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Plan for today

• Recap of squeezed states
• Phase space representations of states



Recap of Lecture 6

• Quadrature eigenkets ,
– Wavefunctions                     and                       are a FT pair

• Main result that led us to that:

• Proof involved “translation operators”

– Eigenkets and        : infinite-energy (unphysical) states

• Minimum uncertainly product (MUP) states
– We used equality condition in derivation of                           

to derive most general form of a state that meets equality
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Â1(⇠) ⌘ exp(�2j⇠â2); �1 < ⇠ < 1



Properties of             (Lecture 6)

• Define
– Verify that                still holds
–
– CON basis states 
– Mean,

• Prove that:
– Mean photon number of the state               is given by:

• Hint:
• Even for

– Second moment,
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hâi = 0, hN̂i = |⌫|2
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Quadrature variances of squeezed state

• MUP states are “squeezed” states
– Bogoliubov transformation                    

• Satisfies same commutation relation:

• “Coherent states” of     satisfy MUP cond.:

• “Number states”:              ,                                   ,

• Mean field,

• Mean photon number,

• Prove that:

• A few comments
– Coherent state is a special case,
– Optical Parametric Amplifier (OPA): a device that realizes 

the Bogoliubov transformation (we will do a proper non-
linear-optics EM theory derivation of it later)

b̂ ⌘ µâ+ ⌫â†, µ, ⌫ 2 C, |µ|2 � |⌫|2 = 1

[b̂, b̂†] = [â, â†] = 1
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When is a squeezed state MUP

• Quadrature variances,
•
• If               and real

–
– and   
–

• If               and real
–
– and
–

• Squeezed state is MUP iff is real 
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Time dependent annihilation operator

• So far, we have been ignoring the oscillatory 
term in the field operator
– Coherent state can be thought of as a fixed complex 

number only when we station ourselves at a fixed 
“phase reference” (a phase modulo      )

– : stays MUP all the time

• For a squeezed state,
– and

– MUP only at times when

• For most of the forthcoming development, we 
will station ourselves at a fixed phase reference 
and hence drop the time index
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Physical meaning of squeezed states
Coherent state

Phase-squeezed state ✓ = ⇡/2 Amplitude-squeezed state ✓ = 3⇡/2

Figure courtesy, Dr. Baris Erkmen, MIT Ph.D. 2008

|�;µ, ⌫i vs,. |↵; r, ✓i
Jeff Shapiro and 
Horace Yuen

Carl Caves



SNR optimal state under quadrature 
measurements

• Recall: SNR of quadrature and number 
measurement on coherent state

• Let us derive what state has the highest SNR for 
quadrature measurement 

– under a mean photon number constraint
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â1
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Derivation of the optimal SNR from HUP

• Express mean photon number as

• Rearranging terms,

– with equality when 
– Also, SNR is maximized if

– So, we have:
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Optimal SNR derivation (continued)

• For fixed N and           , SNR is maximum if           
is as small as possible, i.e.,
– Setting

–

–

–

– Resulting maximum SNR =     
• What state would attain this? It must be MUP 

(since we used that to attain the equality condition)
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SNR-optimal state

• Consider squeezed state
–
–
–
– Take a squeezed state with following real parameters

• Show that it achieves,
• Find the mean,       and compare with mean        of 

a coherent state of same mean photon number N
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Binary phase modulation for optical 
communications

• BPSK coherent states 
– Assume real      and mean photon number,
– Inner product
– Minimum error probability of discrimination (equal priors)

• BPSK squeezed states,
– Assume real
– Inner product,
– Find             s.t. is minimized for given     and show that
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Measurement statistics: summary so far

• Mean field

• Variance



Characteristic functions

• Random variable               with probability 
distribution function (pdf)

• Characteristic function of X

• Inverse relation

• Differentiating               w.r.t.    repeatedly can be 
used to calculate moments of X, i.e.,

X 2 R
pX(x), x 2 R
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1
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A few quick exercises…

• Gaussian r.v. X

– Prove that 
– Differentiate MX (once, and then twice) to verify the 

mean and variance come out as     and
• Poisson random variable N,

– Prove that
– Differentiate MX (once, and then twice) to verify the 

mean and variance both come out as
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e�(x�µ)2/2�2

p
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µ �2

, x 2 R

PX [n] =
e�µµn

n!
, n = 0, 1, . . .

MX(jv) ⌘ hejvXi = e[µ(e
jv�1)]

µ
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(Classical) characteristic function of a 
(quantum) quadrature measurement

• Suppose we measure     on state
– Call the random variable associated with the 

(random) measurement outcome, as

–
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Wigner characteristic function

• Let us introduce the Wigner characteristic function

– is a complex argument
– Unless it is unclear, we use simply use 

• Prove that the characteristic function               of the 
quadrature moment can be obtained from the 
Wigner characteristic function             at
– Hint: first show that

– So, … an appropriate slice of the Wigner c.f. gives us the 
quadrature distribution (c.f.) for measuring          for any 
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Baker-Campbell-Hausdorff theorem
• Exponential of an operator

– If 
– then,

• Consider the Wigner c.f., and
– We then get,

• Define:
– Antinormally-ordered characteristic function

– Normally-ordered characteristic function

– Show that for any state,
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Homodyne detection statistics on a 
number state

•

•

MX1(jv) = �W (⇣)
��
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Homodyne detection statistics on a 
number state (continued)

• Probability distribution function,

– where                                         is the nth Hermite 
polynomial 
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The “Wigner function”: a quasi-
probability

• FT of the characteristic function of      measurement 
which is                             ,gives us the pdf 

• What if we took a (2D) FT of the full Wigner function. 
Will it give us some sort of a pdf of measuring both 
quadratures together? But we know it is not possible 
to measure them both together! 

• Define:

â1
MX1(jv) = �W (⇠)
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Wigner function of a coherent state

• Verify that

• Consider coherent state

– Two S.I. Gaussian random variables each with 
variance ¼ and means      and       respectively 

|�i

�1 �2



Wigner function of a number state

• Evaluate

• For number state     ,

• For number state     ,

• not necessary for non-classicality

|ni

|0i L0(z) = 1

|1i

< 0, |↵| < 1

2

W (↵) < 0



Upcoming topics…

• Single mode quantum optics, continued
– More on Characteristic functions and Wigner functions
– Measurement of the     operator
– Some more examples and applications
– Gaussian vs. non-Gaussian states

â


