
Photonic Quantum Information Processing
OPTI 647: Lecture 9

Saikat Guha
September 24, 2019

Associate Professor
College of Optical Sciences
Meinel 523



Announcements

• Topics to be covered today
– Phase space picture of squeezed states
– Heterodyne detection
– Quantum description of beamsplitter and phase
– Quantum enhanced phase estimation
– Outlook of the next few lectures



Recap of Lecture 8: Characteristic functions 
versus probability distributions

Always a proper probability density 
function when it exists. The states for 
which a proper P function exists are 
called classical states

May not be a proper probability density 
function. Negativity used to show a state 
is non-classical. Not all non-classical 
states have a negative Wigner function

Always a proper probability density 
function; pdf for ideal heterodyne 
detection OR dual homodyne detection
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Recap of Lecture 8

• Normally ordered form,
–
–

• Anti-normally ordered form,

• Characteristic function for coherent state,
– is Gaussian

• Circularly symmetric      number diagonal 
• If a state is classical (has a proper P function),

– Number detection statistics;
– Quadrature (homodyne) detection statistics;
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Recap of Lecture 8

• Measurement of the    POVM,
– Distribution of output,
– (classical) characteristic function of this distribution

• POVM on squeezed state            , assume
– : Gaussian

–

– Recall, for                             , 
– Measurement outcomes             : S.I. Gaussian with:

– Gaussian state: characteristic fns. are Gaussian. Mean 
fields and quadrature variances completely define the state
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Statistics of measurement of     POVM on 
a squeezed state,

• Mean, variances of measurement outcomes
– Measurement described by POVM

• Mean and variances for measuring      OR
– Both are projective measurements (but cannot be 

done simultaneously)
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Yuen-Shapiro vs. Caves notation

• Squeezed state,                                ,
– ,                           ,
–

–
– Useful notation to think of squeezing as phase-sensitive 

amplification with “gain”,

• Caves notation,
– Define,                              . This implies:

– Define,                                                   with               
being the (complex-valued) “squeezing parameter”

–

–
– Useful notation to picture “squeezing a coherent state”
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Squeezing in Caves’ notation

• Quadrature variances:

– Recall condition for MUP:
– If                  ,                       ,

– If                  ,                     ,

– Squeezing often measured in dB:
• Example: 3 dB squeezing:                    ,
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Squeezed state in phase space

• Squeezed state, 
– Coherent state is a special case,
– Wigner function                 is a 2D Gaussian as shown:
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Q function of squeezed state

• Squeezed state, 
– Consider
– We already know what to expect, for the distribution 

of  the      POVM measurement we derived
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Covariance matrix

• A Gaussian state can be completely determined 
from its first and second moments
– First moment:                                       is the mean field

• Note that:
– Second moments form a covariance matrix:

• Note that:
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Covariance matrix of a squeezed state

• For the squeezed state                                ,
– Mean field (first moment),
– Prove that the covariance matrix is given by:

|�;µ, ⌫i, µ, ⌫ 2 C

V

Problem 43

Diagonal terms are zero if the 
squeezed state is MUP



Revisiting Homodyne Detection: semi-
classical theory, coherent state input
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Heterodyne detection
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Heterodyne detection is    POVM 

• Heterodyne detection is the measurement of the      
POVM (i.e., no matter what is the quantum state 
of the     mode is), i.e., measurement in the basis 
of coherent states of the      mode
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Heisenberg vs. Schrodinger interpretation

• Schrodinger picture of QM:
– States evolve under a unitary
– Hamiltonian of the evolution,
– Hermitian operator for observable     stays constant

• Heisenberg picture:
– State does not evolve, it stays
– Observable evolves as:

• We will often find it convenient to use the Heisenberg 
picture to evolve states in optical transformations
– We will evolve the field operators, and from the moments of 

the evolved field operators, deduce the output states
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Field transformations in optics

• Linear (classical) transformations
– Reversible (unitary)

• Non-linear (classical) transformations
– May not be reversible

• Many examples from classical non-linear optics

• Quantum transformations
– Unitary (reversible)
– Non-unitary (non-reversible)

Ein(x, y, t) ! Eout(x, y, t) = UEin(x, y, t)

U⇤U = I Complex-valued unitary matrix

Ein(x, y, t) ! Eout(x, y, t)

Êin(x, y, t) ! Êout(x, y, t)

Cannot even talk in terms of a 
transformation on the “field”



Beam splitter as a quantum two-mode 
(unitary) transformation
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Squeezed vacuum injection

• Take input mode    in coherent state      and

– If    mode is in vacuum state

– If    mode is in squeezed vacuum           with
• “SNR conservation” is not preserved!
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⌘b̂
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Single-mode Phase

U = ei✓â
†â
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⇢̂out = U ⇢̂inU

†

Schroedinger picture: state evolves under a unitary operation
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Useful when calculating the output state directly
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check to see, commutators preserved
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Two-mode Beamsplitter
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p
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Phase sensing (phase conjugate MZI)
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Phase sensing with squeezed states
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Single-mode Squeezing (preview)
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Single-mode Displacement (preview)

⇢̂in ⇢̂out
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Gaussian transformations

• Phase (1 à 1)
–

• Beam splitter (2 à 2)
–

• Squeezing (1 à 1)
–

• Displacement (1 à 1)
– Udisp(↵) = D̂(↵),↵ 2 C

Usqueezing(r) = Ŝ(z), z = r 2 [0,1)

Ubeamsplitter(⌘), ⌘ 2 [0, 1)

Uphase(✓), ✓ 2 [0, 2⇡)

general n-
mode passive 
linear optical 
transformation

General zero-
mean 
Gaussian 
unitary (an n-
mode 
bogoliubov
transformation)

General 
Gaussian 
transformation



Gaussian transformations not universal. 
Need any one non-Gaussian unitary

• Phase (1 à 1)
–

• Beam splitter (2 à 2)
–

• Squeezing (1 à 1)
–

• Displacement (1 à 1)
–

• Self-Kerr (1 à 1)
–

Udisp(↵) = D̂(↵),↵ 2 C

Usqueezing(r) = Ŝ(z), z = r 2 [0,1)

Ubeamsplitter(⌘), ⌘ 2 [0, 1)

Uphase(✓), ✓ 2 [0, 2⇡)

general n-mode 
passive linear 
optical 
transformation General zero-

mean 
Gaussian 
unitary (an n-
mode 
bogoliubov
transformation)

General 
Gaussian 
transformation

U() = ei(â
†â)2

General unitary 
transformation on n 
modes: universal 
quantum processing



Gaussian transformations not universal. 
Need any one non-Gaussian unitary

• Phase (1 à 1)
–

• Beam splitter (2 à 2)
–

• Squeezing (1 à 1)
–

• Displacement (1 à 1)
–

• Cubic phase (1 à 1)
–

Udisp(↵) = D̂(↵),↵ 2 C

Usqueezing(r) = Ŝ(z), z = r 2 [0,1)

Ubeamsplitter(⌘), ⌘ 2 [0, 1)

Uphase(✓), ✓ 2 [0, 2⇡)

general n-mode 
passive linear 
optical 
transformation General zero-

mean 
Gaussian 
unitary 
(bogoliubov
transformation)

General 
Gaussian 
transformation

General unitary 
transformation on n 
modes: universal 
quantum processing

U(�) = ei�q̂
3

, q̂ =
â+ â†p

2



Can you name a 1-mode quantum 
state in each quadrant? 

Classical

Gaussian

Classical

Non-Gaussian

Non-Classical

Gaussian

Non-Classical

Non-Gaussian



Upcoming topics…

• Christos Gagatsos will teach a few lectures:

• Unitary transformation of bosonic states
– Gaussian unitary on n modes: Phase, Beamsplitter, 

Displacement, Squeezing
– Non-Gaussian state engineering using PNR detection
– Gaussian Boson Sampling

• Gaussian measurements on n modes


