statistics of measurement of \hat{a} POVM on a squeezed state, $|\beta ; \mu, \nu\rangle, \mu, \nu \in \mathbb{C}$

- Mean, variances of measurement outcomes (α_{1}, α_{2})
- Measurement described by POVM

State	$\langle\alpha\rangle$
$\|n\rangle$	0
$\|\beta\rangle$	β
$\|\beta ; \mu, \nu\rangle$	$\mu^{*} \beta-\nu \beta^{*}$

State	$\left\langle\Delta \alpha_{1}^{2}\right\rangle$	$\left\langle\Delta \alpha_{2}^{2}\right\rangle$
$\|n\rangle$	$(n+1) / 2$	$(n+1) / 2$
$\|\beta\rangle$	$1 / 2$	$1 / 2$
$\|\beta ; \mu, \nu\rangle$	$\left(\|\mu-\nu\|^{2}+1\right) / 4$	$\left(\|\mu+\nu\|^{2}+1\right) / 4$

- Mean and variances for measuring $\hat{a}_{1} \mathrm{OR} \hat{a}_{2}$
- Both are projective measurements (but cannot be done simultaneously)

Means $\left\langle\hat{a}_{1}\right\rangle$ and $\left\langle\hat{a}_{2}\right\rangle$ are just real and imaginary parts of the \hat{a} POVM measurement's mean

State	$\left\langle\Delta \hat{a}_{1}^{2}\right\rangle$	$\left\langle\Delta \hat{a}_{2}^{2}\right\rangle$
$\|n\rangle$	$(2 n+1) / 4$	$(2 n+1) / 4$
$\|\beta\rangle$	$1 / 4$	$1 / 4$
$\|\beta ; \mu, \nu\rangle$	$\left(\|\mu-\nu\|^{2}\right) / 4$	$\left(\|\mu+\nu\|^{2}\right) / 4$

Yuen-Shapiro vs. Caves notation

- Squeezed state, $|\beta ; \mu, \nu\rangle, \mu, \nu \in \mathbb{C},|\mu|^{2}-|\nu|^{2}=1$
$-\langle\hat{a}\rangle=\mu^{*} \beta-\nu \beta^{*},\left\langle\hat{a}_{1}\right\rangle=\operatorname{Re}\left(\left\langle\hat{a}_{1}\right\rangle\right),\left\langle\hat{a}_{2}\right\rangle=\operatorname{Re}\left(\left\langle\hat{a}_{2}\right\rangle\right)$
$-\langle\hat{N}\rangle \equiv\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=|\langle\hat{a}\rangle|^{2}+|\nu|^{2}$
$-\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=|\mu-\nu|^{2} / 4,\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=|\mu+\nu|^{2} / 4$
- Useful notation to think of squeezing as phase-sensitive amplification with "gain", $G=|\mu|^{2}>1, G-1=|\nu|^{2}$
- Caves notation, $|\alpha ; r, \theta\rangle \equiv|\alpha ; \xi\rangle, \xi=r e^{j \theta}$
- Define, $\mu^{*} \beta-\nu \beta^{*} \equiv \alpha$. This implies: $\beta=\mu \alpha+\nu \alpha^{*}$
- Define, $\mu=\cosh (r), \nu=e^{j \theta} \sinh (r)$, with $\xi=r e^{j \theta}$ being the (complex-valued) "squeezing parameter"
$-\langle\hat{a}\rangle=\alpha \equiv \alpha_{1}+j \alpha_{2},\left\langle\hat{a}_{1}\right\rangle=\alpha_{1},\left\langle\hat{a}_{2}\right\rangle=\alpha_{2}$
$-\langle\hat{N}\rangle \equiv\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=|\alpha|^{2}+\sinh ^{2}(r)$
- Useful notation to picture "squeezing a coherent state"

Squeezing in Caves' notation

- Quadrature variances: $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=|\mu-\nu|^{2} / 4,\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=|\mu+\nu|^{2} / 4$

$$
\begin{aligned}
|\mu \pm \nu|^{2} & =|\mu|^{2}+|\nu|^{2} \pm 2 \operatorname{Re}\left(\mu^{*} \nu\right) \\
& =\sinh ^{2}(r)+\cosh ^{2}(r) \pm 2 \operatorname{Re}\left(\sinh (\mathrm{r}) \cosh (\mathrm{r}) e^{j \theta}\right) \\
\frac{1}{4}|\mu \pm \nu|^{2} & =\frac{1}{4}[\cosh (2 r) \pm \cos (\theta) \operatorname{sinhr}(2 r)]
\end{aligned}
$$

- Recall condition for MUP: $\mu^{*} \nu \in \mathbb{R} \Rightarrow \sin (\theta)=0 \Rightarrow \cos (\theta)= \pm 1$
- If $\cos (\theta)=1,\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{1}{4} e^{-2 r},\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{4} e^{2 r}$
- If $\cos (\theta)=-1,\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{1}{4} e^{2 r},\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{4} e^{-2 r}$
- Squeezing often measured in dB: $10 \log _{10}\left(e^{2 r}\right)$
- Example: 3 dB squeezing: $e^{-2 r} \approx 0.5, r=0.3454$

Squeezed state in phase space

- Squeezed state, $|\beta ; \mu, \nu\rangle \equiv|\alpha ; \mu, \nu\rangle$
- Coherent state is a special case, $\mu=1, \nu=0 ; r=0, \theta=$?
- Wigner function $W\left(\alpha_{1}, \alpha_{2}\right)$ is a 2D Gaussian as shown:
$\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{1}{4} e^{-2 r} \alpha_{1}$
$\mu=\cosh (r), \nu=\sinh (r), \theta=0$
$\langle\hat{N}\rangle \equiv\left\langle\hat{a}_{2}^{\dagger} \hat{a}\right\rangle=|\alpha|^{2 r}+\sinh ^{2}(r)$

Let us redo everything we did, but with $\mu=e^{j \phi} \cosh (r), \nu=e^{j(\phi+\theta)} \sinh (r)$ (we had ignored one degree of freedom by setting $\phi=0$ when going from YuenShapiro to Caves notation)

MUP condition is the same as before: $\mu^{*} \nu \in \mathbb{R} \Rightarrow \sin (\theta)=0 \Rightarrow \cos (\theta)= \pm 1$ Effect of this phase: $\hat{b} \rightarrow \hat{b} e^{j \phi}$, is to apply a rotation in phase space

Q function of squeezed state

- Squeezed state, $|\beta ; \mu, \nu\rangle \equiv|\alpha ; \mu, \nu\rangle$
- Consider $\mu=\cosh (r), \nu=\sinh (r), \theta=0$
- We already know what to expect, for the distribution of the \hat{a} POVM measurement we derived

For $\mu, \nu \in \mathbb{R}$, we showed from first principles,

$$
\chi_{A}\left(\zeta^{*}, \zeta\right)=e^{\left(\zeta \mu+\zeta^{*} \nu\right) \beta^{*}-\left(\zeta^{*} \mu+\zeta \nu\right) \beta-|\zeta|^{2} \mu^{2}-\operatorname{Re}\left(\zeta^{2}\right) \mu \nu}
$$

$$
=\exp \left[2 j\left(\zeta_{2} \alpha_{1}-\zeta_{1} \alpha_{2}\right)-\zeta_{1}^{2}\left(\frac{1+e^{2 r}}{2}\right)-\zeta_{2}^{2}\left(\frac{1+e^{-2 r}}{2}\right)\right]
$$

- $\alpha \begin{gathered}\left\langle\Delta \alpha_{2}^{2}\right\rangle \equiv \sigma_{2}^{2}=\frac{(\mu+\nu)^{2}+1}{4} \\ \alpha_{1}\end{gathered}$
$\left\langle\Delta \alpha_{1}^{2}\right\rangle \equiv \sigma_{1}^{2}=\frac{(\mu-\nu)^{2}+1}{4}$
If we take the 2D fourier transform to obtain the Q function, we get a 2D Gaussian distribution with variances,
$\sigma_{1}^{2}=\frac{1+e^{-2 r}}{4}, \sigma_{2}^{2}=\frac{1+e^{2 r}}{4}$

Covariance matrix

- A Gaussian state can be completely determined from its first and second moments
- First moment: $\langle\hat{a}\rangle=\left\langle\hat{a}_{1}\right\rangle+j\left\langle\hat{a}_{2}\right\rangle \in \mathbb{C}$ is the mean field
- Note that: $\langle\hat{a}\rangle=\langle\alpha\rangle_{P}=\langle\alpha\rangle_{Q}=\langle\alpha\rangle_{W}$
- Second moments form a covariance matrix:

$$
V=\left(\begin{array}{cc}
\left\langle\hat{a}_{1}^{2}\right\rangle & \left\langle\left\{\hat{a}_{1}, \hat{a}_{2}\right\}\right\rangle / 2 \\
\left\langle\left\{\hat{a}_{1}, \hat{a}_{2}\right\}\right\rangle / 2 & \left\langle\hat{a}_{2}^{2}\right\rangle
\end{array}\right) \quad \begin{aligned}
& \text { Poisson bracket } \\
& \{\hat{A}, \hat{B}\}=\hat{A} \hat{B}+\hat{B} \hat{A}
\end{aligned}
$$

- Note that: $V=\left(\begin{array}{cc}\left\langle\alpha_{1}^{2}\right\rangle_{W} & \left\langle\alpha_{1} \alpha_{2}\right\rangle_{W} \\ \left\langle\alpha_{1} \alpha_{2}\right\rangle_{W} & \left\langle\alpha_{2}^{2}\right\rangle_{W}\end{array}\right)$

$$
=\left(\begin{array}{cc}
\left\langle\alpha_{1}^{2}\right\rangle_{Q} & \left\langle\alpha_{1} \alpha_{2}\right\rangle_{Q} \\
\left\langle\alpha_{1} \alpha_{2}\right\rangle_{Q} & \left\langle\alpha_{2}^{2}\right\rangle_{Q}
\end{array}\right)-I / 4
$$

$$
=\left(\begin{array}{cc}
\left\langle\alpha_{1}^{2}\right\rangle_{P} & \left\langle\alpha_{1} \alpha_{2}\right\rangle_{P} \\
\left\langle\alpha_{1} \alpha_{2}\right\rangle_{P} & \left\langle\alpha_{2}^{2}\right\rangle_{P}
\end{array}\right)+I / 4
$$

Covariance matrix of a squeezed state

- For the squeezed state $|\beta ; \mu, \nu\rangle, \mu, \nu \in \mathbb{C}$,
- Mean field (first moment), $\langle\hat{a}\rangle=\mu^{*} \beta-\nu \beta^{*}$
- Prove that the covariance matrix is given by:

$$
V=\frac{1}{4}\left(\begin{array}{cc}
|\mu-\nu|^{2} & -2 \operatorname{Im}\left(\mu^{*} \nu\right) \\
-2 \operatorname{Im}\left(\mu^{*} \nu\right) & |\mu+\nu|^{2}
\end{array}\right)
$$

Diagonal terms are zero if the squeezed state is MUP

Revisiting Homodyne Detection: semiclassical theory, coherent state input

$$
E_{S}(x, y, t)=\frac{a_{S} e^{-j \omega t}}{\sqrt{A T}} \rightarrow \frac{a_{\mathrm{LO}} e^{-j \omega t}}{\sqrt{A T}} \rightarrow \underbrace{E_{0}}_{E_{-}(x, y, t)}(x, y, t)=\rightarrow
$$

Flat-top modes in [0, T]
and spatial area A; unit: $\sqrt{ }$ photon $/ \mathrm{m}^{2} \mathrm{sec}$ $a_{\mathrm{LO}}=\sqrt{N_{\mathrm{LO}}} e^{j \theta}$ $\left|a_{S}\right| \ll\left|a_{\mathrm{LO}}\right|$
$E_{ \pm}(x, y, t)=\frac{a_{ \pm} e^{-j \omega t}}{\sqrt{A T}} \quad$ where $\quad a_{ \pm} \equiv \frac{a_{S} \pm a_{\mathrm{LO}}}{\sqrt{2}}$
$\alpha_{\theta}=\left(q N_{+}-q N_{-}\right) / K$ with $K=2 q \sqrt{N_{\mathrm{LO}}}$
$N_{ \pm} \sim \operatorname{Poisson}\left(\left|a_{ \pm}\right|^{2}\right) \quad$ S.I. random variables

$$
\begin{aligned}
M_{\alpha_{\theta}}(j v) & =\left\langle e^{j v\left(q N_{+}-q N_{-}\right) / K}\right\rangle=\left\langle e^{j v q N_{+} / K}\right\rangle\left\langle e^{-j v q N_{-} / K}\right\rangle \\
& =\exp \left[\left|a_{+}\right|^{2}\left(e^{j v q / K}-1\right)\right] \exp \left[\left|a_{-}\right|^{2}\left(e^{-j v q / K}-1\right)\right]
\end{aligned}
$$

As $N_{\mathrm{LO}} \rightarrow \infty$ we have $K \rightarrow \infty, e^{ \pm j v q / K}-1 \approx \pm j v q / K-v^{2} q^{2} / 2 K^{2}$ to second order Also, $\left|a_{ \pm}\right|^{2}=\frac{N_{\mathrm{LO}} \pm 2 \operatorname{Re}\left(a_{S} \sqrt{N_{\mathrm{LO}}} e^{-j \theta}\right)+\left|a_{S}\right|^{2}}{2} \approx \frac{N_{\mathrm{LO}} \pm 2 \operatorname{Re}\left(a_{S} \sqrt{N_{\mathrm{LO}}} e^{-j \theta}\right)}{2}$ $M_{\alpha_{\theta}}(j v)=e^{j v \operatorname{Re}\left(a_{S} e^{-j \theta}\right)-v^{2} / 8} \Rightarrow \alpha_{\theta} \sim \mathcal{N}\left(\operatorname{Re}\left(a_{S} e^{-j \theta}\right), 1 / 4\right)$

Heterodyne detection

Intermediate frequency: $\omega_{\text {IF }}$ low enough to be handled by post-photodetection electronics

$$
\begin{aligned}
\left\langle i_{ \pm}(t)\right\rangle & =q \int_{\mathcal{A}} \mathrm{d} x \mathrm{~d} y\left|E_{ \pm}(x, y, t)\right|^{2}=\frac{q}{2 T}\left|a_{S} e^{-j \omega t} \pm a_{\mathrm{LO}} e^{-j\left(\omega-\omega_{\mathrm{IF}}\right) t}\right|^{2} \\
& =\frac{q}{2 T}\left[\left|a_{S}\right|^{2}+\left|a_{\mathrm{LO}}\right|^{2} \pm 2 \operatorname{Re}\left(a_{S} a_{\mathrm{LO}}^{*} e^{-j \omega_{\mathrm{IF}} t}\right)\right],
\end{aligned}
$$

$\lim _{N_{\mathrm{LO}} \rightarrow \infty}\left\langle\left[\left\langle i_{+}(t)-i_{-}(t)\right]\right\rangle / q \sqrt{N_{\mathrm{LO}}}=\frac{2 \operatorname{Re}\left(a_{S} e^{-j \omega_{\mathrm{FF}} t}\right)}{T} \Rightarrow\left\langle\alpha_{k}\right\rangle=a_{S_{k}}, \quad\right.$ for $k=1,2$
Complete the proof, using a characteristic function derivation, to show that:

$$
p\left(\alpha_{1}, \alpha_{2}\right)=\frac{e^{-\left|\alpha-\alpha_{S}\right|}}{\pi}, \alpha=\alpha_{1}+j \alpha_{2} \text { i.e. } \begin{aligned}
& \alpha_{1} \sim \mathcal{N}\left(\operatorname{Re}\left(\alpha_{S}\right), 1 / 2\right) \text { and they are S.I. } \\
& \alpha_{2} \sim \mathcal{N}\left(\operatorname{Im}\left(\alpha_{S}\right), 1 / 2\right) \text { Advanced problem } 1
\end{aligned}
$$

Heterodyne detection is \hat{a} POVM

- Heterodyne detection is the measurement of the \hat{a}_{S} POVM (i.e., no matter what is the quantum state of the \hat{a}_{S} mode is), i.e., measurement in the basis of coherent states of the \hat{a}_{S} mode

Heisenberg vs. Schrodinger interpretation

- Schrodinger picture of QM:
- States evolve under a unitary $|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle, \hat{U}(t)=e^{i \hat{H} t}$
- Hamiltonian of the evolution, \hat{H}
- Hermitian operator for observable \hat{A} stays constant
- Heisenberg picture:
- State does not evolve, it stays $|\psi(0)\rangle \equiv|\psi\rangle$
- Observable evolves as: $\hat{A}(t)=\hat{U}(t)^{\dagger} \hat{A} \hat{U}(t)$
- We will often find it convenient to use the Heisenberg picture to evolve states in optical transformations
- We will evolve the field operators, and from the moments of the evolved field operators, deduce the output states

Field transformations in optics

- Linear (classical) transformations
- Reversible (unitary)

$$
\begin{aligned}
& E_{\mathrm{in}}(x, y, t) \rightarrow E_{\text {out }}(x, y, t)=U E_{\mathrm{in}}(x, y, t) \\
& U^{*} U=I \quad \text { Complex-valued unitary matrix }
\end{aligned}
$$

- Non-linear (classical) transformations
- May not be reversible
- Many examples from classical non-linear optics

$$
E_{\mathrm{in}}(x, y, t) \rightarrow E_{\mathrm{out}}(x, y, t)
$$

- Quantum transformations
- Unitary (reversible)

$$
\hat{E}_{\text {in }}(x, y, t) \rightarrow \hat{E}_{\text {out }}(x, y, t)
$$

- Non-unitary (non-reversible)

Cannot even talk in terms of a transformation on the "field"

Beam splitter as a quantum two-mode (unitary) transformation

Transmissivity, $\eta=\cos ^{2} \theta \in[0,1)$ $\theta \in(0, \pi / 2]$
Phase, $\phi \in(0,2 \pi]$

$$
\binom{i}{i}=v\binom{i}{b}
$$

$$
\hat{c}=\sqrt{\eta} \hat{a}+e^{i \phi} \sqrt{1-\eta} \hat{b}
$$

$$
\hat{d}=\sqrt{1-\eta} \hat{a}-e^{i \phi} \sqrt{\eta} \hat{b}
$$

$$
U(\theta, \phi)=\left(\begin{array}{cc}
\cos \theta & e^{i \phi} \sin \theta \\
\sin \theta & -e^{i \phi} \cos \theta
\end{array}\right) \quad U^{*} U=U U^{*}=I \quad \text { Unitary matrix }
$$

$$
\chi_{N}^{\rho}(\zeta)=\left\langle e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^{*} \hat{a}}\right\rangle=e^{\zeta \alpha^{*}-\zeta^{*} \alpha}, \text { for } \hat{\rho}=|\alpha\rangle\langle\alpha|
$$

Let us consider the input modes in coherent states $|\alpha\rangle$ and $|\beta\rangle$; set $\phi=0$

$$
\begin{aligned}
& \chi_{N}^{\rho_{c}}(\zeta)=\left\langle e^{\zeta \hat{c}^{\dagger}} e^{-\zeta^{*} \hat{c}}\right\rangle=\left\langle e^{\zeta\left(\sqrt{\eta} \hat{a}^{\dagger}+\sqrt{1-\eta} \hat{b}^{\dagger}\right)} e^{-\zeta^{*}(\sqrt{\eta} \hat{a}+\sqrt{1-\eta} \hat{b})}\right\rangle \\
& =\chi_{N}^{\rho_{a}}(\sqrt{\eta} \zeta) \chi_{N}^{\rho_{b}}(\sqrt{1-\eta} \zeta)=e^{\zeta\left(\sqrt{\eta} \alpha^{*}+\sqrt{1-\eta} \beta^{*}\right)-\zeta^{*}(\sqrt{\eta} \alpha+\sqrt{1-\eta} \beta)}
\end{aligned}
$$

Therefore, state of the c mode is: $\hat{\rho}_{c}=|\gamma\rangle\langle\gamma|$, with $\gamma=\sqrt{\eta} \alpha+\sqrt{1-\eta} \beta$

Squeezed vacuum injection

$$
\begin{aligned}
& \hat{c}=\sqrt{\eta} \hat{a}+\sqrt{1-\eta} \hat{b} \\
& \hat{d}=\sqrt{1-\eta} \hat{a}-\sqrt{\eta} \hat{b}
\end{aligned}
$$

- Take input mode \hat{a} in coherent state $|\alpha\rangle$ and $\langle\hat{b}\rangle=0$

$$
\begin{gathered}
\operatorname{SNR}_{a}=\frac{\left\langle\hat{a}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}=4|\alpha|^{2} \\
\operatorname{SNR}_{c}=\frac{\left\langle\hat{c}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{c}_{1}^{2}\right\rangle}=\frac{4 \eta|\alpha|^{2}}{\eta+4(1-\eta)\left\langle\Delta \hat{b}_{1}^{2}\right\rangle} \quad \mathrm{SNR}_{d}=\frac{\left\langle\hat{d}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{d}_{1}^{2}\right\rangle}=\frac{4(1-\eta)|\alpha|^{2}}{1-\eta+4 \eta\left\langle\Delta \hat{b}_{1}^{2}\right\rangle}
\end{gathered}
$$

- If \hat{b} mode is in vacuum state $|0\rangle$

$$
\begin{aligned}
& \operatorname{SNR}_{c}=4 \eta|\alpha|^{2}, \operatorname{SNR}_{d}=4(1-\eta)|\alpha|^{2} \\
& \operatorname{SNR}_{a}=\operatorname{SNR}_{c}+\operatorname{SNR}_{d}
\end{aligned}
$$

- If \hat{b} mode is in squeezed vacuum $|0 ; \mu, \nu\rangle$ with $\left\langle\Delta \hat{b}_{1}^{2}\right\rangle=\frac{1}{4} e^{-2 r}$
- "SNR conservation" is not preserved!

$$
\mathrm{SNR}_{c} \approx \operatorname{SNR}_{d} \approx \operatorname{SNR}_{a}=4|\alpha|^{2}
$$

Schroedinger picture: state evolves under a unitary operation

$$
\hat{\rho}_{\text {in }} \rightarrow \square \hat{\rho}_{\text {out }} \quad \begin{aligned}
& U=e^{i \theta \hat{a}^{\dagger} \hat{a}} \\
& \left|\psi_{\text {out }}\right\rangle=U\left|\psi_{\text {in }}\right\rangle \\
& \hat{\rho}_{\text {out }}=U \hat{\rho}_{\text {in }} U^{\dagger}
\end{aligned}
$$

Useful when calculating the output state directly
Example: input coherent state: $U|\alpha\rangle=\left|\alpha e^{i \theta}\right\rangle$
Heisenberg picture: operators evolve under a unitary operation; check to see, commutators preserved

$\hat{a}_{\mathrm{in}} \longrightarrow \quad \hat{a}_{\text {out }}$ Useful in transforming characteristic functions
Example: input coherent state:

$$
\begin{aligned}
& \chi_{N}^{\mathrm{in}}(\zeta)=\left\langle e^{\zeta \hat{a}_{\mathrm{in}}^{\dagger}} e^{-\zeta^{*} \hat{a}_{\mathrm{in}}}\right\rangle=e^{\zeta \alpha^{*}-\zeta^{*} \alpha} \\
& \chi_{N}^{\text {out }}(\zeta)=\left\langle e^{\zeta \hat{a}_{\mathrm{out}}^{\dagger}} e^{-\zeta^{*} \hat{a}_{\mathrm{out}}}\right\rangle=e^{\zeta e^{-i \theta} \alpha^{*}-\zeta^{*} e^{i \theta} \alpha}
\end{aligned}
$$

Two-mode Beamsplitter

THE UNIVERSITY
OF ARIZONA

$$
U=e^{-\left[\arctan \sqrt{\eta^{-1}-1}\right]\left(\hat{a} \hat{b}^{\dagger}-\hat{a}^{\dagger} \hat{b}\right)}
$$

Schroedinger

Heisenberg

$$
\begin{aligned}
& \begin{array}{l}
\hat{a}_{\mathrm{in}} \longrightarrow \longrightarrow \hat{b}_{\text {out }} \\
\hat{b}_{\mathrm{in}} \longrightarrow
\end{array} \\
& \hat{a}_{\text {out }}=U^{\dagger} \hat{a}_{\text {in }} U=\sqrt{\eta} \hat{a}_{\text {in }}+\sqrt{1-\eta} \hat{b}_{\text {in }} \\
& \hat{b}_{\text {out }}=U^{\dagger} \hat{b}_{\text {in }} U=-\sqrt{1-\eta} \hat{a}_{\text {in }}+\sqrt{\eta} \hat{b}_{\text {in }} \\
& \chi_{A}^{a_{\text {out }}}(\zeta)=\left\langle e^{-\zeta^{*} \hat{a}_{\text {out }}} e^{\zeta \hat{a}_{\text {out }}^{\dagger}}\right\rangle=\chi_{A}^{a_{\text {in }}}(\sqrt{\eta} \zeta) \chi_{A}^{b_{\text {in }}}(\sqrt{1-\eta} \zeta)
\end{aligned}
$$

Assume, $|\phi| \ll 1$
$\hat{\phi}:=-\operatorname{Im}\left(\hat{b}_{\text {out }}\right) / \sqrt{N}$

Advanced Problem 2(a)
Show that:
$\langle\hat{\phi}\rangle=\phi$
$\left\langle\Delta \hat{\phi}^{2}\right\rangle=\frac{1}{4 N}$

$|\alpha\rangle,|\alpha|^{2}=N$
Homodyne detector

Phase sensing with squeezed states

Assume, $|\phi| \ll 1$

Advanced Problem 2(b)

Show that by choosing the squeezing parameters optimally, one gets:
$\langle\hat{\phi}\rangle=\phi$
$\left\langle\Delta \hat{\phi}^{2}\right\rangle=\frac{1}{2 N(N+2)}$

$$
\hat{\phi}:=-\operatorname{Im}\left(\hat{b}_{\text {out }}\right) / \sqrt{N-2 \nu^{2}}
$$

For comparison with coherent state scheme, we will take the sum photon number over the two inputs modes to be N

Single-mode Squeezing (preview)

Schroedinger

$$
\begin{aligned}
U & =\exp \left[\frac{r}{2}\left(e^{-i \theta} \hat{a}^{2}-e^{i \theta} \hat{a}^{\dagger 2}\right)\right] \\
& \equiv \hat{S}(z), z=r e^{i \theta}
\end{aligned}
$$

$|\alpha ; r, \theta\rangle=\hat{D}(\alpha) \hat{S}(z)|0\rangle=\hat{S}(z) \hat{D}(\beta)|0\rangle$
$\beta=\mu \alpha+\nu \alpha^{*}$
$\mu=\cosh r$

$$
\theta=0, \alpha \in \mathbb{R} \quad \nu=e^{i \theta} \sinh r .
$$

$$
\beta=\alpha e^{r}
$$

Mean photon number, $N=|\alpha|^{2}+\sinh ^{2}(r)$
Heisenberg

$$
\begin{gathered}
\hat{a}_{\mathrm{in}} \longrightarrow \\
\hat{a}_{\mathrm{out}}=\hat{S}(z) \hat{a}_{\mathrm{in}} \hat{S}(z)^{\dagger}=\mu \hat{a}_{\mathrm{in}}+\nu \hat{a}_{\mathrm{in}}^{\dagger}
\end{gathered}
$$

Single-mode Displacement (preview)

Schroedinger

$$
\begin{aligned}
& U=e^{\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}} \equiv \hat{D}(\alpha) \\
& \left|\psi_{\text {out }}\right\rangle=U\left|\psi_{\text {in }}\right\rangle \\
& \hat{\rho}_{\text {out }}=U \hat{\rho}_{\text {in }} U^{\dagger}
\end{aligned}
$$

Example: input coherent state: $U|\beta\rangle=|\beta+\alpha\rangle$
Heisenberg

$$
\hat{a}_{\text {in }} \rightarrow \square \hat{a}_{\text {out }} \quad \begin{aligned}
& \hat{a}_{\text {out }}=U^{\dagger} \hat{a}_{\text {in }} U=\hat{a}_{\text {in }}+\alpha \\
& \hat{a}_{\text {out }}^{\dagger}=U^{\dagger} \hat{a}_{\text {in }}^{\dagger} U=\hat{a}_{\text {in }}^{\dagger}+\alpha^{*}
\end{aligned}
$$

$$
\chi_{N}^{\text {in }}(\zeta)=\left\langle e^{\left\langle\hat{a}_{\text {in }}^{\dagger}\right.} e^{-\zeta^{*} \hat{a}_{\text {in }}}\right\rangle=e^{\zeta \beta^{*}-\zeta^{*} \beta}
$$

$$
\chi_{N}^{\text {out }}(\zeta)=\left\langle e^{\zeta \hat{a}_{\text {out }}^{\dagger}} e^{-\zeta^{*} \hat{a}_{\text {out }}}\right\rangle=\left\langle e^{\zeta\left(\hat{a}_{\text {in }}^{\dagger}+\alpha^{*}\right)} e^{-\zeta^{*}\left(\hat{a}_{\text {in }}+\alpha\right)}\right\rangle=e^{\zeta(\beta+\alpha)^{*}-\zeta^{*}(\beta+\alpha)}
$$

Gaussian transformations

- Phase ($1 \rightarrow 1$)
- $U_{\text {phase }}(\theta), \theta \in[0,2 \pi)$
- Beam splitter (2 $\rightarrow 2$)
- $U_{\text {beamsplitter }}(\eta), \eta \in[0,1)$
- Squeezing (1 \rightarrow 1)

$$
\left.-U_{\text {squeezing }}(r)=\hat{S}(z), z=r \in[0, \infty)\right]
$$

- Displacement ($1 \rightarrow 1$)
- $U_{\text {disp }}(\alpha)=\hat{D}(\alpha), \alpha \in \mathbb{C}$

General
Gaussian
transformation

Gaussian transformations not universal. Need any one non-Gaussian unitary

- Phase (1 \rightarrow 1)
- $U_{\text {phase }}(\theta), \theta \in[0,2 \pi)$
 passive linear optical transformation General zeromean Gaussian unitary (an nmode bogoliubov transformation)
- Squeezing ($1 \rightarrow 1$)
$\left.-U_{\text {squeezing }}(r)=\hat{S}(z), z=r \in[0, \infty)\right]$
General
- Displacement ($1 \rightarrow 1$)
- $U_{\text {disp }}(\alpha)=\hat{D}(\alpha), \alpha \in \mathbb{C}$
- Self-Kerr (1 \rightarrow 1)
- $U(\kappa)=e^{i \kappa\left(\hat{a}^{\dagger} \hat{a}\right)^{2}}$

General unitary transformation on n modes: universal quantum processing

Gaussian transformations not universal. Need any one non-Gaussian unitary

- Phase ($1 \rightarrow 1$)

$$
\text { - } U_{\text {phase }}(\theta), \theta \in[0,2 \pi)
$$

 passive linear optical transformation General zeromean Gaussian unitary (bogoliubov transformation)

- Squeezing ($1 \rightarrow 1$)
- $U_{\text {squeezing }}(r)=\hat{S}(z), z=r \in[0, \infty)$
- Displacement ($1 \rightarrow 1$)
- $U_{\text {isp }}(\alpha)=\hat{D}(\alpha), \alpha \in \mathbb{C}$
- Cubic phase ($1 \rightarrow 1$)

$$
\begin{aligned}
& \text { Cubic phase }(1 \rightarrow 1) \\
& -U(\gamma)=e^{i \gamma \hat{q}^{3}}, \hat{q}=\frac{\hat{a}+\hat{a}^{\dagger}}{\sqrt{2}}
\end{aligned}
$$

General Gaussian transformation

General unitary transformation on n modes: universal quantum processing

Can you name a 1-mode quantum state in each quadrant?

Classical

Gaussian
Classical
Non-Gaussian

Non-Classical
Non-Gaussian

- Christos Gagatsos will teach a few lectures:
- Unitary transformation of bosonic states
- Gaussian unitary on n modes: Phase, Beamsplitter, Displacement, Squeezing
- Non-Gaussian state engineering using PNR detection
- Gaussian Boson Sampling
- Gaussian measurements on n modes

