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Plan for today 'Z"_A\'X'w
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* Recap of squeezed states
* Phase space representations of states



Recap of Lecture 6 A’w
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* Quadrature eigenkets ai|ai)1 = ailai)1,as|as)s = aslasz)s

— Wavefunctions ¥ (1) = 1{a|v) and ¥(a2) = 2(a2l¢) are a FT pair
« Main result that led us to that: 1 (a1 |as)s = e27%2%1 /\ /1
» Proof involved “translation operators”
A1 (€) = exp(—2j€as); —00 < & < oo ;AL(E)]an)1 = |ay + &)

1212(5) = exp(2j€a1); —00 < € < ;fl2(£)|a2>2 = |ag + &)

— Eigenkets |a1)1and|a2)2 : infinite-energy (unphysical) states

* Minimum uncertainly product (MUP) states

— We used equality condition in derivation of (Aa3)(Aa7) > 1/16
to derive most general form of a state that meets equality

blay) = P ([25(Aag)ar — j(Adr)(Ads) — (ar — (Aar))?] /4(Aa?))
1 (2n (DaZ))17

exp ([-2j({Aar)as + j{Aa1)(Ads) — (a2 — (Aa2))?] /4(Aa3))
(2m(Aasz))/4

\IJ(CYQ) =



Properties of |3; i, v) (Lecture 6) A’w
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« Define b=pa+val, preC, |u?>—v?=1
— Verify that [b,b'] = 1 still holds
— bIB; ) = BIB; V), v €C, | — > =1
— Np|n;p,v) = n|n; u,v), pveC, |u>—|v/>=1 CON basis states
— Mean, {(a) = (B; u,v|a|B; p,v) = w8 — vB”*
* Prove that:
— Mean photon number of the state |5; 1, V/)is given by:
(N) = (a'a) = [(@)” + |v” [Problem 29
» Hint: 6= p*b— vbf
« Even for (a) =0, (N) = |v|?
— Second moment, (a2) = (a'?)* = 1*26% + 126*2 — 20" V| 8|2 — p'v
Problem 30



Quadrature variances of squeezed state le
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 MUP states are “squeezed” states

— Bogoliubov transformation b = pa + va', p,v € C, |ul> — |v> =1

Satisfies same commutation relation: [0, '] = [a,a'] = 1

“Coherent states” of b satisfy MUP cond.: b|8; u, v) = B|8; p, v), B € C

“Number states”: Ny = b'b, Ny|n; 1, v) = njn; p, v) (m; i, vin; g, v) = S
Mean field, (a) = (8; p, v|a|B; p,v) = p* B — v

Mean photon number, (N) = (a'a) = |(a)|* + |v|?

gty
- 4

12
Prove that: (Aad?) = I 4V| , {Aa3)
« Afew comments

— Coherent state is a special case,u = 1, v = 0

— Optical Parametric Amplifier (OPA): a device that realizes
the Bogoliubov transformation (we will do a proper non-
linear-optics EM theory derivation of it |later)

Problem 31



When is a squeezed state MUP Aw
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|+ v)?

. _ 12
- Quadrature variances, (aa?) = “="" (aaz) - -

4
= v|* = |pl® + |v]* — 2Re(p"v)

If «*v > 0 and real

- 2Re(pv) = 2fpv| = 2uv|

— |p—=v[* = (Jul = v[)* and \M+V| = (lul + v])?
— (8a)(8a3) = 1 ((ul ~ W1 + D)) = <l = ) =

e If v <0 and real

- 2Re(pv) = =2|p'v| = =2|pv|

— |p—v|* = (Iu\ +[v])* and \M+V!2 (lpl = [v])?
— (A@NA83) = = ((ul + ) (] = w1)?) = 7o (f? — W) = o

Squeezed state is MUP iff ©"v |s real



Time dependent annihilation operator Aw
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« So far, we have been ignoring the oscillatory
term in the field operator a(t) = ae %"

— Coherent state can be thought of as a fixed complex
number only when we station ourselves at a fixed
“phase reference” (a phase modulo 27)

— (A&2(t)) = (AG2(t)) = i, vt . stays MUP all the time

« For a squeezed state, |5; i, V) .
5 |/,L_V€_23wt|2 .9 ‘/L—|—V€_2JWt‘2
— (Aai(t)) = 1 and (Aas(t)) = 1

— MUP only at times when p*ve %! ¢ R

* For most of the forthcoming development, we
will station ourselves at a fixed phase reference
and hence drop the time index



A

Physical meaning of squeezed states THE GRS
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Coherent State Figure courtesy, Dr. Baris Erkmen, MIT Ph.D. 2008
Refae ") 1B, v) s, a;r,0)
A A A Jeff Shapiro and Carl Caves
Horace Yuen 53— o 4 vao*
v \/ v \ {1t = coshr
v = ¢? sinhr.
(a) Wigner distribution (b) Real quadrature .
Phase-squeezed state § = /2 Amplitude-squeezed state 6 = 37/2

Re{ae~ %}

AN
TV

(b) Real quadrature

Im{a} Re{fw*i“’t}

AARA
'R'AR}

(a) Wigner distribution (b) Real quadrature

Re{a}

Re{ae t}

AAA
YVYVY

(c) Wigner distribution (d) Real quadrature

(c) Wigner distribution (d) Real quadrature



SNR optimal state under quadrature ZAS
measurements i Az

* Recall: SNR of quadrature and number
measurement on coherent state o) = |V Ne?)

i) (Re(ae’?))’
SNunadrature — <<A1A>2> - ( (1/4 )) = 4Ncos’6
N)?

SNRnumber — ~ ’04‘2 =N
(AN?)

* Let us derive what state has the highest SNR for a4
guadrature measurement

(G1)°
(Aat)

— under a mean photon number constraint (a'a) < N

SNR =




Derivation of the optimal SNR from HUP Aw
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* Express mean photon number as

<&T5L> = ((a1 — jaz)(a1 + jaz)) = <&%> T <&§> — %
= (Aa7) 4 (A1) + (Adj) + (az)” - % <N
* Rearranging terms,
NR (1) _ N +1/2 — (Aa3) — (as)? 1

(Aag) — (Aaf)
— with equality when (@'a) = N
— Also, SNR is maximized if (a5) = 0
N +1/2 — (Aa3)
(AG?)

— S0, we have: SNR = —1



Optimal SNR derivation (continued) A’w
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+ For fixed N and (Aa7), SNR is maximum if (Aa3)
is as small as possible, i.e.,(Aa?)(Aa3) = 1/16
— Setting (Ada?) = x

N +1/2 1
— SNR = — —1
T 1622
dSNR N+1/2 1
- 5 T g3 =0 ata=1/8(N+1/2)
d?SNR 2N + 1 3
T = g — g = 64N +1/2) <0

— Resulting maximum SNR = 4N (N + 1)

* \What state would attain this? It must be MUP
(since we used that to attain the equality condition)



SNR-optimal state Aw
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« Consider squeezed state |5; u, v)
— (a1) = Re(,u*BQ— v3*)
— (aap) = =Y
— {ata) = |u* B — vB*? + v’
— Take a squeezed state with following real parameters

B=+/NN+1),u=(N+1)/v2N +1,v=N/V2N +1

« Show that it achieves, SNR = 4N (N + 1)

 Find the mean, {(a,)and compare with mean (a;) of
a coherent state of same mean photon number N

Problem 32



Binary phase modulation for optical A\

communications R,
« BPSK coherent states |1g) = |a), |¢¥1) = | — a)

— Assume real @, and mean photon number, N = o

— Inner product (Yolt1) =0 =e " =e 2"

— Minimum error probability of discrimination (equal priors)

Py min = L= 1_|0‘2 = 1_\/1_6_4N %16_4N,N>>1

2 2 4
« BPSK squeezed states, [10) = |8; i1, v), |1) = | — B; i1, v)

— Assume real 3, u, v
— Inner product, (vo|1) = o = e~ 28
— Find 8, u, v s.t. O is minimized for given /Nand show tha

A TA /1 — o AN(N+1 ,
Pemin:1 ]é ‘O-| :1 \/1 26 ( )%364N;N>>1

Problem 33



Measurement statistics: summary so far
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 Mean field

State (a(t))
n) 0
) e Iwt
B, v) || (p*B —vp*)e
* Variance
State (Aa%(t)) (Aaz(t))
n) (2n+1)/4 (2n+1)/4
o) 1/4 1/4
Bip,v) || |p—vem™ @ 2/4 | |+ ve ™2 /4




Characteristic functions le

OF ARIZONA

- Random variable X & R with probability
distribution function (pdf) px (z),x € R

 Characteristic function of X

Mx (jv) = (/) = / px (z)e! " dz
. Inverse relation _OO

px (o) / Mx (jv)e IV

« Differentiating M x (jv) w.r.t. v repeatedly can be
used to calculate moments of X, i.e., E| X "]



/A

A few quick exercises... Gy
Gaussian tv. X px(s) = ot 2 € R
* aussian r.v. Px\T) = 9
V2102
— Prove that My (]U) _ ejvﬂ—0202/2 Problem 34(a)

— Differentiate My (once, and then twice) to verify the
mean and variance come out as it and o°

: _ e H
» Poisson random variable N, Px[n] = =X

o ,n=0,1,...

— Prove that Mx (jv) = (/%) = elu(e’” = 1)]

— Differentiate My (once, and then twice) to verify the

mean and variance both come out as i
Problem 34(b)



(Classical) characteristic function of a ZAS
(Qquantum) quadrature measurement THE UNIvERSITY

» Suppose we measure G10n state 1)

— Call the random variable associated with the
(random) measurement outcome, as X

~Mx, (jv) = (e7V51) = / px, (2)e?"*dx

— OO

~wi ([ dxef"m|:c> (o 1) %)
= (] ( n\w 11 37|> 1)

= (| (Z U;’f ) ) = (")

n=0

dx




Wigner characteristic function le
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* Let us introduce the Wigner characteristic function
* _/ —(*a+cal
xw (¢*,¢) = (e™¢ 4F¢4)

— ( = (1 + j(o is a complex argument
— Unless it is unclear, we use simply use xw (€)

« Prove that the characteristic function Mx, (jv) of the
quadrature moment can be obtained from the
Wigner characteristic function xw(¢) at ¢ = jv/2
— Hint: first show that yu (¢) = (e~ 2/tmle aly

Problem 35
— S0, ... an appropriate slice of the Wigner c.f. gives us the

quadrature distribution (c.f.) for measuring a,¢’? for any ¢
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Baker-Campbell-Hausdorff theorem THE UNNVERSITY

ava) A OF ARIZONA
~C"

n!

- Exponential of an operator ¢€ = >
A A A A A A n=>0
—If [A, [A,B]} — [B, [A,B]jJ ~ 0
— then, €A+B _ eAeée—[A,B]/z _ QBBAQ[A,B]/Q
+ Consider the Wignerc.f., and A = —(*a, B = ¢al
— We then get, [4, B] = —|¢|*[a,a'] = —|¢]?
* Define:
— Antinormally-ordered characteristic function

—C¢*a cal
xa(Q) = (e7¢ “es®)
— Normally-ordered characteristic function

at —¢*a
xn(Q) = (v et 7
— Show that for any state,  Problem 36

w (€) = xa(Q)els/2 = xn(¢)e 11/



Homodyne detection statistics on a ZAS
number state g s

at —¢*ap,\ ,—I¢|?
= [(n|e*® e A n)e” V2| _

b, 0= [ (55 i) (§ £ ) ]
(=jv/2

m=0 k=0

" (jv/2)™ n! " (jv/2)k n! 02/8
—(Z“W/ﬂ) \/(n_mwm)(Z(jk/!) (n_k)!n@)e /

k=0

& n/! —v2 /)™ g 5 )\ —02/g
= (Zm!(n—m)!( m/!) )6 © = La(o?/4)e™

m=0

where




Homodyne detection statistics on a
number state (continued)

* Probability distribution function,
1 [~ > |
px@) = 5o [ Ll /a)e e
T J—c0

9 6—2:B2

T 27!

[Hy(V22))?

2
22 dne—z

is the nth Hermite
dz™

— where H,(z) =(—1)"e
polynomial

A

THE UNIVERSITY
OF ARIZONA



The “Wigner function”: a quasi- A\
probability e Ao

« FT of the characteristic function of a1 measurement
which is Mx, (jv) = xw(€)],, , -gIves us the pdf px, ()

« What if we took a (2D) FT of the full Wigner function.
Will it give us some sort of a pdf of measuring both
quadratures together? But we know it is not possible

to measure them both together!

« Define W(oz*,oz)E/%Xw(C*,C)GC*a_Ca*a

/% = /_Zd%l/_zd?@, Cra— Ca* = 2jCas — 2500

xw (¢, C) = /dza W (a*, a)e ¢ otee”



Wigner function of a coherent state A’w
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 Verify that /dza W(a*, o) =1

« Consider coherent state W>
. at —c*a
xw(C",0) = (Bles e

6_2|a_6|2
/2

— Two S.l. Gaussian random variables each with
variance 72 and means (5, and 3, respectively

BYe IR /2 — oG8 —CB Il /2

W, a) =




A

Wigner function of a number state [n) .S
* Evaluate W (o* a) = /_an(m Jel<F/2¢¢ aCa
s
2 [ 2 2 o2
W(a*, a) = ;/ dr rL,(r?)e " 2 Jy(2r|a]) = (—1)”%Ln(4|a|2)e 2lal
0
» For number state |0), Ly(z) = 1
2
W(a*, o) = Ze 2ol
(s
« For number state |1), Li(z) = (1 — 2)
2 1
W(a*,a) = =(4]a)* — e " <0,jal < 7
s

« W(a) < 0 not necessary for non-classicality



Upcoming topics... A’w
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« Single mode quantum optics, continued

— More on Characteristic functions and Wigner functions
— Measurement of the (1 operator

— Some more examples and applications

— Gaussian vs. non-Gaussian states



