Photonic Quantum Information Processing OPTI 647: Lecture 5

Saikat Guha

September 10, 2019

Associate Professor
College of Optical Sciences Meinel 523

- Recap: observables in quantum mechanics
- Heisenberg Uncertainly Principle (HUP) and Minimum uncertainty product (MUP) states
- Homodyne detection

Observables in quantum mechanics

- Observable: Hermitian operator \hat{A}, i.e., $\hat{A}^{\dagger}=\hat{A}$
- $\hat{A}\left|a_{k}\right\rangle=a_{k}\left|a_{k}\right\rangle$
- Eigenvalues a_{k} are real valued
- "Measuring observable \hat{A} " = von Neumann measurement described by, $\left\{\Pi_{k}=\left|a_{k}\right\rangle\left\langle a_{k}\right|\right\}$
- If \hat{A} measured on the state $\hat{\rho}$,
- probability of outcome k, $P(k)=\left\langle a_{k}\right| \hat{\rho}\left|a_{k}\right\rangle$
- post-measurement state, $\left|a_{k}\right\rangle$
- Average value of measurement outcome

$$
\langle\hat{A}\rangle_{\hat{\rho}}=\sum_{k} a_{k} P(k)=\operatorname{Tr}(\rho \hat{A})
$$

Heisenberg uncertainty principle (HUP)

- Non-commuting observables, \hat{A} and \hat{B}
$-[\hat{A}, \hat{B}]=j \hat{C}$
- Define $\langle\hat{A}\rangle=\operatorname{Tr}(\hat{A} \rho)=\langle\psi| \hat{A}|\psi\rangle$, if $\rho=|\psi\rangle\langle\psi|$
- Define $\Delta \hat{A}=\hat{A}-\langle\hat{A}\rangle$
- Therefore, $\left\langle\Delta \hat{A}^{2}\right\rangle=\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}$
- Heisenberg uncertainly relation (we will prove it!)

$$
\left\langle\Delta \hat{A}^{2}\right\rangle\left\langle\Delta \hat{B}^{2}\right\rangle \geq \frac{1}{4}|\langle\hat{C}\rangle|^{2}
$$

- Mathematical meaning of non-commuting operators
- They are not simultaneously diagonalizable
- Physical meaning of non-commuting observables
- the observables cannot be simultaneously measured

Heisenberg uncertainty principle, contd.

- For two non-commuting observables, show that

$$
[\hat{A}, \hat{B}]^{\dagger}=-[\hat{A}, \hat{B}]
$$

Problem 15

- Since $[\hat{A}, \hat{B}]=j \hat{C}, \hat{C}$ is Hermitian, i.e., $\hat{C}^{\dagger}=\hat{C}$
- Multiply to verify that: $[\Delta \hat{A}, \Delta \hat{B}]=j \hat{C} \quad$ Problem 16
- Cauchy-Schwarz inequality $\left\langle X^{2}\right\rangle\left\langle Y^{2}\right\rangle \geq|\langle X Y\rangle|^{2}$:

$$
\left.\langle\psi| \Delta \hat{A}^{2}|\psi\rangle\langle\psi| \Delta \hat{B}^{2}|\psi\rangle \geq|\langle\psi| \Delta \hat{A} \Delta \hat{B}| \psi\right\rangle\left.\right|^{2}
$$

- With equality iff $\Delta \hat{A}|\psi\rangle=j \lambda \Delta \hat{B}|\psi\rangle$ for some $\lambda \in \mathbb{C}$

Heisenberg uncertainty principle, contd.

- The rest is algebra...

$$
\begin{aligned}
|\langle\psi| \Delta \hat{A} \Delta \hat{B}| \psi\rangle\left.\right|^{2} & \left.=\left|\langle\psi|\left(\frac{\Delta \hat{A} \Delta \hat{B}+\Delta \hat{B} \Delta \hat{A}+[\Delta \hat{A}, \Delta \hat{B}]}{2}\right)\right| \psi\right\rangle\left.\right|^{2} \\
& \left.=\left|\langle\psi|\left(\frac{\Delta \hat{A} \Delta \hat{B}+\Delta \hat{B} \Delta \hat{A}}{2}\right)\right| \psi\right\rangle+\left.\frac{j}{2}\langle\psi| \hat{C}|\psi\rangle\right|^{2} \\
& \left.=\left|\langle\psi|\left(\frac{\Delta \hat{A} \Delta \hat{B}+\Delta \hat{B} \Delta \hat{A}}{2}\right)\right| \psi\right\rangle\left.\right|^{2}+\left|\frac{\langle\psi| \hat{C}|\psi\rangle}{2}\right|^{2} \\
& \geq|\langle\psi| \hat{C}| \psi\rangle\left.\right|^{2} / 4
\end{aligned}
$$

- With equality iff $\langle\psi| \Delta \hat{A} \Delta \hat{B}|\psi\rangle=-\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle$

Heisenberg uncertainty principle, contd.

- So, we have shown: $\left.\langle\psi| \Delta \hat{A}^{2}|\psi\rangle\langle\psi| \Delta \hat{B}^{2}|\psi\rangle \geq|\langle\psi| \hat{C}| \psi\right\rangle\left.\right|^{2} / 4$

$$
\left\langle\Delta \hat{A}^{2}\right\rangle\left\langle\Delta \hat{B}^{2}\right\rangle \geq \frac{1}{4}|\langle\hat{C}\rangle|^{2}
$$

- With equality iff $\Delta \hat{A}|\psi\rangle=j \lambda \Delta \hat{B}|\psi\rangle$ for a real λ
- States $|\psi\rangle$ that meet the Heisenberg lower bound on the product of variances for a given pair of non-commuting observables are called "minimum uncertainly product" (MUP) states
- Note that the HUP is an "either or" proposition

Field quadrature operators

- Quadrature operators \hat{a}_{1} and \hat{a}_{2} defined as:

$$
\begin{array}{ll}
\hat{a}=\hat{a}_{1}+j \hat{a}_{2} & \hat{a}_{1}=\left(\hat{a}+\hat{a}^{\dagger}\right) / 2 \\
\hat{a}^{\dagger}=\hat{a}_{1}-j \hat{a}_{2} & \hat{a}_{2}=\left(\hat{a}-\hat{a}^{\dagger}\right) / 2 j
\end{array}
$$

- Show that Problem 17
(1) \hat{a}_{1} and \hat{a}_{2} are Hermitian operators
(2) Their commutator is given by $\left[\hat{a}_{1}, \hat{a}_{2}\right]=\frac{j}{2}$
- They are non-commuting observables
- Therefore, the HUP states that:

$$
\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle \geq \frac{1}{16}
$$

Quadrature measu - Mean, $\langle n| \hat{a}|n\rangle=0$

- Therefore, $\left\langle\hat{a}_{1}\right\rangle=\langle n| \hat{a}_{1}|n\rangle=0$ and $\left\langle\hat{a}_{2}\right\rangle=\langle n| \hat{a}_{2}|n\rangle=0$
- Second moment,

$$
\begin{aligned}
\langle n| \hat{a}_{1}^{2}|n\rangle & =\langle n|\left(\frac{\left[\hat{a}+\hat{a}^{\dagger}\right]^{2}}{4}\right)|n\rangle \\
& =\frac{\langle n| \hat{a}^{2}|n\rangle+\langle n| \hat{a} \hat{a}^{\dagger}|n\rangle+\langle n| \hat{a}^{\dagger} \hat{a}|n\rangle+\langle n| \hat{a}^{\dagger 2}|n\rangle}{4} \\
& =\frac{2\langle n| \hat{a}^{\dagger} \hat{a}|n\rangle+1}{4}=\frac{2 n+1}{4}
\end{aligned}
$$

- Uncertainly product for quadrature variances:

$$
\left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\left(\frac{2 n+1}{4}\right)^{2} \geq \frac{1}{16}
$$

Equality holds only for the vacuum state. Number states are not minimum uncertainly-product states

Quadrature measurement on coherent states

- Mean, $\langle\alpha| \hat{a}|\alpha\rangle=\alpha \equiv \alpha_{1}+j \alpha_{2}$
- Therefore, $\left\langle\hat{a}_{1}\right\rangle=\langle\alpha| \hat{a}_{1}|\alpha\rangle=\alpha_{1}$ and $\left\langle\hat{a}_{2}\right\rangle=\langle\alpha| \hat{a}_{2}|\alpha\rangle=\alpha_{2}$
- Second moment,

$$
\begin{aligned}
\langle\alpha| \hat{a}_{1}^{2}|\alpha\rangle & =\langle\alpha|\left(\frac{\left[\hat{a}+\hat{a}^{\dagger}\right]^{2}}{4}\right)|\alpha\rangle \\
& =\ldots
\end{aligned}
$$

- Complete this calculation and show that the uncertainly product for quadrature variances is:

$$
\begin{aligned}
& \left\langle\Delta \hat{a}_{1}^{2}\right\rangle=\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{4} \\
& \left\langle\Delta \hat{a}_{1}^{2}\right\rangle\left\langle\Delta \hat{a}_{2}^{2}\right\rangle=\frac{1}{16}, \forall \alpha
\end{aligned}
$$

Problem 18
Coherent states are minimum uncertainly product states

Signal-to-noise ratio

- Quadrature measurement on $|\alpha\rangle,|\alpha|^{2}=N$
$-\operatorname{SNR}_{\text {quadrature }} \equiv \frac{\left\langle\hat{a}_{1}\right\rangle^{2}}{\left\langle\Delta \hat{a}_{1}^{2}\right\rangle}=\frac{\operatorname{Re}(\alpha)}{1 / 4}=4 \operatorname{Re}(\alpha)$
- Measurement of $\hat{a}_{1} e^{j \phi}$ yields a Gaussian random variable with mean $\operatorname{Re}\left(\alpha e^{j \phi}\right)$ and variance $1 / 4$
- Number measurement on coherent state
- Prove that $\mathrm{SNR}_{\text {number }} \equiv \frac{\langle\hat{N}\rangle^{2}}{\left\langle\Delta \hat{N}^{2}\right\rangle}=|\alpha|^{2}=N$

Problem 19

- This is consistent with the fact that $P(n)=e^{-N} N^{n} / n!$, the Poisson distribution has mean N and variance N

Ideal direct direction for a strong pulse

When N is large, $Y \sim \operatorname{Gaussian}\left(\mu, \sigma^{2}\right), \mu=q G S N, \sigma^{2}=(q G S)^{2} N$

Honnooyne detection

THE UNIVERSITY

Assume for now that both $\alpha, \alpha_{\mathrm{LO}}$ are real, and $N_{\mathrm{LO}} \gg N$

$$
\begin{aligned}
& K_{+} \sim \operatorname{Poisson}\left(N_{+}\right) \sim \mathcal{N}\left(N_{+}, N_{+}\right) ; N_{+}=\left|\frac{\alpha+\alpha_{\mathrm{LO}}}{\sqrt{2}}\right|^{2} \\
& K_{-} \sim \operatorname{Poisson}\left(N_{-}\right) \sim \mathcal{N}\left(N_{-}, N_{-}\right) ; N_{-}=\left|\frac{\alpha-\alpha_{\mathrm{LO}}}{\sqrt{2}}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& \mu=q G S\left(N_{+}-N_{-}\right)=2 q G S \alpha \alpha_{\mathrm{LO}} \\
& \sigma^{2}=(q G S)^{2}\left(N_{+}+N_{-}\right)=(q G S)^{2}\left(\alpha^{2}+\alpha_{\mathrm{LO}}^{2}\right)
\end{aligned}
$$

Homodyne detection; quantum measurement of $\hat{a}_{1} e^{j \phi}$

- Local Oscillator (LO) is strong w.r.t. signal, $N_{\mathrm{LO}} \gg N$

$$
\begin{aligned}
& \alpha=\sqrt{N} e^{j \theta} \\
& \alpha_{\mathrm{LO}}=\sqrt{N_{\mathrm{LO}}} e^{j \phi} \\
& Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& \mu=S\left(N_{+}-N_{-}\right) \\
& \sigma^{2}=S^{2}\left(N_{+}+N_{-}\right)
\end{aligned}
$$

Substitute these, take $N_{\mathrm{LO}} \gg N$ limit and pick an appropriate

$$
K_{+} \sim \operatorname{Poisson}\left(N_{+}\right) \sim \mathcal{N}\left(N_{+}, N_{+}\right) ; N_{+}=\left|\frac{\alpha+\alpha_{\mathrm{LO}}}{\sqrt{2}}\right|^{2}
$$ scaling S, to show that: $Y \sim \mathcal{N}\left(\operatorname{Re}\left(\alpha e^{j \phi}\right), \frac{1}{4}\right)$

$$
K_{-} \sim \operatorname{Poisson}\left(N_{-}\right) \sim \mathcal{N}\left(N_{-}, N_{-}\right) ; N_{-}=\left|\frac{\alpha-\alpha_{\mathrm{LO}}}{\sqrt{2}}\right|^{2}
$$

Problem 20

Discriminating BPSK with Homodyne

$$
|\alpha\rangle \text { VS. }|-\alpha\rangle_{|\alpha\rangle \rightarrow \theta_{N} e^{j \theta}}^{\mid \alpha=} \rightarrow Y \sim \mathcal{N}\left(\operatorname{Re}\left(\alpha e^{j \theta_{\mathrm{LO}}}\right), \frac{1}{4}\right)
$$

$Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Rightarrow p_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(y-\mu)^{2} / 2 \sigma^{2}} \quad$ Gaussian probability distribution

Compare the probability or error achieved by Homodyne detection with that of the Kennedy receiver

Problem 21

$$
q=0, \theta_{\mathrm{LO}}=0
$$

$$
S:=p_{Y \mid X}(y \mid x)
$$

$$
x \nless 1
$$

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned} \quad S=\left(\begin{array}{c}
1-\frac{1}{2} \operatorname{erfc}(\sqrt{2 N}) \\
\frac{1}{2} \operatorname{erfc}(\sqrt{2 N})
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\frac{1}{2} \operatorname{erfc}(\sqrt{2 N}) \\
1-\frac{1}{2} \operatorname{erfc}(\sqrt{2 N})
\end{array}\right)
$$

Upcoming topics

- Quadrature eigenkets
- Squeezed states of light
- Phase space picture of quantum optical states
- Characteristic functions, and Wigner functions

