

Photonic Quantum Information Processing OPTI 647: Lecture 7

Saikat Guha September 17, 2019

Associate Professor College of Optical Sciences Meinel 523

- Recap of squeezed states
- Phase space representations of states

Recap of Lecture 6

- Quadrature eigenkets $\hat{a}_1 |\alpha_1\rangle_1 = \alpha_1 |\alpha_1\rangle_1$, $\hat{a}_2 |\alpha_2\rangle_2 = \alpha_2 |\alpha_2\rangle_2$
 - Wavefunctions $\psi(\alpha_1) \equiv {}_1\langle \alpha_1 | \psi \rangle$ and $\Psi(\alpha_2) \equiv {}_2\langle \alpha_2 | \psi \rangle$ are a FT pair
 - Main result that led us to that: $_1\langle \alpha_1 | \alpha_2 \rangle_2 = e^{2j\alpha_2\alpha_1}/\sqrt{\pi}$
 - Proof involved "translation operators"

 $\hat{A}_1(\xi) \equiv \exp(-2j\xi\hat{a}_2); \ -\infty < \xi < \infty \ ; \hat{A}_1(\xi)|\alpha_1\rangle_1 = |\alpha_1 + \xi\rangle_1$

 $\hat{A}_2(\xi) \equiv \exp(2j\xi\hat{a}_1); \ -\infty < \xi < \infty \quad ; \hat{A}_2(\xi)|\alpha_2\rangle_2 = |\alpha_2 + \xi\rangle_2$

– Eigenkets $|\alpha_1\rangle_1$ and $|\alpha_2\rangle_2$: infinite-energy (unphysical) states

- Minimum uncertainly product (MUP) states
 - We used equality condition in derivation of $\langle \Delta \hat{a}_2^2 \rangle \langle \Delta \hat{a}_1^2 \rangle \ge 1/16$ to derive most general form of a state that meets equality

$$\psi(\alpha_1) = \frac{\exp\left(\left[2j\langle\Delta\hat{a}_2\rangle\alpha_1 - j\langle\Delta\hat{a}_1\rangle\langle\Delta\hat{a}_2\rangle - (\alpha_1 - \langle\Delta\hat{a}_1\rangle)^2\right]/4\langle\Delta\hat{a}_1^2\rangle\right)}{(2\pi\langle\Delta\hat{a}_1^2\rangle)^{1/4}}$$
$$\Psi(\alpha_2) = \frac{\exp\left(\left[-2j\langle\Delta\hat{a}_1\rangle\alpha_2 + j\langle\Delta\hat{a}_1\rangle\langle\Delta\hat{a}_2\rangle - (\alpha_2 - \langle\Delta\hat{a}_2\rangle)^2\right]/4\langle\Delta\hat{a}_2^2\rangle\right)}{(2\pi\langle\Delta\hat{a}_2^2\rangle)^{1/4}}$$

- Define $\hat{b} \equiv \mu \hat{a} + \nu \hat{a}^{\dagger}, \ \mu, \nu \in \mathbb{C}, \ |\mu|^2 |\nu|^2 = 1$
 - Verify that $[\hat{b}, \hat{b}^{\dagger}] = 1$ still holds
 - $\hat{b}|\beta;\mu,\nu\rangle = \beta|\beta;\mu,\nu\rangle, \ \mu,\nu \in \mathbb{C}, \ |\mu|^2 |\nu|^2 = 1$
 - $\hat{N}_b|n;\mu,\nu\rangle = n|n;\mu,\nu\rangle, \ \mu,\nu\in\mathbb{C}, \ |\mu|^2 |\nu|^2 = 1$ CON basis states
 - Mean, $\langle \hat{a} \rangle = \langle \beta; \mu, \nu | \hat{a} | \beta; \mu, \nu \rangle = \mu^* \beta \nu \beta^*$
- Prove that:
 - Mean photon number of the state $|eta;\mu,
 u
 angle$ is given by:

$$\langle \hat{N} \rangle = \langle \hat{a}^{\dagger} \hat{a} \rangle = |\langle \hat{a} \rangle|^2 + |\nu|^2$$
 Problem 29

- Hint: $\hat{a} = \mu^* \hat{b} \nu \hat{b}^{\dagger}$
- Even for $\langle \hat{a} \rangle = 0, \langle \hat{N} \rangle = |\nu|^2$

- Second moment, $\langle \hat{a}^2 \rangle = \langle \hat{a}^{\dagger 2} \rangle^* = \mu^{*2} \beta^2 + \nu^2 \beta^{*2} - 2\mu^* \nu |\beta|^2 - \mu^* \nu$

Problem 30

Quadrature variances of squeezed state

• MUP states are "squeezed" states

- Bogoliubov transformation $\hat{b} \equiv \mu \hat{a} + \nu \hat{a}^{\dagger}, \ \mu, \nu \in \mathbb{C}, \ |\mu|^2 - |\nu|^2 = 1$

- Satisfies same commutation relation: $[\hat{b}, \hat{b}^{\dagger}] = [\hat{a}, \hat{a}^{\dagger}] = 1$
- "Coherent states" of \hat{b} satisfy MUP cond.: $\hat{b}|\beta;\mu,\nu\rangle = \beta|\beta;\mu,\nu\rangle, \beta \in \mathbb{C}$
- "Number states": $\hat{N}_b \equiv \hat{b}^{\dagger}\hat{b}$, $\hat{N}_b|n;\mu,\nu\rangle = n|n;\mu,\nu\rangle$, $\langle m;\mu,\nu|n;\mu,\nu\rangle = \delta_{mn}$
- Mean field, $\langle \hat{a} \rangle = \langle \beta; \mu, \nu | \hat{a} | \beta; \mu, \nu \rangle = \mu^* \beta \nu \beta^*$
- Mean photon number, $\langle \hat{N}
 angle = \langle \hat{a}^{\dagger} \hat{a}
 angle = |\langle \hat{a}
 angle|^2 + |
 u|^2$

• Prove that:
$$\langle \Delta \hat{a}_1^2 \rangle = \frac{|\mu - \nu|^2}{4}, \ \langle \Delta \hat{a}_2^2 \rangle = \frac{|\mu + \nu|^2}{4}$$
 Problem 31

- A few comments
 - Coherent state is a special case, $\mu=1, \nu=0$
 - Optical Parametric Amplifier (OPA): a device that realizes the Bogoliubov transformation (we will do a proper nonlinear-optics EM theory derivation of it later)

- Quadrature variances, $\langle \Delta \hat{a}_1^2 \rangle = \frac{|\mu \nu|^2}{4}, \ \langle \Delta \hat{a}_2^2 \rangle = \frac{|\mu + \nu|^2}{4}$ • $|\mu - \nu|^2 = |\mu|^2 + |\nu|^2 - 2\text{Re}(\mu^*\nu)$
- If $\mu^*\nu > 0$ and real
 - $-2\operatorname{Re}(\mu^*\nu) = 2|\mu^*\nu| = 2|\mu\nu|$ $-|\mu-\nu|^2 = (|\mu|-|\nu|)^2 \text{ and } |\mu+\nu|^2 = (|\mu|+|\nu|)^2$ $-\langle\Delta\hat{a}_1^2\rangle\langle\Delta\hat{a}_2^2\rangle = \frac{1}{16}\left((|\mu|-|\nu|)^2(|\mu|+|\nu|)^2\right) = \frac{1}{16}(|\mu|^2-|\nu|^2)^2 = \frac{1}{16}$
- If $\mu^*\nu < 0$ and real
 - $-2\operatorname{Re}(\mu^*\nu) = -2|\mu^*\nu| = -2|\mu\nu|$ - $|\mu - \nu|^2 = (|\mu| + |\nu|)^2$ and $|\mu + \nu|^2 = (|\mu| - |\nu|)^2$ - $\langle \Delta \hat{a}_1^2 \rangle \langle \Delta \hat{a}_2^2 \rangle = \frac{1}{16} ((|\mu| + |\nu|)^2 (|\mu| - |\nu|)^2) = \frac{1}{16} (|\mu|^2 - |\nu|^2)^2 = \frac{1}{16}$
- Squeezed state is MUP iff $\mu^* \nu$ is real

Time dependent annihilation operator

- So far, we have been ignoring the oscillatory term in the field operator $\hat{a}(t) = \hat{a}e^{-j\omega t}$
 - Coherent state can be thought of as a fixed complex number only when we station ourselves at a fixed "phase reference" (a phase modulo 2π)
 - $-\langle \Delta \hat{a}_1^2(t) \rangle = \langle \Delta \hat{a}_2^2(t) \rangle = \frac{1}{4}, \ \forall t$: stays MUP all the time
- For a squeezed state, $|\beta; \mu, \nu\rangle$ - $\langle \Delta \hat{a}_1^2(t) \rangle = \frac{|\mu - \nu e^{-2j\omega t}|^2}{4}$ and $\langle \Delta \hat{a}_2^2(t) \rangle = \frac{|\mu + \nu e^{-2j\omega t}|^2}{4}$

– MUP only at times when $\mu^* \nu e^{-2j\omega t} \in \mathbb{R}$

 For most of the forthcoming development, we will station ourselves at a fixed phase reference and hence drop the time index

Physical meaning of squeezed states

(d) Real quadrature

(c) Wigner distribution

Figure courtesy, Dr. Baris Erkmen, MIT Ph.D. 2008

$$|eta;\mu,
u
angle$$

Jeff Shapiro and

Horace Yuen

$$|lpha;\imath$$

Carl Caves

 $\mu = \cosh r$ $\nu = e^{i\theta} \sinh r.$

VS..

 $\beta = \mu \alpha + \nu \alpha^*$

Amplitude-squeezed state $\theta = 3\pi/2$

(c) Wigner distribution

SNR optimal state under quadrature measurements

$$SNR_{quadrature} = \frac{\langle \hat{a}_1 \rangle^2}{\langle \Delta \hat{a}_1^2 \rangle} = \frac{\left(Re(\alpha e^{j\theta})\right)^2}{1/4} = 4N\cos^2\theta$$
$$SNR_{number} \equiv \frac{\langle \hat{N} \rangle^2}{\langle \Delta \hat{N}^2 \rangle} = |\alpha|^2 = N$$

• Let us derive what state has the highest SNR for \hat{a}_1 quadrature measurement

$$\mathrm{SNR} \equiv \frac{\langle \hat{a}_1 \rangle^2}{\langle \Delta \hat{a}_1^2 \rangle}$$

– under a mean photon number constraint $\langle \hat{a}^{\dagger} \hat{a} \rangle \leq N$

1

• Express mean photon number as

$$\begin{aligned} \langle \hat{a}^{\dagger} \hat{a} \rangle &= \langle (\hat{a}_1 - j\hat{a}_2)(\hat{a}_1 + j\hat{a}_2) \rangle = \langle \hat{a}_1^2 \rangle + \langle \hat{a}_2^2 \rangle - \frac{1}{2} \\ &= \langle \Delta \hat{a}_1^2 \rangle + \langle \hat{a}_1 \rangle^2 + \langle \Delta \hat{a}_2^2 \rangle + \langle \hat{a}_2 \rangle^2 - \frac{1}{2} \leq N \end{aligned}$$

• Rearranging terms,

$$\mathrm{SNR} \equiv \frac{\langle \hat{a}_1 \rangle^2}{\langle \Delta \hat{a}_1^2 \rangle} \leq \frac{N + 1/2 - \langle \Delta \hat{a}_2^2 \rangle - \langle \hat{a}_2 \rangle^2}{\langle \Delta \hat{a}_1^2 \rangle} - 1$$

– with equality when $\langle \hat{a}^{\dagger} \hat{a} \rangle = N$

– Also, SNR is maximized if $\langle \hat{a}_2 \rangle = 0$

– So, we have:
$$SNR = \frac{N + 1/2 - \langle \Delta \hat{a}_2^2 \rangle}{\langle \Delta \hat{a}_1^2 \rangle} - 1$$

• For fixed N and $\langle \Delta \hat{a}_1^2 \rangle$, SNR is maximum if $\langle \Delta \hat{a}_2^2 \rangle$ is as small as possible, i.e., $\langle \Delta \hat{a}_1^2 \rangle \langle \Delta \hat{a}_2^2 \rangle = 1/16$

– Setting
$$\langle \Delta \hat{a}_1^2 \rangle = x$$

- Resulting maximum SNR = 4N(N+1)

 What state would attain this? It must be MUP (since we used that to attain the equality condition)

- Consider squeezed state $|\beta;\mu,\nu
angle$

$$\begin{aligned} &- \langle \hat{a}_1 \rangle = \operatorname{Re}(\mu^*\beta - \nu\beta^*) \\ &- \langle \Delta \hat{a}_1^2 \rangle = \frac{|\mu - \nu|^2}{4} \\ &- \langle \hat{a}^\dagger \hat{a} \rangle = |\mu^* \beta - \nu\beta^*|^2 + |\nu|^2 \end{aligned}$$

- Take a squeezed state with following real parameters

$$\beta = \sqrt{N(N+1)}, \mu = (N+1)/\sqrt{2N+1}, \nu = N/\sqrt{2N+1}$$

- Show that it achieves, SNR = 4N(N+1)
- Find the mean, $\langle \hat{a}_1 \rangle$ and compare with mean $\langle \hat{a}_1 \rangle$ of a coherent state of same mean photon number N

Problem 32

Binary phase modulation for optical communications

- BPSK coherent states $|\psi_0\rangle = |\alpha\rangle, |\psi_1\rangle = |-\alpha\rangle$
 - Assume real lpha, and mean photon number, $N=lpha^2$
 - Inner product $\langle \psi_0 | \psi_1 \rangle \equiv \sigma = e^{-2\alpha^2} = e^{-2N}$
 - Minimum error probability of discrimination (equal priors)

$$P_{e,\min} = \frac{1 - \sqrt{1 - |\sigma|^2}}{2} = \frac{1 - \sqrt{1 - e^{-4N}}}{2} \approx \frac{1}{4}e^{-4N}, N \gg 1$$

- BPSK squeezed states, $|\psi_0\rangle = |\beta; \mu, \nu\rangle, |\psi_1\rangle = |-\beta; \mu, \nu\rangle$
 - Assume real β, μ, ν

Problem 3

- Inner product, $\langle \psi_0 | \psi_1 \rangle \equiv \sigma = e^{-2\beta^2}$
- Find $eta, \mu,
 u$ s.t. σ is minimized for given N and show that

$$P_{e,\min} = \frac{1 - \sqrt{1 - |\sigma|^2}}{2} = \frac{1 - \sqrt{1 - e^{-4N(N+1)}}}{2} \approx \frac{1}{4}e^{-4N^2}, N \gg 1$$

Mean field

• Variance

State	$\langle \Delta \hat{a}_1^2(t) \rangle$	$\langle \Delta \hat{a}_2^2(t) \rangle$
n angle	(2n+1)/4	(2n+1)/4
lpha angle	1/4	1/4
$ eta;\mu, u angle$	$ \mu - \nu e^{-2j\omega t} ^2/4$	$ \mu + \nu e^{-2j\omega t} ^2/4$

- Random variable $X \in \mathbb{R}$ with probability distribution function (pdf) $p_X(x), x \in \mathbb{R}$
- Characteristic function of X $M_X(jv) \equiv \langle e^{jvX} \rangle = \int_{-\infty}^{\infty} p_X(x) e^{jvx} dx$
- Inverse relation

$$p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} M_X(jv) e^{-jvx} dv$$

• Differentiating $M_X(jv)$ w.r.t. v repeatedly can be used to calculate moments of X, i.e., $E[X^n]$

A few quick exercises...

- Gaussian r.v. X $p_X(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$, $x \in \mathbb{R}$
 - Prove that $M_X(jv) = e^{jv\mu v^2\sigma^2/2}$ Problem 34(a)
 - Differentiate $\rm M_X$ (once, and then twice) to verify the mean and variance come out as μ and σ^2
- Poisson random variable N, $P_X[n] = \frac{e^{-\mu}\mu^n}{n!}, n = 0, 1, ...$
 - Prove that $M_X(jv) \equiv \langle e^{jvX} \rangle = e^{[\mu(e^{jv}-1)]}$
 - Differentiate $\rm M_{\rm X}$ (once, and then twice) to verify the mean and variance both come out as μ

Problem 34(b)

(Classical) characteristic function of a (quantum) quadrature measurement THE UNIVERSITY OF ARIZONA

- Suppose we measure \hat{a}_1 on state $|\psi
 angle$
 - Call the random variable associated with the (random) measurement outcome, as X_1
 - $-M_{X_1}(jv) \equiv \langle e^{jvX_1} \rangle = \int_{-\infty}^{\infty} p_{X_1}(x)e^{jvx}dx$ $= \langle \psi | \left(\int_{-\infty}^{\infty} dx \, e^{jvx} |x\rangle_{11} \langle x| \right) |\psi\rangle$ $= \langle \psi | \left(\int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty} \frac{(jv)^n}{n!} x^n |x\rangle_{11} \langle x| \right) |\psi\rangle$ $= \langle \psi | \left(\sum_{n=0}^{\infty} \frac{(jv)^n}{n!} \hat{a}_1^n \right) | \psi \rangle = \langle e^{jv\hat{a}_1} \rangle$

Let us introduce the Wigner characteristic function

$$\chi_W(\zeta^*,\zeta) \equiv \langle e^{-\zeta^*\hat{a} + \zeta\hat{a}^\dagger} \rangle$$

– $\zeta=\zeta_1+j\zeta_2$ is a complex argument

– Unless it is unclear, we use simply use $\chi_W(\zeta)$

• Prove that the characteristic function $M_{X_1}(jv)$ of the quadrature moment can be obtained from the Wigner characteristic function $\chi_W(\zeta)$ at $\zeta = jv/2$

- Hint: first show that $\chi_W(\zeta) = \langle e^{-2j \operatorname{Im}[\zeta^* \hat{a}]} \rangle$

Problem 35

- So, ... an appropriate slice of the Wigner c.f. gives us the quadrature distribution (c.f.) for measuring $\hat{a}_1 e^{j\theta}$ for any θ

Baker-Campbell-Hausdorff theorem

• Exponential of an operator $e^{\hat{C}} \equiv \sum_{n=1}^{\infty} \frac{\hat{C}^n}{n!}$

$$- \text{ If } \left[\hat{A}, [\hat{A}, \hat{B}] \right] = \left[\hat{B}, [\hat{A}, \hat{B}] \right] = 0$$

- then, $e^{\hat{A} + \hat{B}} = e^{\hat{A}} e^{\hat{B}} e^{-[\hat{A}, \hat{B}]/2} = e^{\hat{B}} e^{\hat{A}} e^{[\hat{A}, \hat{B}]/2}$

- Consider the Wigner c.f., and $\hat{A} = -\zeta^* \hat{a}, \hat{B} = \zeta \hat{a}^\dagger$ - We then get, $[\hat{A}, \hat{B}] = -|\zeta|^2 [\hat{a}, \hat{a}^\dagger] = -|\zeta|^2$
- Define:
 - Antinormally-ordered characteristic function

$$\chi_A(\zeta) \equiv \langle e^{-\zeta^* \hat{a}} e^{\zeta \hat{a}^\dagger} \rangle$$

Normally-ordered characteristic function

$$\chi_N(\zeta) \equiv \langle e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^* \hat{a}} \rangle$$

- Show that for any state, **Problem 36**

$$\chi_W(\zeta) = \chi_A(\zeta) e^{|\zeta|^2/2} = \chi_N(\zeta) e^{-|\zeta|^2/2}$$

Homodyne detection statistics on a number state

•
$$M_{X_1}(jv) = \chi_W(\zeta) \Big|_{\zeta = jv/2} = [\chi_N(\zeta)e^{-|\zeta|^2/2}] \Big|_{\zeta = jv/2}$$

 $= [\langle n | e^{\zeta \hat{a}^{\dagger}} e^{-\zeta^* \hat{a}} | n \rangle e^{-|\zeta|^2/2}] \Big|_{\zeta = jv/2}$
• $M_{X_1}(jv) = \left[\left(\sum_{m=0}^{\infty} \frac{\zeta^m}{m!} \langle n | \hat{a}^{\dagger m} \right) \left(\sum_{k=0}^{\infty} \frac{(-\zeta^*)^k}{k!} \hat{a}^k | n \rangle \right) e^{-|\zeta|^2/2} \right]_{\zeta = jv/2}$
 $= \left(\sum_{m=0}^n \frac{(jv/2)^m}{m!} \sqrt{\frac{n!}{(n-m)!}} \langle n - m | \right) \left(\sum_{k=0}^n \frac{(jv/2)^k}{k!} \sqrt{\frac{n!}{(n-k)!}} | n - k \rangle \right) e^{-v^2/8}$
 $= \left(\sum_{m=0}^n \frac{n!}{m!(n-m)!} \frac{(-v^2/4)^m}{m!} \right) e^{-v^2/8} = L_n(v^2/4)e^{-v^2/8},$

where

$$L_n(z) \equiv \sum_{m=0}^n (-1)^m \frac{n!}{m!(n-m)!} \frac{z^m}{m!},$$

Homodyne detection statistics on a number state (continued)

• Probability distribution function,

$$p_{X_1}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} L_n(v^2/4) e^{-v^2/8} e^{-jvx} dx$$

$$= \frac{2}{\pi} \frac{e^{-2x^2}}{2^n n!} [H_n(\sqrt{2}x)]^2$$

– where $H_n(z) = (-1)^n e^{z^2} \frac{d^n e^{-z^2}}{dz^n}$ is the nth Hermite polynomial

The "Wigner function": a quasiprobability

- FT of the characteristic function of \hat{a}_1 measurement which is $M_{X_1}(jv) = \chi_W(\xi)|_{jv/2}$, gives us the pdf $p_{X_1}(x)$
- What if we took a (2D) FT of the full Wigner function.
 Will it give us some sort of a pdf of measuring both quadratures together? But we know it is not possible to measure them both together!

• Define
$$W(\alpha^*, \alpha) \equiv \int \frac{\mathrm{d}^2 \zeta}{\pi^2} \chi_W(\zeta^*, \zeta) e^{\zeta^* \alpha - \zeta \alpha^*},$$

$$\int \frac{\mathrm{d}^2 \zeta}{\pi^2} \equiv \int_{-\infty}^{\infty} \frac{\mathrm{d}\zeta_1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}\zeta_2}{\pi}, \quad \zeta^* \alpha - \zeta \alpha^* = 2j\zeta_1 \alpha_2 - 2j\zeta_2 \alpha_1$$
$$\chi_W(\zeta^*, \zeta) = \int \mathrm{d}^2 \alpha \, W(\alpha^*, \alpha) e^{-\zeta^* \alpha + \zeta \alpha^*}$$

• Verify that
$$\int d^2 \alpha W(\alpha^*, \alpha) = 1$$

- Consider coherent state |eta
angle

$$\chi_W(\zeta^*,\zeta) = \langle \beta | e^{\zeta \hat{a}^\dagger} e^{-\zeta^* \hat{a}} | \beta \rangle e^{-|\zeta|^2/2} = e^{\zeta \beta^* - \zeta^* \beta} e^{-|\zeta|^2/2}$$

$$W(\alpha^*, \alpha) = \frac{e^{-2|\alpha - \beta|^2}}{\pi/2}$$

– Two S.I. Gaussian random variables each with variance 1/4 and means β_1 and β_2 respectively

• Evaluate
$$W(\alpha^*, \alpha) = \int \frac{\mathrm{d}^2 \zeta}{\pi^2} L_n(|\zeta|^2) e^{-|\zeta|^2/2} e^{\zeta^* \alpha - \zeta \alpha^*}$$

 $W(\alpha^*, \alpha) = \frac{2}{\pi} \int_0^\infty \mathrm{d}r \, r L_n(r^2) e^{-r^2/2} J_0(2r|\alpha|) = (-1)^n \frac{2}{\pi} L_n(4|\alpha|^2) e^{-2|\alpha|^2}$

• For number state $|0\rangle$, $L_0(z) = 1$

$$W(\alpha^*, \alpha) = \frac{2}{\pi} e^{-2|\alpha|^2}$$

• For number state $|1\rangle$, $L_1(z) = (1-z)$

$$W(\alpha^*, \alpha) = \frac{2}{\pi} (4|\alpha|^2 - 1)e^{-2|\alpha|^2} < 0, |\alpha| < \frac{1}{2}$$

• $W(\alpha) < 0$ not necessary for non-classicality

- Single mode quantum optics, continued
 - More on Characteristic functions and Wigner functions
 - Measurement of the \hat{a} operator
 - Some more examples and applications
 - Gaussian vs. non-Gaussian states