Photonic Quantum Information Processing OPTI 647: Lecture 7

Saikat Guha

September 17, 2019

Associate Professor
College of Optical Sciences Meinel 523

- Recap of squeezed states
- Phase space representations of states

Recap of Lecture 6

- Quadrature eigenkets $\hat{a}_{1}\left|\alpha_{1}\right\rangle_{1}=\alpha_{1}\left|\alpha_{1}\right\rangle_{1}, \hat{a}_{2}\left|\alpha_{2}\right\rangle_{2}=\alpha_{2}\left|\alpha_{2}\right\rangle_{2}$
- Wavefunctions $\psi\left(\alpha_{1}\right) \equiv{ }_{1}\left\langle\alpha_{1} \mid \psi\right\rangle$ and $\Psi\left(\alpha_{2}\right) \equiv{ }_{2}\left\langle\alpha_{2} \mid \psi\right\rangle$ are a FT pair
- Main result that led us to that: ${ }_{1}\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle_{2}=e^{2 j \alpha_{2} \alpha_{1}} / \sqrt{\pi}$
- Proof involved "translation operators"

$$
\begin{aligned}
& \hat{A}_{1}(\xi) \equiv \exp \left(-2 j \xi \hat{a}_{2}\right) ;-\infty<\xi<\infty \quad ; \hat{A}_{1}(\xi)\left|\alpha_{1}\right\rangle_{1}=\left|\alpha_{1}+\xi\right\rangle_{1} \\
& \hat{A}_{2}(\xi) \equiv \exp \left(2 j \xi \hat{a}_{1}\right) ;-\infty<\xi<\infty \quad ; \hat{A}_{2}(\xi)\left|\alpha_{2}\right\rangle_{2}=\left|\alpha_{2}+\xi\right\rangle_{2}
\end{aligned}
$$

- Eigenkets $\left|\alpha_{1}\right\rangle_{1}$ and $\left|\alpha_{2}\right\rangle_{2}$: infinite-energy (unphysical) states
- Minimum uncertainly product (MUP) states
- We used equality condition in derivation of $\left\langle\Delta \hat{a}_{2}^{2}\right\rangle\left\langle\Delta \hat{a}_{1}^{2}\right\rangle \geq 1 / 16$ to derive most general form of a state that meets equality

$$
\begin{aligned}
\psi\left(\alpha_{1}\right) & =\frac{\exp \left(\left[2 j\left\langle\Delta \hat{a}_{2}\right\rangle \alpha_{1}-j\left\langle\Delta \hat{a}_{1}\right\rangle\left\langle\Delta \hat{a}_{2}\right\rangle-\left(\alpha_{1}-\left\langle\Delta \hat{a}_{1}\right\rangle\right)^{2}\right] / 4\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\right)}{\left(2 \pi\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\right)^{1 / 4}} \\
\Psi\left(\alpha_{2}\right) & =\frac{\exp \left(\left[-2 j\left\langle\Delta \hat{a}_{1}\right\rangle \alpha_{2}+j\left\langle\Delta \hat{a}_{1}\right\rangle\left\langle\Delta \hat{a}_{2}\right\rangle-\left(\alpha_{2}-\left\langle\Delta \hat{a}_{2}\right\rangle\right)^{2}\right] / 4\left\langle\Delta \hat{a}_{2}^{2}\right\rangle\right)}{\left(2 \pi\left\langle\Delta \hat{a}_{2}^{2}\right\rangle\right)^{1 / 4}}
\end{aligned}
$$

- Define $\hat{b} \equiv \mu \hat{a}+\nu \hat{a}^{\dagger}, \mu, \nu \in \mathbb{C},|\mu|^{2}-|\nu|^{2}=1$
- Verify that $\left[\hat{b}, \hat{b}^{\dagger}\right]=1$ still holds
- $\hat{b}|\beta ; \mu, \nu\rangle=\beta|\beta ; \mu, \nu\rangle, \mu, \nu \in \mathbb{C},|\mu|^{2}-|\nu|^{2}=1$
- $\hat{N}_{b}|n ; \mu, \nu\rangle=n|n ; \mu, \nu\rangle, \mu, \nu \in \mathbb{C},|\mu|^{2}-|\nu|^{2}=1 \quad$ CON basis states
- Mean, $\langle\hat{a}\rangle=\langle\beta ; \mu, \nu| \hat{a}|\beta ; \mu, \nu\rangle=\mu^{*} \beta-\nu \beta^{*}$
- Prove that:
- Mean photon number of the state $|\beta ; \mu, \nu\rangle$ is given by:

$$
\langle\hat{N}\rangle=\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=|\langle\hat{a}\rangle|^{2}+|\nu|^{2}
$$

Problem 29

- Hint: $\hat{a}=\mu^{*} \hat{b}-\nu \hat{b}^{\dagger}$
- Even for $\langle\hat{a}\rangle=0,\langle\hat{N}\rangle=|\nu|^{2}$
- Second moment, $\left\langle\hat{a}^{2}\right\rangle=\left\langle\hat{a}^{\dagger 2}\right\rangle^{*}=\mu^{* 2} \beta^{2}+\nu^{2} \beta^{* 2}-2 \mu^{*} \nu|\beta|^{2}-\mu^{*} \nu$

Quadrature variances of squeezed state

- MUP states are "squeezed" states
- Bogoliubov transformation $\hat{b} \equiv \mu \hat{a}+\nu \hat{a}^{\dagger}, \mu, \nu \in \mathbb{C},|\mu|^{2}-|\nu|^{2}=1$
- Satisfies same commutation relation: $\left[\hat{b}, \hat{b}^{\dagger}\right]=\left[\hat{a}, \hat{a}^{\dagger}\right]=1$
- "Coherent states" of \hat{b} satisfy MUP cond.: $\hat{b}|\beta ; \mu, \nu\rangle=\beta|\beta ; \mu, \nu\rangle, \beta \in \mathbb{C}$
- "Number states": $\hat{N}_{b} \equiv \hat{b}^{\dagger} \hat{b}, \hat{N}_{b}|n ; \mu, \nu\rangle=n|n ; \mu, \nu\rangle,\langle m ; \mu, \nu \mid n ; \mu, \nu\rangle=\delta_{m n}$
- Mean field, $\langle\hat{a}\rangle=\langle\beta ; \mu, \nu| \hat{a}|\beta ; \mu, \nu\rangle=\mu^{*} \beta-\nu \beta^{*}$
- Mean photon number, $\langle\hat{N}\rangle=\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=|\langle\hat{a}\rangle|^{2}+|\nu|^{2}$
- Prove that: $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{|\mu-\nu|^{2}}{4},\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{|\mu+\nu|^{2}}{4}$ Problem 31
- A few comments
- Coherent state is a special case, $\mu=1, \nu=0$
- Optical Parametric Amplifier (OPA): a device that realizes the Bogoliubov transformation (we will do a proper non-linear-optics EM theory derivation of it later)

When is a squeezed state MUP

- Quadrature variances, $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{|\mu-\nu|^{2}}{4},\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{|\mu+\nu|^{2}}{4}$
- $|\mu-\nu|^{2}=|\mu|^{2}+|\nu|^{2}-2 \operatorname{Re}\left(\mu^{*} \nu\right)$
- If $\mu^{*} \nu>0$ and real

$$
\begin{aligned}
& -2 \operatorname{Re}\left(\mu^{*} \nu\right)=2\left|\mu^{*} \nu\right|=2|\mu \nu| \\
& -|\mu-\nu|^{2}=(|\mu|-|\nu|)^{2} \text { and }|\mu+\nu|^{2}=(|\mu|+|\nu|)^{2} \\
& -\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{16}\left((|\mu|-|\nu|)^{2}(|\mu|+|\nu|)^{2}\right)=\frac{1}{16}\left(|\mu|^{2}-|\nu|^{2}\right)^{2}=\frac{1}{16}
\end{aligned}
$$

- If $\mu^{*} \nu<0$ and real
$-2 \operatorname{Re}\left(\mu^{*} \nu\right)=-2\left|\mu^{*} \nu\right|=-2|\mu \nu|$
$-|\mu-\nu|^{2}=(|\mu|+|\nu|)^{2}$ and $|\mu+\nu|^{2}=(|\mu|-|\nu|)^{2}$
$-\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{16}\left((|\mu|+|\nu|)^{2}(|\mu|-|\nu|)^{2}\right)=\frac{1}{16}\left(|\mu|^{2}-|\nu|^{2}\right)^{2}=\frac{1}{16}$
- Squeezed state is MUP iff $\mu^{*} \nu$ is real

Time dependent annihilation operator

- So far, we have been ignoring the oscillatory term in the field operator $\hat{a}(t)=\hat{a} e^{-j \omega t}$
- Coherent state can be thought of as a fixed complex number only when we station ourselves at a fixed "phase reference" (a phase modulo 2π)
- $\left\langle\Delta \hat{a}_{1}^{2}(t)\right\rangle=\left\langle\Delta \hat{a}_{2}^{2}(t)\right\rangle=\frac{1}{4}, \forall t$: stays MUP all the time
- For a squeezed state, $|\beta ; \mu, \nu\rangle$
$-\left\langle\Delta \hat{a}_{1}^{2}(t)\right\rangle=\frac{\left|\mu-\nu e^{-2 j \omega t}\right|^{2}}{4}$ and $\left\langle\Delta \hat{a}_{2}^{2}(t)\right\rangle=\frac{\left|\mu+\nu e^{-2 j \omega t}\right|^{2}}{4}$
- MUP only at times when $\mu^{*} \nu e^{-2 j \omega t} \in \mathbb{R}$
- For most of the forthcoming development, we will station ourselves at a fixed phase reference and hence drop the time index

Physical meaning of squeezed states

Coherent state

$\operatorname{Im}\{a\}$	
	$\operatorname{Re}\{a\}$

(a) Wigner distribution

(b) Real quadrature

Phase-squeezed state $\theta=\pi / 2$

(a) Wigner distribution

(b) Real quadrature

(c) Wigner distribution

$$
\begin{aligned}
& \qquad \beta ; \mu, \nu\rangle \quad \text { vs,. } \quad|\alpha ; r, \theta\rangle \\
& \text { Jeff Shapiro and } \\
& \text { Horace Yuen } \quad \beta=\mu \alpha+\nu \alpha^{*} \\
& \\
& \quad \begin{aligned}
\| & =\cosh r \\
\nu & =e^{i \theta} \sinh r .
\end{aligned}
\end{aligned}
$$

Amplitude-squeezed state $\theta=3 \pi / 2$

(a) Wigner distribution

(c) Wigner distribution

(b) Real quadrature

(d) Real quadrature

SNR optimal state under quadrature measurements

- Recall: SNR of quadrature and number measurement on coherent state $|\alpha\rangle=\left|\sqrt{N} e^{j \theta}\right\rangle$

$$
\begin{aligned}
& \mathrm{SNR}_{\text {quadrature }}=\frac{\left\langle\hat{a}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}=\frac{\left(\operatorname{Re}\left(\alpha e^{j \theta}\right)\right)^{2}}{1 / 4}=4 N \cos ^{2} \theta \\
& \mathrm{SNR}_{\text {number }} \equiv \frac{\langle\hat{N}\rangle^{2}}{\left\langle\Delta \hat{N}^{2}\right\rangle}=|\alpha|^{2}=N
\end{aligned}
$$

- Let us derive what state has the highest SNR for \hat{a}_{1} quadrature measurement

$$
\mathrm{SNR} \equiv \frac{\left\langle\hat{a}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}
$$

- under a mean photon number constraint $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle \leq N$

Derivation of the optimal SNR from HUP

- Express mean photon number as

$$
\begin{aligned}
\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle & =\left\langle\left(\hat{a}_{1}-j \hat{a}_{2}\right)\left(\hat{a}_{1}+j \hat{a}_{2}\right)\right\rangle=\left\langle\hat{a}_{1}^{2}\right\rangle+\left\langle\hat{a}_{2}^{2}\right\rangle-\frac{1}{2} \\
& =\left\langle\Delta \hat{a}_{1}^{2}\right\rangle+\left\langle\hat{a}_{1}\right\rangle^{2}+\left\langle\Delta \hat{a}_{2}^{2}\right\rangle+\left\langle\hat{a}_{2}\right\rangle^{2}-\frac{1}{2} \leq N
\end{aligned}
$$

- Rearranging terms,

$$
\mathrm{SNR} \equiv \frac{\left\langle\hat{a}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle} \leq \frac{N+1 / 2-\left\langle\Delta \hat{a}_{2}^{2}\right\rangle-\left\langle\hat{a}_{2}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}-1
$$

- with equality when $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=N$
- Also, SNR is maximized if $\left\langle\hat{a}_{2}\right\rangle=0$
- So, we have: $\mathrm{SNR}=\frac{N+1 / 2-\left\langle\Delta \hat{a}_{2}^{2}\right\rangle}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}-1$

Optimal SNR derivation (continued)

- For fixed N and $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle$, SNR is maximum if $\left\langle\Delta \hat{a}_{2}^{2}\right\rangle$ is as small as possible, i.e., $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=1 / 16$
- Setting $\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=x$
$-\mathrm{SNR}=\frac{N+1 / 2}{x}-\frac{1}{16 x^{2}}-1$
$-\frac{d \mathrm{SNR}}{d x}=-\frac{N+1 / 2}{x^{2}}+\frac{1}{8 x^{3}}=0$, at $x=1 / 8(N+1 / 2)$
$-\frac{d^{2} \mathrm{SNR}}{d x^{2}}=\frac{2 N+1}{x^{3}}-\frac{3}{8 x^{4}}=-64(N+1 / 2)<0$
- Resulting maximum SNR $=4 N(N+1)$
- What state would attain this? It must be MUP (since we used that to attain the equality condition)

SNR-optimal state

- Consider squeezed state $|\beta ; \mu, \nu\rangle$
- $\left\langle\hat{a}_{1}\right\rangle=\operatorname{Re}\left(\mu^{*} \beta-\nu \beta^{*}\right)$
$-\left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\frac{|\mu-\nu|^{2}}{4}$
$-\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=\left|\mu^{*} \beta-\nu \beta^{*}\right|^{2}+|\nu|^{2}$
- Take a squeezed state with following real parameters

$$
\beta=\sqrt{N(N+1)}, \mu=(N+1) / \sqrt{2 N+1}, \nu=N / \sqrt{2 N+1}
$$

- Show that it achieves, $\operatorname{SNR}=4 N(N+1)$
- Find the mean, $\left\langle\hat{a}_{1}\right\rangle$ and compare with mean $\left\langle\hat{a}_{1}\right\rangle$ of a coherent state of same mean photon number N

Binary phase modulation for optical communications

- BPSK coherent states $\left|\psi_{0}\right\rangle=|\alpha\rangle,\left|\psi_{1}\right\rangle=|-\alpha\rangle$
- Assume real α, and mean photon number, $N=\alpha^{2}$
- Inner product $\left\langle\psi_{0} \mid \psi_{1}\right\rangle \equiv \sigma=e^{-2 \alpha^{2}}=e^{-2 N}$
- Minimum error probability of discrimination (equal priors)

$$
P_{e, \min }=\frac{1-\sqrt{1-|\sigma|^{2}}}{2}=\frac{1-\sqrt{1-e^{-4 N}}}{2} \approx \frac{1}{4} e^{-4 N}, N \gg 1
$$

- BPSK squeezed states, $\left|\psi_{0}\right\rangle=|\beta ; \mu, \nu\rangle,\left|\psi_{1}\right\rangle=|-\beta ; \mu, \nu\rangle$
- Assume real β, μ, ν
- Inner product, $\left\langle\psi_{0} \mid \psi_{1}\right\rangle \equiv \sigma=e^{-2 \beta^{2}}$
- Find β, μ, ν s.t. σ is minimized for given N and show tha

$$
P_{e, \min }=\frac{1-\sqrt{1-|\sigma|^{2}}}{2}=\frac{1-\sqrt{1-e^{-4 N(N+1)}}}{2} \approx \frac{1}{4} e^{-4 N^{2}}, N \gg 1
$$

Measurement statistics: summary so far

- Mean field

State	$\langle\hat{a}(t)\rangle$
$\|n\rangle$	0
$\|\alpha\rangle$	$\alpha e^{-j \omega t}$
$\|\beta ; \mu, \nu\rangle$	$\left(\mu^{*} \beta-\nu \beta^{*}\right) e^{-j \omega t}$

- Variance

State	$\left\langle\Delta \hat{a}_{1}^{2}(t)\right\rangle$	$\left\langle\Delta \hat{a}_{2}^{2}(t)\right\rangle$
$\|n\rangle$	$(2 n+1) / 4$	$(2 n+1) / 4$
$\|\alpha\rangle$	$1 / 4$	$1 / 4$
$\|\beta ; \mu, \nu\rangle$	$\left\|\mu-\nu e^{-2 j \omega t}\right\|^{2} / 4$	$\left\|\mu+\nu e^{-2 j \omega t}\right\|^{2} / 4$

Characteristic functions

- Random variable $X \in \mathbb{R}$ with probability distribution function (pdf) $p_{X}(x), x \in \mathbb{R}$
- Characteristic function of X

$$
M_{X}(j v) \equiv\left\langle e^{j v X}\right\rangle=\int_{-\infty}^{\infty} p_{X}(x) e^{j v x} d x
$$

- Inverse relation

$$
p_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} M_{X}(j v) e^{-j v x} d v
$$

- Differentiating $M_{X}(j v)$ w.r.t. v repeatedly can be used to calculate moments of X, i.e., $E\left[X^{n}\right]$
- Gaussian r.v. $\mathrm{X} \quad p_{X}(x)=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}, x \in \mathbb{R}$
- Prove that $M_{X}(j v)=e^{j v \mu-v^{2} \sigma^{2} / 2}$

Problem 34(a)

- Differentiate M_{X} (once, and then twice) to verify the mean and variance come out as μ and σ^{2}
- Poisson random variable $\mathrm{N}, P_{X}[n]=\frac{e^{-\mu} \mu^{n}}{n!}, n=0,1, \ldots$
- Prove that $M_{X}(j v) \equiv\left\langle e^{j v X}\right\rangle=e^{\left[\mu\left(e^{j v}-1\right)\right]}$
- Differentiate M_{x} (once, and then twice) to verify the mean and variance both come out as μ

(Classical) characteristic function of a (quantum) quadrature measurement

- Suppose we measure \hat{a}_{1} on state $|\psi\rangle$
- Call the random variable associated with the (random) measurement outcome, as X_{1}

$$
\begin{aligned}
-M_{X_{1}}(j v) & \equiv\left\langle e^{j v X_{1}}\right\rangle=\int_{-\infty}^{\infty} p_{X_{1}}(x) e^{j v x} d x \\
& =\langle\psi|\left(\int_{-\infty}^{\infty} d x e^{j v x}|x\rangle_{11}\langle x|\right)|\psi\rangle \\
& =\langle\psi|\left(\int_{-\infty}^{\infty} d x \sum_{n=0}^{\infty} \frac{(j v)^{n}}{n!} x^{n}|x\rangle_{11}\langle x|\right)|\psi\rangle \\
& =\langle\psi|\left(\sum_{n=0}^{\infty} \frac{(j v)^{n}}{n!} \hat{a}_{1}^{n}\right)|\psi\rangle=\left\langle e^{j v \hat{a}_{1}}\right\rangle
\end{aligned}
$$

- Let us introduce the Wigner characteristic function

$$
\chi_{W}\left(\zeta^{*}, \zeta\right) \equiv\left\langle e^{-\zeta^{*} \hat{a}+\zeta \hat{a}^{\dagger}}\right\rangle
$$

$-\zeta=\zeta_{1}+j \zeta_{2}$ is a complex argument

- Unless it is unclear, we use simply use $\chi_{W}(\zeta)$
- Prove that the characteristic function $M_{X_{1}}(j v)$ of the quadrature moment can be obtained from the Wigner characteristic function $\chi_{W}(\zeta)$ at $\zeta=j v / 2$
- Hint: first show that $\chi_{W}(\zeta)=\left\langle e^{-2 j \operatorname{Im}\left[\zeta^{*} \hat{a}\right]}\right\rangle$

Problem 35

- So, ... an appropriate slice of the Wigner c.f. gives us the quadrature distribution (c.f.) for measuring $\hat{a}_{1} e^{j \theta}$ for any θ

Baker-Campbell-Hausdorff theorem

- Exponential of an operator $e^{\hat{C}} \equiv \sum_{n=0}^{\infty} \frac{\hat{C}^{n}}{n!}$
- If $[\hat{A},[\hat{A}, \hat{B}]]=[\hat{B},[\hat{A}, \hat{B}]]=0$
- then, $e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{-[\hat{A}, \hat{B}] / 2}=e^{\hat{B}} e^{\hat{A}} e^{[\hat{A}, \hat{B}] / 2}$
- Consider the Wigner c.f., and $\hat{A}=-\zeta^{*} \hat{a}, \hat{B}=\zeta \hat{a}^{\dagger}$
- We then get, $[\hat{A}, \hat{B}]=-|\zeta|^{2}\left[\hat{a}, \hat{a}^{\dagger}\right]=-|\zeta|^{2}$
- Define:
- Antinormally-ordered characteristic function

$$
\chi_{A}(\zeta) \equiv\left\langle e^{-\zeta^{*} \hat{a}} e^{\zeta \hat{a}^{\dagger}}\right\rangle
$$

- Normally-ordered characteristic function

$$
\chi_{N}(\zeta) \equiv\left\langle e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^{*} \hat{a}}\right\rangle
$$

- Show that for any state, Problem 36

$$
\chi_{W}(\zeta)=\chi_{A}(\zeta) e^{|\zeta|^{2} / 2}=\chi_{N}(\zeta) e^{-|\zeta|^{2} / 2}
$$

Homodyne detection statistics on a number state

- $M_{X_{1}}(j v)=\left.\chi_{W}(\zeta)\right|_{\zeta=j v / 2}=\left.\left[\chi_{N}(\zeta) e^{-|\zeta|^{2} / 2}\right]\right|_{\zeta=j v / 2}$

$$
=\left.\left[\langle n| e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^{*} \hat{a}}|n\rangle e^{-|\zeta|^{2} / 2}\right]\right|_{\zeta=j v / 2}
$$

- $M_{X_{1}}(j v)=\left[\left(\sum_{m=0}^{\infty} \frac{\zeta^{m}}{m!}\langle n| \hat{a}^{+m}\right)\left(\sum_{k=0}^{\infty} \frac{\left(-\zeta^{*}\right)^{k}}{k!} \hat{a}^{k}|n\rangle\right) e^{-|\zeta|^{2 / 2}}\right]_{\zeta=j v / 2}$

$$
\begin{aligned}
& =\left(\sum_{m=0}^{n} \frac{(j v / 2)^{m}}{m!} \sqrt{\frac{n!}{(n-m)!}}\langle n-m|\right)\left(\sum_{k=0}^{n} \frac{(j v / 2)^{k}}{k!} \sqrt{\frac{n!}{(n-k)!}}|n-k\rangle\right) e^{-v^{2} / 8} \\
& =\left(\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \frac{\left(-v^{2} / 4\right)^{m}}{m!}\right) e^{-v^{2} / 8}=L_{n}\left(v^{2} / 4\right) e^{-v^{2} / 8},
\end{aligned}
$$

where

$$
L_{n}(z) \equiv \sum_{m=0}^{n}(-1)^{m} \frac{n!}{m!(n-m)!} \frac{z^{m}}{m!}
$$

Homodyne detection statistics on a number state (continued)

- Probability distribution function,

$$
\begin{aligned}
p_{X_{1}}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} L_{n}\left(v^{2} / 4\right) e^{-v^{2} / 8} e^{-j v x} d x \\
& =\frac{2}{\pi} \frac{e^{-2 x^{2}}}{2^{n} n!}\left[H_{n}(\sqrt{2} x)\right]^{2}
\end{aligned}
$$

- where $H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n} e^{-z^{2}}}{d z^{n}}$ is the $\mathrm{n}^{\text {th }}$ Hermite
polynomial

The "Wigner function": a quasiprobability

- FT of the characteristic function of \hat{a}_{1} measurement which is $M_{X_{1}}(j v)=\left.\chi_{W}(\xi)\right|_{j v / 2}$, gives us the pdf $p_{X_{1}}(x)$
- What if we took a (2D) FT of the full Wigner function. Will it give us some sort of a pdf of measuring both quadratures together? But we know it is not possible to measure them both together!
- Define $W\left(\alpha^{*}, \alpha\right) \equiv \int \frac{\mathrm{d}^{2} \zeta}{\pi^{2}} \chi_{W}\left(\zeta^{*}, \zeta\right) e^{\omega^{*} \alpha-\zeta \alpha^{*}}$,

$$
\begin{aligned}
\int \frac{\mathrm{d}^{2} \zeta}{\pi^{2}} & \equiv \int_{-\infty}^{\infty} \frac{\mathrm{d} \zeta_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \zeta_{2}}{\pi}, \quad \zeta^{*} \alpha-\zeta \alpha^{*}=2 j \zeta_{1} \alpha_{2}-2 j \zeta_{2} \alpha_{1} \\
\chi_{W}\left(\zeta^{*}, \zeta\right) & =\int \mathrm{d}^{2} \alpha W\left(\alpha^{*}, \alpha\right) e^{-\zeta^{*} \alpha+\zeta \alpha^{*}}
\end{aligned}
$$

Wigner function of a coherent state

- Verify that $\int \mathrm{d}^{2} \alpha W\left(\alpha^{*}, \alpha\right)=1$
- Consider coherent state $|\beta\rangle$
$\chi_{W}\left(\zeta^{*}, \zeta\right)=\langle\beta| e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^{*} \hat{a}}|\beta\rangle e^{-|\zeta|^{2} / 2}=e^{\zeta \beta^{*}-\zeta^{*} \beta} e^{-|\zeta|^{2} / 2}$
$W\left(\alpha^{*}, \alpha\right)=\frac{e^{-2|\alpha-\beta|^{2}}}{\pi / 2}$
- Two S.I. Gaussian random variables each with variance $1 / 4$ and means β_{1} and β_{2} respectively

Wigner function of a number state $|n\rangle$

- Evaluate $W\left(\alpha^{*}, \alpha\right)=\int \frac{\mathrm{d}^{2} \zeta}{\pi^{2}} L_{n}\left(|\zeta|^{2}\right) e^{-|\zeta|^{2} / 2} e^{\zeta^{*} \alpha-\zeta \alpha^{*}}$
$W\left(\alpha^{*}, \alpha\right)=\frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} r r L_{n}\left(r^{2}\right) e^{-r^{2} / 2} J_{0}(2 r|\alpha|)=(-1)^{n} \frac{2}{\pi} L_{n}\left(4|\alpha|^{2}\right) e^{-2|\alpha|^{2}}$
- For number state $|0\rangle, L_{0}(z)=1$

$$
W\left(\alpha^{*}, \alpha\right)=\frac{2}{\pi} e^{-2|\alpha|^{2}}
$$

- For number state $|1\rangle, L_{1}(z)=(1-z)$

$$
W\left(\alpha^{*}, \alpha\right)=\frac{2}{\pi}\left(4|\alpha|^{2}-1\right) e^{-2|\alpha|^{2}}<0,|\alpha|<\frac{1}{2}
$$

- $W(\alpha)<0$ not necessary for non-classicality

Upcoming topics...

- Single mode quantum optics, continued
- More on Characteristic functions and Wigner functions
- Measurement of the \hat{a} operator
- Some more examples and applications
- Gaussian vs. non-Gaussian states

