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Plan for today 'Z"_A\'X'w
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* Phase space representations of single-mode
gquantum states



Recap of Lecture 7 A’w
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* Bogoliubov transformation i = pa + vaf, p,vec, |u? - > =1
— Squeezed state |3; 1, v) is a coherent state of b
— Mean (field), (@) = (B; u, v|a|B; p, v) = p* 8 — vB3*
— Mean photon number, (N) = (afa) = [(a)|*> + |v|?
— Quadrature variances, (Ad?) ”_V|2, (Aa2) = it VI

T4 4
— Squeezed state is MUP, i.e.,(Aa7)(Aa3) = 1/16 if p*v € R

« Caves notation |a; 7, 6)
— Relationship to the Yuen-Shapiro notation 5 = pa +va’
— Mean field, (a) = « 1 = coshr
— Mean photon number, (N) = |a|? +sinh®(r) v = € sinh 7.
— Quadra’{ure variances when MUP, i.e.,0 =0,

) o 1 ., .
(Ad?) = 1€ 2r - (Add) = Ze+2 (or vice versa)




Recap of Lecture 7 (continued) Aw
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Signal to noise ratio of real- quadrature homodyne
detection, SNR = (a1)” / (Aaf) ynder a mean photon

number constraint, (a'a) < N is attained by squeezed
state: 5= VNN +1),u=(N+1)/V2N +1,v = N/v2N +1

Binary phase shift keying (BPSK) modulation with
squeezed states Vo) = Fip,v). V1) = | = Bin, V) with
mean photon number N, but with 5, i, v optrmally
chosen attaing Peumin = [1 = V1 —emtNVHD] /2 n e 7 g
with BPSK coherent states, Pemin = [1 — V1 - IN] 2 ¢ IN




Recap of Lecture 7 (continued) Aw
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« Characteristic function = FT of probability density
Mx (jv) = (7%) = /O; px(x)e’®dr  px(x) = % /_O:O M (jv)e™""dv

« Measuring a1 on|): output is a random variable X1
— My, (jv) = (97, () = (") ) = (@]e? )

* Wigner characteristic function (of a state |v))
xw (€7,0) = xw (€) = (e M) = (e ), ¢ =G+ G

— Characteristic fn. of a;meas. outcome, My, (jv) = Xw (O 2
— Characteristic fn. of a; meas. outcome, y1y (jv) = Xw (Qe—_y /s
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Baker-Campbell-Hausdorff theorem THE UNNVERSITY
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n!

- Exponential of an operator ¢€ = >
A A A A A A n=>0
—If [A, [A,B]} — [B, [A,B]jJ ~ 0
— then, €A+B _ eAeée—[A,B]/z _ QBBAQ[A,B]/Q
+ Consider the Wignerc.f., and A = —(*a, B = ¢al
— We then get, [4, B] = —|¢|*[a,a'] = —|¢]?
* Define:
— Antinormally-ordered characteristic function

—C¢*a cal
xa(Q) = (e7¢ “es®)
— Normally-ordered characteristic function

at —¢*a
xn(Q) = (v et 7
— Show that for any state,  Problem 36

w (€) = xa(Q)els/2 = xn(¢)e 11/



Homodyne detection statistics on a ZAS
number state g s

at —¢*ap,\ ,—I¢|?
= [(n|e*® e A n)e” V2| _

b, 0= [ (55 i) (§ £ ) ]
(=jv/2

m=0 k=0

" (jv/2)™ n! " (jv/2)k n! 02/8
—(Z“W/ﬂ) \/(n_mwm)(Z(jk/!) (n_k)!n@)e /

k=0

& n/! —v2 /)™ g 5 )\ —02/g
= (Zm!(n—m)!( m/!) )6 © = La(o?/4)e™

m=0

where




Homodyne detection statistics on a
number state (continued)

* Probability distribution function,
1 [~ > |
px@) = 5o [ Ll /a)e e
T J—c0

9 6—2:B2

T 27!

[Hy(V22))?

2
22 dne—z

is the nth Hermite
dz™

— where H,(z) =(—1)"e
polynomial

A
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The “Wigner function”: a quasi- A\
probability e Ao

« FT of the characteristic function of a1 measurement
which is Mx, (jv) = xw(€)],, , -gIves us the pdf px, ()

« What if we took a (2D) FT of the full Wigner function.
Will it give us some sort of a pdf of measuring both
quadratures together? But we know it is not possible

to measure them both together!

« Define W(oz*,oz)E/%Xw(C*,C)GC*a_Ca*a

/% = /_Zd%l/_zd?@, Cra— Ca* = 2jCas — 2500

xw (¢, C) = /dza W (a*, a)e ¢ otee”



Wigner function of a coherent state A’w

OF ARIZONA

 Verify that /dza W(a*, o) =1

« Consider coherent state W>
. at —c*a
xw(C",0) = (Bles e

6_2|a_6|2
/2

— Two S.l. Gaussian random variables each with
variance 72 and means (5, and 3, respectively

BYe IR /2 — oG8 —CB Il /2

W, a) =




A

Wigner function of a number state [n) .S
* Evaluate W (o* a) = /_an(m Jel<F/2¢¢ aCa
s
2 [ 2 2 o2
W(a*, a) = ;/ dr rL,(r?)e " 2 Jy(2r|a]) = (—1)”%Ln(4|a|2)e 2lal
0
» For number state |0), Ly(z) = 1
2
W(a*, o) = Ze 2ol
(s
« For number state |1), Li(z) = (1 — 2)
2 1
W(a*,a) = =(4]a)* — e " <0,jal < 7
s

« W(a) < 0 not necessary for non-classicality



Normal and anti-normal ordered forms le
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» Normal-ordered form: F(a',a) =) Y fuma™a™

n=0 m=0
oo oo
» Anti-normal-ordered form: G(a,a') = ) gumata™
n=0 m=0

A few simple exercises: | Problem 37
— Write normal-ordered form F(™)(a', &) of operator
— Prove that for any operator F, (a|F|a) = F®™ (a*, a)
Q function

— In a previous problem, we showed that the normal-
order form of the density operator, p™ (a*, o) = (a|p|c)
scaled by 7T, i.e., Q(a) = (a|p|a) /7 is a proper pdf

F =aa'a



Characteristic fns. of a coherent state A
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« For a coherent state, p = |a) (]
— Normal-ordered characteristic function,

KC.0) = (3e7) = a{ o el

p— <&’€C€LT€_C*& OZ> — eCa*—C*Oé.

— Wigner characteristic function,
X (€1 0) = Xo(7, Qe 12 = e —CracleP:
— Anti-normally-ordered characteristic function,
XA(C.€) = X (¢, eIz = et —crale?

* All the characteristic functions are Gaussian



Anti-normal-ordered characteristic A

function and Q function are FT pairs THE UNvERSITY
2
+ Consider, G0 =[S (e ta)ale)
o e
=[S tr(plaale )
— ¢ ~ —C*a Ca 9
— r( ) - / d7a<a|ﬁ|a>e—<*“+<a*
. [ ledal
I:/C T i €2jC2041—2jC1042
— //doq day p'™ (a*, @)
m
_ Flp™ (e, a)]
T _ y
» 2D Fourier Transform ﬁ :Q%T/W

X(f1, f2) = Flz(t1, t2)] = //dt1 dty z(ty,ts)e —j2m(fit1+ fotz)
x(t1,ts) = X (f1, f2)] //dfl dfy X (f1, f 3277 fit1+fat2)



Characteristic functions and A
Probability distributions are FT pairs T s
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 Anti-normal ordered:

/ Q Ca —C* ad2
Always a proper
probability density

function; pdf for ideal — @ (av) = /XA(O —CaT ¢ ad2C
heterodyne detection T2

/ W(a)et™ ¢ *d*a
May not be a proper
probability density ot a2
function. Negativity —>W(Oz) — _2 XW(C) ‘ Ceg G

used to show a state n
IS non-classical

* Wigner:

Recall that: xw(() = €|C|2/2XA(C)



Normally ordered characteristic function le
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. . This step holds ONLY IF p is a
~ cat —
tr (pega e ™" “)

/ classical state, p = /P(a,a*)|a><a|d2a

= /d2a P(a, a™)tr (|a> <a|e<&Te_C*&)

® X']OV(C*7 C)

— /d2oz P(a, &*)GCa*—C*a
_ /d204 P(C\f, a*)62j52a1—2jC10:2

* Normally-ordered:
Always a proper probability XN(C) = /P(&)GCa*—C*adQQ
1

density function when it
exists. The states for which a
proper P function exists are — P(Oz)

called classical states T



Characteristic functions versus probability ﬂ

(or quasi-probability) distributions T vy

— 2

Always a proper /Q )ete =S g2,

probability density

function; pdf for ideal — o —ca +C*a 32

heterodyne detection Q(e) /XA =g

May not be a proper _ Ca™—C*a 32

probability density xw (6) = / W(a)e d“a

function. Negativity 1

used to show a state — = —Ca 4+ a g2

is non-classical W(a) = T2 /XW(C)G d-Q

Always a proper probability XN(O — /P(a)eCa*—C*ad2a

density function when it
exists. The states for which a

proper P function exists are — P(a) _ % /XN(C)GCQ*+C*ad2<

called classical states



Few problems le
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* Prove the following:

- Wia)= = [ Pl s

T Problem 38

- (a"aT™) = /a”a*mQ(a)dQOz

Problem 39



Retrieve density operator from characteristic ZAS
functions (coming back the full circle!) e Ao

« Start with: <O‘|§‘O‘> = Q(a) = %/XA(C)e—CO‘*“*O‘d?g

1 b e
» Therefore, (a|p|a) = ;/><A(C)<oz|e‘<c”eC “layd*¢

— Recall that the density operator is completely
determined by its coherent state elements. Hence,

L1 _cat e
p=— /XA(C)@ et AdPC
7y
— We already know: xa(¢) =Tr (ﬁe—g*&ecaﬁ)
— The above two relationships are an operator FT

1 n!

— tnlglm) = [ xalQ) ke e Uy = [ xa(Qy) B0 LI (¢



Circularly-symmetric in the phase ZAS
space = diagonal in number basis THE UNvERSITY

* The phase-space representation of a state
— Wigner W («a) , Q-function Q(«) , P-function P(«)
— P function may or may not exist
* If the Q function is circulatly symmetric, i.e., just
a function of |af,a = a1 + jas
— The antinormally-ordered characteristic function
must also be circularly symmetric x4(¢) (FT pair)
— If so, prove that the state is diagonal in the number
basis, i.e., (n|p|m) = (n|p|n) 6;nn, Problem 40
 All number diagonal states, ;= ipn\nxn\ are
circularly-symmetric states "~

— The number states {|n)},n=0,1,... are the only
circularly-symmetric pure states



Number detection on a classical state le
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Consider a classical state, p = /d2a P(a, o*)|a) (|

|a|2n
n!
|a|2n

n!

e_|a|2, forn=20,1,2,...

Pr(N outcome = n | state is |a) ) =

e for n = 0,1,2,...

)

Pr(N outcome =n) = /dza P(a,a”)

(AN?) > /d2a P(a, o*)var( N measurement | state is |a))

= /d20z P(a, o®)|al?,
(N) = /d2a P(a,o*)E( N measurement | state is |a)) /d2aP o, o) |af?

Therefore, for a state that admits a proper P-function representation, <AN2 )
number state |n) has <N> = n and (AN2> =0

5 = |n)(n| does not have a proper P-representation for n > 0



lomodyne detection on a classical state le
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« Consider a classical state, /= /d%z P(a, o*)|a) (|

— If aymeasurement is done on coherent state |«), we
get a Gaussian r.v. with mean a; = Re(«) and variance 1/4

exp[—2(a; — aq)?]
/2

o, s oteome — )= [l

— and, (Aaj) > /d2a P(a, a)var(a; measurement | state is |a) )

= /d2a Pla,a™)1/4=1/4
— The squeezed state | 5; i1, ) with u, v > 0 has:
(Aaf) = (p—rv)?/4<1/4

— So, the density operator p = |3; u, v){(B; u, V| does
not admit a proper P function representation



The @ measurement as a POVM 'Z'_‘X'w
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« POVM elements can have a continuous spectrum
- @) = i), (W@ > 0forall jp), = [drii(e)
— p(z) = W|I(z)[¥) - )
— Projective measurement iff I1(z)II(y) = I1(x)d(x — y)

» Consider the operators,

(o) = \a}(a\) for a € C

T

— This forms a POVM (check the conditions)
— They do NOT form a projective measurement, since

. . o o e—lal?/2—1BI?/2+a*B| .

where, 6(a — B) = 6(a1 — B1)d(ay — o)




Statistics of the @ POVM A’w
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* Probability distribution of measurement outcome
— Given by, ple) = (i) = 1)
— This is same as the Q function (a proper pdf)

, fora=a;+jas €C

o) _ (@lflo)

s

, O = Q1 + ja2
— We can therefore define a (classical) characteristic fn.

Mal,ag (.jvla jUQ) = /d20é 6jv1a1—|—jv2a2p(a)

— Prove that: M,, .,(jv1,jv2) = xa(C*, O)l¢=juj2, Where v =v; + jug

Problem 41



Measurement of a on a squeezed state le
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» Consider |8; p, v) with 1, € R for simplicity
= xa(Q) = (e 06ty = (B; p, v]em¢ WD S = gy )
— Repeated use of the BCH identity gives us:

*ubt —c*ub —*2u0/2 Cubt —C¢vb —C2ur/2
XA(CH Q) = (B;u,v|et P em e T 2elubT o= CVb = [2) By )

— : (CutC* )bl —(¢*utCr)b) 3. —|¢2u2—Re(C2) pv
<B7,U7V€ € |B,,U,V>€ :

— Using the fact that | 3; 1, v) is an eigenket of b
Xa(C*, ¢) = eCHteVIB =(Cutr)B=ICl " —Re(C)uv

— Moy 0, (01, 02) = Xa(C", ) |cmgujo = 1 BIPrvioi/2givalintv)Bomvzos/2

— Measurement variances of outcomes (a1, as)

o _(pov)PHl o ity (ptv)t Al
o] = 5 = 1 and 05 =

2 4



Statistics of measurement of @ POVM A‘w
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 Mean, variances of measurement outcomes (a1, az)
— Measurement described by POVM

State () State (Aa?) (Ao2)
n) 0 n) (n+1)/2 (n+1)/2
18) B 18) 1/2 1/2
B; p,v) | wB—vB* Bip,v) || (p—vP+1)/4 | (p+v[P+1)/4

 Recall variances for measuring a; OR as

— Both are projective measurements (but cannot be
done simultaneously)

State (Aas(t)) (Aas(t))
n) (2n+1)/4 (2n+1)/4
) 1/4 1/4
B v) || | —ve @ 2/4 | |p+ ve 7 /4




Gaussian state le

OF ARIZONA

* The phase space picture of a squeezed state, i.e.,
its Q function is Gaussian

« (GGaussian states p

— whose characteristic functions (all three) are Gaussian
— Equivalently, whose Q function is Gaussian

« Evaluate and plot the Wigner function and Q
function of the cat state, |¢) = N1 (|o) £] — a)).
Use the normalization constants V. you found

earlier. Are the cat states Gaussian?
Problem 42



Upcoming topics... Aw

OF ARIZONA

« Single mode quantum optics, continued

— Phase space picture of squeezed states (conclusion)
— Measurement of the @ operator POVM: Heterodyne

— Unitary transformation of single-mode and multi-
mode states
» Heisenberg vs. Schroedinger picture of quantum mechanics
» General form of unitary transformation on a single mode
» Displacement, Squeezing, Beamsplitters



