

Photonic Quantum Information Processing OPTI 647: Lecture 9

Saikat Guha September 24, 2019

Associate Professor College of Optical Sciences Meinel 523

Announcements

- Topics to be covered today
 - Phase space picture of squeezed states
 - Heterodyne detection
 - Quantum description of beamsplitter and phase
 - Quantum enhanced phase estimation
 - Outlook of the next few lectures

Recap of Lecture 8: Characteristic functions

 $\chi_W(\zeta^*,\zeta) = \operatorname{tr}(\hat{\rho} \, e^{-\zeta^* \hat{a} + \zeta \hat{a}^\dagger})$ $\chi_A(\zeta^*,\zeta) = \operatorname{tr}(\hat{\rho} \, e^{-\zeta^* \hat{a}} e^{\zeta \hat{a}^\dagger})$ $\chi_W(\zeta) = e^{|\zeta|^2/2} \chi_A(\zeta) = e^{-|\zeta|^2/2} \chi_N(\zeta)$ $\chi_W(\zeta) = \operatorname{tr}(\hat{\rho} \, e^{\zeta \hat{a}^\dagger} e^{-\zeta^* \hat{a}})$

Always a proper probability density function; pdf for ideal heterodyne detection OR dual homodyne detection

$$\chi_A(\zeta) = \int Q(\alpha) e^{\zeta \alpha^* - \zeta^* \alpha} d^2 \alpha$$

$$\Rightarrow \quad Q(\alpha) = \frac{1}{\pi^2} \int \chi_A(\zeta) e^{-\zeta \alpha^* + \zeta^* \alpha} d^2 \alpha$$

May not be a proper probability density function. Negativity used to show a state is non-classical. Not all non-classical states have a negative Wigner function

$$\chi_W(\zeta) = \int W(\alpha) e^{\zeta \alpha^* - \zeta^* \alpha} d^2 \alpha$$

+ $W(\alpha) = \frac{1}{\pi^2} \int \chi_W(\zeta) e^{-\zeta \alpha^* + \zeta^* \alpha} d^2 \zeta$

Always a proper probability density function *when it exists.* The states for which a proper P function exists are called classical states

$$\chi_N(\zeta) = \int P(\alpha) e^{\zeta \alpha^* - \zeta^* \alpha} d^2 \alpha$$

$$\Rightarrow P(\alpha) = \frac{1}{\pi^2} \int \chi_N(\zeta) e^{-\zeta \alpha^* + \zeta^* \alpha} d^2 \zeta$$

 $\langle n|\hat{\rho}|m\rangle = \frac{1}{\pi} \int \chi_A(\zeta) \langle n|e^{-\zeta\hat{a}^{\dagger}} e^{\zeta^*\hat{a}}|m\rangle d^2\zeta = \frac{1}{\pi} \int \chi_A(\zeta) \sqrt{\frac{n!}{m!}} (-\zeta)^{m-n} L_n^{(m-n)}(|\zeta|^2) d^2\zeta$

Recap of Lecture 8

• Normally ordered form, $F(\hat{a}^{\dagger}, \hat{a}) \equiv \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f_{nm} \hat{a}^{\dagger n} \hat{a}^{m}$ - $\langle \alpha | F(a^{\dagger}, a) | \alpha \rangle = F^{(n)}(\alpha^{*}, \alpha)$

$$- \langle \alpha | F(a^{\dagger}, a) | \beta \rangle = F^{(n)}(\alpha^{*}, \beta) \langle \alpha | \beta \rangle$$

- Anti-normally ordered form, $G(\hat{a}, \hat{a}^{\dagger}) \equiv \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} g_{nm} \hat{a}^n \hat{a}^{\dagger m}$
- Characteristic function for coherent state, $\hat{\rho} = |\alpha\rangle\langle\alpha|$ - $\chi_N(\zeta^*, \zeta) = \operatorname{tr}(\hat{\rho} e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^* \hat{a}}) = e^{\zeta \alpha^* - \zeta^* \alpha}$ is Gaussian
- Circularly symmetric \equiv number diagonal $\hat{\rho} = \sum p_n |n\rangle \langle n|$
- If a state is classical (has a proper P function),
 - Number detection statistics; $\langle \Delta \hat{N}^2 \rangle \geq \langle \hat{N} \rangle$
 - Quadrature (homodyne) detection statistics; $\langle \Delta \hat{a}_1^2 \rangle \geq 1/4$

Recap of Lecture 8

- Measurement of the \hat{a} POVM, $\hat{\Pi}(\alpha) \equiv \frac{|\alpha\rangle\langle\alpha|}{\pi}$, for $\alpha \in C$
 - Distribution of output, $Q(\alpha) = \langle \alpha | \hat{\rho} | \alpha \rangle / \pi \equiv \hat{\rho}^{(n)}(\alpha^*, \alpha) / \pi$
 - (classical) characteristic function of this distribution

$$M_{\alpha_1,\alpha_2}(jv_1, jv_2) = \int e^{jv_1\alpha_1 + jv_2\alpha_2} Q(\alpha) d^2 \alpha = \chi_A(\zeta^*, \zeta) \big|_{\zeta = jv/2}$$

- \hat{a} POVM on squeezed state $|\beta; \mu, \nu\rangle$, assume $\mu, \nu \in \mathbb{R}$ - $\chi_A(\zeta^*, \zeta) = e^{(\zeta\mu + \zeta^*\nu)\beta^* - (\zeta^*\mu + \zeta\nu)\beta - |\zeta|^2\mu^2 - \operatorname{Re}(\zeta^2)\mu\nu}$: Gaussian
 - $M_{\alpha_1,\alpha_2}(jv_1, jv_2) = \chi_A(\zeta^*, \zeta)|_{\zeta = jv/2} = e^{jv_1(\mu \nu)\beta_1 v_1^2 \sigma_1^2/2} e^{jv_2(\mu + \nu)\beta_2 v_2^2 \sigma_2^2/2}$
 - Recall, for $p_X(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$, $M_X(jv) = e^{jv\mu v^2\sigma^2/2}$
 - Measurement outcomes (α_1, α_2) : S.I. Gaussian with:

$$\langle \alpha_1 \rangle = (\mu - \nu)\beta_1 \qquad \langle \alpha_2 \rangle = (\mu + \nu)\beta_2 \langle \Delta \alpha_1^2 \rangle \equiv \sigma_1^2 = \frac{(\mu - \nu)^2 + 1}{4} \qquad \langle \Delta \alpha_2^2 \rangle \equiv \sigma_2^2 = \frac{(\mu + \nu)^2 + 1}{4}$$

 Gaussian state: characteristic fns. are Gaussian. Mean fields and quadrature variances completely define the state Statistics of measurement of \hat{a} POVM on a squeezed state, $|\beta; \mu, \nu\rangle, \mu, \nu \in \mathbb{C}$

Measurement described by POVM

- Mean and variances for measuring $\hat{a}_1 \, {\sf OR} \, \, \hat{a}_2$
 - Both are projective measurements (but cannot be done simultaneously)

Means $\langle \hat{a}_1 \rangle$ and $\langle \hat{a}_2 \rangle$ are just real and imaginary parts of the \hat{a} POVM measurement's mean

State	$\langle \Delta \hat{a}_1^2 \rangle$	$\langle \Delta \hat{a}_2^2 \rangle$
$ n\rangle$	(2n+1)/4	(2n+1)/4
$ \beta\rangle$	1/4	1/4
$ eta;\mu, u angle$	$ (\mu - \nu ^2) / 4$	$\left(\left \mu + \nu \right ^2 \right) / 4$

Yuen-Shapiro vs. Caves notation

- Squeezed state, $|\beta; \mu, \nu\rangle$, $\mu, \nu \in \mathbb{C}$, $|\mu|^2 |\nu|^2 = 1$ $-\langle \hat{a} \rangle = \mu^* \beta - \nu \beta^*$, $\langle \hat{a}_1 \rangle = \operatorname{Re}(\langle \hat{a}_1 \rangle)$, $\langle \hat{a}_2 \rangle = \operatorname{Re}(\langle \hat{a}_2 \rangle)$ $-\langle \hat{N} \rangle \equiv \langle \hat{a}^{\dagger} \hat{a} \rangle = |\langle \hat{a} \rangle|^2 + |\nu|^2$
 - $-\langle \Delta \hat{a}_1^2 \rangle = |\mu \nu|^2 / 4, \ \langle \Delta \hat{a}_2^2 \rangle = |\mu + \nu|^2 / 4$
 - Useful notation to think of squeezing as phase-sensitive amplification with "gain", $G=|\mu|^2>1, G-1=|\nu|^2$
- Caves notation, $|\alpha; r, \theta \rangle \equiv |\alpha; \xi \rangle, \ \xi = r e^{j\theta}$
 - Define, $\mu^*\beta-\nu\beta^*\equiv\alpha$. This implies: $\beta=\mu\alpha+\nu\alpha^*$
 - Define, $\mu = \cosh(r), \nu = e^{j\theta}\sinh(r)$, with $\xi = re^{j\theta}$ being the (complex-valued) "squeezing parameter"

$$-\langle \hat{a} \rangle = \alpha \equiv \alpha_1 + j\alpha_2, \ \langle \hat{a}_1 \rangle = \alpha_1, \langle \hat{a}_2 \rangle = \alpha_2 -\langle \hat{N} \rangle \equiv \langle \hat{a}^{\dagger} \hat{a} \rangle = |\alpha|^2 + \sinh^2(r)$$

- Useful notation to picture "squeezing a coherent state"

• Quadrature variances: $\langle \Delta \hat{a}_1^2 \rangle = |\mu - \nu|^2 / 4, \ \langle \Delta \hat{a}_2^2 \rangle = |\mu + \nu|^2 / 4$

$$\begin{aligned} |\mu \pm \nu|^2 &= |\mu|^2 + |\nu|^2 \pm 2 \operatorname{Re}(\mu^* \nu) \\ &= \sinh^2(r) + \cosh^2(r) \pm 2 \operatorname{Re}(\sinh(r) \cosh(r) e^{j\theta}) \\ \frac{1}{4} |\mu \pm \nu|^2 &= \frac{1}{4} \left[\cosh(2r) \pm \cos(\theta) \sinh(2r) \right] \end{aligned}$$

- Recall condition for MUP: $\mu^* \nu \in \mathbb{R} \Rightarrow \sin(\theta) = 0 \Rightarrow \cos(\theta) = \pm 1$ - If $\cos(\theta) = 1$, $\langle \Delta \hat{a}_1^2 \rangle = \frac{1}{4} e^{-2r}$, $\langle \Delta \hat{a}_2^2 \rangle = \frac{1}{4} e^{2r}$ - If $\cos(\theta) = -1$, $\langle \Delta \hat{a}_1^2 \rangle = \frac{1}{4} e^{2r}$, $\langle \Delta \hat{a}_2^2 \rangle = \frac{1}{4} e^{-2r}$
- Squeezing often measured in dB: $10 \log_{10} (e^{2r})$
 - Example: 3 dB squeezing: $e^{-2r}\approx 0.5$, r=0.3454

Squeezed state in phase space

• Squeezed state, $|\beta;\mu,\nu\rangle\equiv|\alpha;\mu,\nu\rangle$

– Coherent state is a special case, $\mu = 1, \nu = 0; r = 0, \theta = ?$

– Wigner function $W(\alpha_1, \alpha_2)$ is a 2D Gaussian as shown:

Let us redo everything we did, but with $\mu = e^{j\phi} \cosh(r), \ \nu = e^{j(\phi+\theta)} \sinh(r)$ (we had ignored one degree of freedom by setting $\phi = 0$ when going from Yuen-Shapiro to Caves notation)

MUP condition is the same as before: $\mu^*\nu\in\mathbb{R}\Rightarrow\sin(\theta)=0\Rightarrow\cos(\theta)=\pm1$ Effect of this phase: $\hat{b}\rightarrow\hat{b}e^{j\phi}$, is to apply a rotation in phase space

Q function of squeezed state

- Squeezed state, $|\beta;\mu,\nu\rangle\equiv|\alpha;\mu,\nu\rangle$
 - Consider $\mu = \cosh(r), \nu = \sinh(r), \theta = 0$
 - We already know what to expect, for the distribution of the \hat{a} POVM measurement we derived

For
$$\mu, \nu \in \mathbb{R}$$
, we showed from first principles,

$$\chi_A(\zeta^*, \zeta) = e^{(\zeta\mu + \zeta^*\nu)\beta^* - (\zeta^*\mu + \zeta\nu)\beta - |\zeta|^2\mu^2 - \operatorname{Re}(\zeta^2)\mu\nu}$$

$$= \exp\left[2j(\zeta_2\alpha_1 - \zeta_1\alpha_2) - \zeta_1^2\left(\frac{1 + e^{2r}}{2}\right) - \zeta_2^2\left(\frac{1 + e^{-2r}}{2}\right)\right]$$

$$= \exp\left[2j(\zeta_2\alpha_1 - \zeta_1\alpha_2) - \zeta_1^2\left(\frac{1 + e^{2r}}{2}\right) - \zeta_2^2\left(\frac{1 + e^{-2r}}{2}\right)\right]$$
If we take the 2D fourier transform to obtain the Q function, we get a 2D Gaussian distribution with variances,

$$\sigma_1^2 = \frac{1 + e^{-2r}}{4}, \sigma_2^2 = \frac{1 + e^{2r}}{4}$$

Covariance matrix

- A Gaussian state can be completely determined from its first and second moments
 - First moment: $\langle \hat{a} \rangle = \langle \hat{a}_1 \rangle + j \langle \hat{a}_2 \rangle \in \mathbb{C}$ is the mean field
 - Note that: $\langle \hat{a} \rangle = \langle \alpha \rangle_P = \langle \alpha \rangle_Q = \langle \alpha \rangle_W$
 - Second moments form a covariance matrix:

$$V = \begin{pmatrix} \langle \hat{a}_{1}^{2} \rangle & \langle \{\hat{a}_{1}, \, \hat{a}_{2}\} \rangle / 2 \\ \langle \{\hat{a}_{1}, \, \hat{a}_{2}\} \rangle / 2 & \langle \hat{a}_{2}^{2} \rangle \end{pmatrix}$$
Poisson bracket
$$\begin{cases} \hat{a}, \hat{B} \} = \hat{A}\hat{B} + \hat{B}\hat{A} \\ \hat{A}, \hat{B} \} = \hat{A}\hat{B} + \hat{B}\hat{A} \end{cases}$$
• Note that:
$$V = \begin{pmatrix} \langle \alpha_{1}^{2} \rangle_{W} & \langle \alpha_{1}\alpha_{2} \rangle_{W} \\ \langle \alpha_{1}\alpha_{2} \rangle_{W} & \langle \alpha_{2}^{2} \rangle_{W} \end{pmatrix}$$

$$= \begin{pmatrix} \langle \alpha_{1}^{2} \rangle_{Q} & \langle \alpha_{1}\alpha_{2} \rangle_{Q} \\ \langle \alpha_{1}\alpha_{2} \rangle_{Q} & \langle \alpha_{2}^{2} \rangle_{Q} \end{pmatrix} - I/4$$

$$= \begin{pmatrix} \langle \alpha_{1}^{2} \rangle_{P} & \langle \alpha_{1}\alpha_{2} \rangle_{P} \\ \langle \alpha_{1}\alpha_{2} \rangle_{P} & \langle \alpha_{2}^{2} \rangle_{P} \end{pmatrix} + I/4$$

- For the squeezed state $|\beta;\mu,\nu
 angle,\,\mu,\nu\in\mathbb{C}$,
 - Mean field (first moment), $\langle \hat{a}
 angle = \mu^* eta
 u eta^*$
 - Prove that the covariance matrix is given by:

$$V = \frac{1}{4} \begin{pmatrix} |\mu - \nu|^2 & -2\mathrm{Im}(\mu^*\nu) \\ -2\mathrm{Im}(\mu^*\nu) & |\mu + \nu|^2 \end{pmatrix}$$

Diagonal terms are zero if the squeezed state is MUP

Problem 43

Revisiting Homodyne Detection: semiclassical theory, coherent state input

Also,
$$|a_{\pm}|^2 = \frac{N_{\rm LO} \pm 2\operatorname{Re}(a_S\sqrt{N_{\rm LO}}\,e^{-j\theta}) + |a_S|^2}{2} \approx \frac{N_{\rm LO} \pm 2\operatorname{Re}(a_S\sqrt{N_{\rm LO}}\,e^{-j\theta})}{2}$$

$$M_{\alpha_{\theta}}(jv) = e^{jv\operatorname{Re}(a_Se^{-j\theta}) - v^2/8} \Rightarrow \alpha_{\theta} \sim \mathcal{N}\left(\operatorname{Re}(a_Se^{-j\theta}), 1/4\right)$$

Intermediate frequency: $\omega_{\rm IF}$ low enough to be handled by post-photodetection electronics

$$\begin{aligned} \langle i_{\pm}(t) \rangle &= q \int_{\mathcal{A}} \mathrm{d}x \,\mathrm{d}y \,|E_{\pm}(x,y,t)|^2 = \frac{q}{2T} |a_S e^{-j\omega t} \pm a_{\mathrm{LO}} e^{-j(\omega-\omega_{\mathrm{IF}})t}|^2 \\ &= \frac{q}{2T} [|a_S|^2 + |a_{\mathrm{LO}}|^2 \pm 2\mathrm{Re}(a_S a_{\mathrm{LO}}^* e^{-j\omega_{\mathrm{IF}}t})], \\ \lim_{N_{\mathrm{LO}} \to \infty} \langle [\langle i_+(t) - i_-(t)] \rangle / q \sqrt{N_{\mathrm{LO}}} = \frac{2\mathrm{Re}(a_S e^{-j\omega_{\mathrm{IF}}t})}{T} \Rightarrow \langle \alpha_k \rangle = a_{S_k}, \quad \text{for } k = 1,2 \end{aligned}$$

Complete the proof, using a characteristic function derivation, to show that:

Complete the proof, setting $p(\alpha_1, \alpha_2) = \frac{e^{-|\alpha - \alpha_S|}}{\pi}, \ \alpha = \alpha_1 + j\alpha_2 \quad \text{i.e.} \quad \begin{array}{l} \alpha_1 \sim \mathcal{N}(\operatorname{Re}(\alpha_S), 1/2) \\ \alpha_2 \sim \mathcal{N}(\operatorname{Im}(\alpha_S), 1/2) \end{array} \text{ and they are S.I.} \\ \alpha_2 \sim \mathcal{N}(\operatorname{Im}(\alpha_S), 1/2) \end{array}$

Heterodyne detection is $\hat{a}~{\rm POVM}$

 Heterodyne detection is the measurement of the â_S POVM (i.e., no matter what is the quantum state of the â_S mode is), i.e., measurement in the basis of coherent states of the â_S mode

- Schrodinger picture of QM:
 - States evolve under a unitary $|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$, $\hat{U}(t) = e^{i\hat{H}t}$
 - Hamiltonian of the evolution, \hat{H}
 - Hermitian operator for observable \hat{A} stays constant
- Heisenberg picture:
 - State does not evolve, it stays $|\psi(0)
 angle\equiv|\psi
 angle$
 - Observable evolves as: $\hat{A}(t) = \hat{U}(t)^{\dagger} \hat{A} \hat{U}(t)$
- We will often find it convenient to use the Heisenberg picture to evolve states in optical transformations
 - We will evolve the field operators, and from the moments of the evolved field operators, deduce the output states

Field transformations in optics

THE UNIVERSITY OF ARIZONA

- Linear (classical) transformations
 - Reversible (unitary)

$$E_{\rm in}(x, y, t) \to E_{\rm out}(x, y, t) = UE_{\rm in}(x, y, t)$$

 $U^*U = I$ Complex-valued unitary matrix

- Non-linear (classical) transformations
 - May not be reversible
 - Many examples from classical non-linear optics

$$E_{\rm in}(x,y,t) \to E_{\rm out}(x,y,t)$$

- Quantum transformations
 - Unitary (reversible)
 - Non-unitary (non-reversible)

$$\hat{E}_{\rm in}(x,y,t) \to \hat{E}_{\rm out}(x,y,t)$$

Cannot even talk in terms of a transformation on the "field"

Beam splitter as a quantum two-mode (unitary) transformation

Annihilation operators corresponding to two orthogonal modes

$$\hat{a} \xrightarrow{\hat{c}} \hat{c}$$
$$\hat{b} \xrightarrow{\eta} \hat{d}$$

Transmissivity, $\eta = \cos^2 \theta \in [0, 1)$ $\theta \in (0, \pi/2]$ Phase, $\phi \in (0, 2\pi]$

/

$$\hat{s}^{2}\theta \in [0,1)$$

$$\hat{c} = \sqrt{\eta}\hat{a} + e^{i\phi}\sqrt{1-\eta}\hat{b}$$

$$\hat{d} = \sqrt{1-\eta}\hat{a} - e^{i\phi}\sqrt{\eta}\hat{b}$$

$$U(\theta,\phi) = \begin{pmatrix} \cos\theta & e^{i\phi}\sin\theta \\ \sin\theta & -e^{i\phi}\cos\theta \end{pmatrix} \quad U^*U = UU^* = I \quad \text{Unitary matrix}$$

$$\chi_N^{\rho}(\zeta) = \langle e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^* \hat{a}} \rangle = e^{\zeta \alpha^* - \zeta^* \alpha}, \text{ for } \hat{\rho} = |\alpha\rangle \langle \alpha|$$

Let us consider the input modes in coherent states $|\alpha\rangle$ and $|\beta\rangle$; set $\phi = 0$ $\chi_N^{\rho_c}(\zeta) = \langle e^{\zeta \hat{c}^{\dagger}} e^{-\zeta^* \hat{c}} \rangle = \langle e^{\zeta(\sqrt{\eta}\hat{a}^{\dagger} + \sqrt{1-\eta}\hat{b}^{\dagger})} e^{-\zeta^*(\sqrt{\eta}\hat{a} + \sqrt{1-\eta}\hat{b})} \rangle$ $= \chi_N^{\rho_a}(\sqrt{\eta}\zeta) \, \chi_N^{\rho_b}(\sqrt{1-\eta}\zeta) = e^{\zeta(\sqrt{\eta}\alpha^* + \sqrt{1-\eta}\beta^*) - \zeta^*(\sqrt{\eta}\alpha + \sqrt{1-\eta}\beta)}$

Therefore, state of the c mode is: $\hat{\rho}_c = |\gamma\rangle\langle\gamma|$, with $\gamma = \sqrt{\eta}\alpha + \sqrt{1-\eta}\beta$

 $\left(\begin{array}{c}c\\\hat{d}\end{array}\right) = U\left(\begin{array}{c}a\\\hat{b}\end{array}\right)$

Squeezed vacuum injection

• Take input mode \hat{a} in coherent state $|\alpha\rangle$ and $\langle\hat{b}\rangle = 0$

$$\operatorname{SNR}_{a} = \frac{\langle \hat{a}_{1} \rangle^{2}}{\langle \Delta \hat{a}_{1}^{2} \rangle} = 4|\alpha|^{2}$$

 $\operatorname{SNR}_{c} = \frac{\langle \hat{c}_{1} \rangle^{2}}{\langle \Delta \hat{c}_{1}^{2} \rangle} = \frac{4\eta |\alpha|^{2}}{\eta + 4(1-\eta) \langle \Delta \hat{b}_{1}^{2} \rangle} \qquad \qquad \operatorname{SNR}_{d} = \frac{\langle \hat{d}_{1} \rangle^{2}}{\langle \Delta \hat{d}_{1}^{2} \rangle} = \frac{4(1-\eta) |\alpha|^{2}}{1-\eta + 4\eta \langle \Delta \hat{b}_{1}^{2} \rangle}$

- If \hat{b} mode is in vacuum state $|0\rangle$ $SNR_c = 4\eta |\alpha|^2$, $SNR_d = 4(1-\eta)|\alpha|^2$ $SNR_a = SNR_c + SNR_d$

- If \hat{b} mode is in squeezed vacuum $|0;\mu,\nu\rangle$ with $\langle\Delta\hat{b}_1^2\rangle = \frac{1}{4}e^{-2r}$

• "SNR conservation" is not preserved! $SNR_c \approx SNR_d \approx SNR_a = 4|\alpha|^2$

Schroedinger picture: state evolves under a unitary operation

$$\hat{\rho}_{\rm in} \rightarrow \hat{\rho}_{\rm out} \qquad \begin{array}{l} U = e^{i\theta\hat{a}^{\dagger}\hat{a}} \\ |\psi_{\rm out}\rangle = U |\psi_{\rm in}\rangle \\ \hat{\rho}_{\rm out} = U\hat{\rho}_{\rm in}U^{\dagger} \end{array}$$

Useful when calculating the output state directly

Example: input coherent state: $U|\alpha\rangle = |\alpha e^{i\theta}\rangle$

Heisenberg picture: operators evolve under a unitary operation; check to see, commutators preserved

$$\hat{a}_{\mathrm{in}} \longrightarrow \hat{a}_{\mathrm{out}} = \hat{a}_{\mathrm{in}} e^{i\theta} = U^{\dagger} \hat{a}_{\mathrm{in}} U$$

$$\Rightarrow \hat{a}_{\mathrm{out}} \quad \text{Useful in transforming characteristic functions}$$
Example: input coherent state:
$$\chi_N^{\mathrm{in}}(\zeta) = \langle e^{\zeta \hat{a}_{\mathrm{in}}^{\dagger}} e^{-\zeta^* \hat{a}_{\mathrm{in}}} \rangle = e^{\zeta \alpha^* - \zeta^* \alpha}$$

$$\chi_N^{\mathrm{out}}(\zeta) = \langle e^{\zeta \hat{a}_{\mathrm{out}}^{\dagger}} e^{-\zeta^* \hat{a}_{\mathrm{out}}} \rangle = e^{\zeta e^{-i\theta} \alpha^* - \zeta^* e^{i\theta} \alpha}$$

Two-mode Beamsplitter

$$U = e^{-\left[\arctan\sqrt{\eta^{-1}-1}\right](\hat{a}\hat{b}^{\dagger}-\hat{a}^{\dagger}\hat{b})}$$

 $\hat{
ho}_{
m out}$ $\hat{
ho}_{
m in}$ Schroedinger \hat{a}_{in} . \hat{a}_{out} Heisenberg \hat{b}_{in} $\hat{b}_{\rm out}$ $\hat{a}_{\rm out} = U^{\dagger} \hat{a}_{\rm in} U = \sqrt{\eta} \, \hat{a}_{\rm in} + \sqrt{1 - \eta} \, \hat{b}_{\rm in}$ $\hat{b}_{\text{out}} = U^{\dagger} \hat{b}_{\text{in}} U = -\sqrt{1-\eta} \,\hat{a}_{\text{in}} + \sqrt{\eta} \,\hat{b}_{\text{in}}$

$$\chi_A^{a_{\text{out}}}(\zeta) = \langle e^{-\zeta^* \hat{a}_{\text{out}}} e^{\zeta \hat{a}_{\text{out}}^\dagger} \rangle = \chi_A^{a_{\text{in}}}(\sqrt{\eta}\zeta) \,\chi_A^{b_{\text{in}}}(\sqrt{1-\eta}\zeta)$$

Phase sensing (phase conjugate MZI)Assume, $|\phi| \ll 1$ $\hat{\phi} := -\mathrm{Im}(\hat{b}_{\mathrm{out}})/\sqrt{N}$ Advanced Problem 2(a)Show that: $(\hat{\psi}) = 1$

Phase sensing with squeezed states

Single-mode Squeezing (preview)

Schroedinger

$$\hat{\rho}_{\rm in} \longrightarrow \hat{\rho}_{\rm out}$$

$$U = e^{\alpha \hat{a}^{\dagger} - \alpha^{*} \hat{a}} \equiv \hat{D}(\alpha)$$
$$|\psi_{\text{out}}\rangle = U|\psi_{\text{in}}\rangle$$
$$\hat{\rho}_{\text{out}} = U\hat{\rho}_{\text{in}}U^{\dagger}$$

Example: input coherent state: $U|\beta
angle=|eta+lpha
angle$

Heisenberg

$$\hat{a}_{\rm in} \rightarrow \hat{a}_{\rm out} \qquad \hat{a}_{\rm out} = U^{\dagger} \hat{a}_{\rm in} U = \hat{a}_{\rm in} + \alpha$$
$$\hat{a}_{\rm out} = U^{\dagger} \hat{a}_{\rm in}^{\dagger} U = \hat{a}_{\rm in}^{\dagger} + \alpha^{*}$$

 $\chi_N^{\rm in}(\zeta) = \langle e^{\zeta \hat{a}_{\rm in}^{\dagger}} e^{-\zeta^* \hat{a}_{\rm in}} \rangle = e^{\zeta \beta^* - \zeta^* \beta}$ $\chi_N^{\rm out}(\zeta) = \langle e^{\zeta \hat{a}_{\rm out}^{\dagger}} e^{-\zeta^* \hat{a}_{\rm out}} \rangle = \langle e^{\zeta (\hat{a}_{\rm in}^{\dagger} + \alpha^*)} e^{-\zeta^* (\hat{a}_{\rm in} + \alpha)} \rangle = e^{\zeta (\beta + \alpha)^* - \zeta^* (\beta + \alpha)}$

- Phase $(1 \rightarrow 1)$ - $U_{\text{phase}}(\theta), \theta \in [0, 2\pi)$
- Beam splitter (2 \rightarrow 2) - $U_{\text{beamsplitter}}(\eta), \eta \in [0, 1)$
- linear optical transformation General zeromean Gaussian unitary (an nmode bogoliubov

general n-

mode passive

- Squeezing (1 \rightarrow 1) - $U_{\text{squeezing}}(r) = \hat{S}(z), z = r \in [0, \infty)$
- Displacement $(1 \rightarrow 1)$

-
$$U_{\text{disp}}(\alpha) = \hat{D}(\alpha), \alpha \in \mathbb{C}$$

General Gaussian transformation

Gaussian transformations not universal. Need any one non-Gaussian unitary

optical

of Arizona

- Phase $(1 \rightarrow 1)$ $-U_{\text{phase}}(\theta), \theta \in [0, 2\pi)$
- Beam splitter $(2 \rightarrow 2)$ $-U_{\text{beamsplitter}}(\eta), \eta \in [0, 1)$
- Squeezing $(1 \rightarrow 1)$ $-U_{\text{squeezing}}(r) = \hat{S}(z), z = r \in [0, \infty)$
- Displacement $(1 \rightarrow 1)$ • $- U_{\text{disp}}(\alpha) = \hat{D}(\alpha), \alpha \in \mathbb{C}$
- Self-Kerr $(1 \rightarrow 1)$ $- U(\kappa) = e^{i\kappa(\hat{a}^{\dagger}\hat{a})^2}$

general n-mode passive linear transformation General zeromean Gaussian unitary (an nmode bodoliubov transformation) General Gaussian transformation

> General unitary transformation on n modes: universal quantum processing

Gaussian transformations not universal. Need any one non-Gaussian unitary

general n-mode

optical

of Arizona

- Phase $(1 \rightarrow 1)$ $-U_{\text{phase}}(\theta), \theta \in [0, 2\pi)$
- Beam splitter $(2 \rightarrow 2)$ $-U_{\text{beamsplitter}}(\eta), \eta \in [0, 1)$
- Squeezing $(1 \rightarrow 1)$ $-U_{\text{squeezing}}(r) = \hat{S}(z), z = r \in [0, \infty)$
- Displacement $(1 \rightarrow 1)$ $- U_{\text{disp}}(\alpha) = \hat{D}(\alpha), \alpha \in \mathbb{C}$

• Cubic phase $(1 \rightarrow 1)$ $- U(\gamma) = e^{i\gamma\hat{q}^3}, \, \hat{q} = \frac{\hat{a} + \hat{a}^{\dagger}}{\sqrt{2}}$

passive linear transformation General zeromean Gaussian unitary (bogoliubov transformation) General Gaussian transformation

> General unitary transformation on n modes: universal quantum processing

- Christos Gagatsos will teach a few lectures:
- Unitary transformation of bosonic states
 - Gaussian unitary on n modes: Phase, Beamsplitter, Displacement, Squeezing
 - Non-Gaussian state engineering using PNR detection
 - Gaussian Boson Sampling
- Gaussian measurements on n modes