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« Recap: observables in quantum mechanics

« Heisenberg Uncertainly Principle (HUP) and
Minimum uncertainty product (MUP) states

 Homodyne detection
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Observable: Hermitian operatorfl, l.e., AT = A
Alag) = akla)
Eigenvalues aj. are real valued

“Measuring observable A” =von Neumann
measurement described by, {IIx = |ag)(ax|}
If A measured on the state p ,

— probability of outcome k, P(k) = (ax|p|ar)

— post-measurement state, |a )

— Average value of measurement outcome

(A); =) apP(k) = Tr(pA)
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leisenberg uncertainty principle (|

Non-commuting observables, A and B
~ Define (A) = Tr(Ap) = (Y| Alv),if p = [) (v
— Define AA = A — (A)
— Therefore, (AA2%) = (A?) — (A)?
Heisenberg uncertainly relation (we will prove it!)
. A 11 ~ |2
(AAABY) > 5 [(C)
Mathematical meaning of non-commuting operators
— They are not simultaneously diagonalizable

Physical meaning of non-commuting observables
— the observables cannot be simultaneously measured
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* For two non-commuting observables, show that
[./21, B]T = —[A, B] Problem 15
— Since [121, E] = jé, C Is Hermitian, i.e., Ct=C

+ Multiply to verify that: [AA, AB] = jC |Problem 16
» Cauchy-Schwarz inequality (X?)(Y?) > [(XY)|*:

(W AAZ ) (Y|AB2 ) > [(Y|AAAB[Y) |

— With equality iff AA|y) = jJAAB|y) for some A € C
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e Therestis a

[(Y|AAABY)|? =

|V

gebra...

~ ~ ~ ~ ~ ~ 2
AAAB + ABAA+ |[AAAB
(Wl ( FAPOATIAA ]> %)

AAAB + ABAA
(Y] 5

AAAB + ABAA
(Y] >

wiC)| /4

) )

2

) )+ 2 wlCl)

_|_

(¥|C|Y)

2

— With equality iff (10| AAAB|Y) = —(1)|ABAAJ)
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« So, we have shown: (p|AA%|[) ()| AB ) > )wré\w 2/4

(aA) AR = O]

— With equality iff AA|¢) = jJAAB|Y) for a real A

- States |¢) that meet the Heisenberg lower bound
on the product of variances for a given pair of
non-commuting observables are called
“minimum uncertainly product” (MUP) states

* Note that the HUP is an “either or” proposition
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« Quadrature operators a;and a, defined as:

a = a1 + jas i1 = (a+a')/2
T =@y — jas Go = (6 —a')/2j

Q>

— Show that Problem 17

(1) @1 and (o are Hermitian operators
(2) Their commutator is given by [G1, G2| = =
— They are non-commuting observables

 Therefore, the HUP states that:

1
Aas)(Aa3) > —
( CL1>< az) > 16
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* Mean, (n|a|ln) =0
— Therefore, (a41) = (n|ai|n) = 0 and (a2) = (n|az|n) =0
« Second moment,

. 6+ a'|?
) = tal (“HEE ) )
(nla?|n) + (nlaa! |n) + (nlataln) + (n]a'?n)

4
~ 2(nlaTaln)+1  2n+1
B 4 4

* Uncertainly product for quadrature variances:

5 Equality holds only for the
2n + 1 1 vacuum state. Number
~ 2 A2\
(Aay)(Aay) = ( A ) > 16 states are not minimum
uncertainly-product states




Quadrature measurement on ZAS
coherent states T b

e Mean, (alala) = a = a1 + jas
— Therefore, (G1) = (alai|a) = a1 and {(az2) = (alaz|a) = ay
« Second moment,

@ladla) = (ol (L) jo

« Complete this calculation and show that the
uncertainly product for quadrature variances is:

1
<A&%> _ <A&§> _ Z Problem 18
| Coher_ept states
(NG (AG2) = —, Yo uncertainly

Y
16 product states
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» Quadrature measurement on |a), |a|* = N

(@) Re(a)
— SN uadrature = ~ — =1
SNR quadrat (Aa?) /1 Re(a)

— Measurement of aie’? yields a Gaussian random
variable with mean Re(ae’®) and variance 1/4

* Number measurement on coherent state

A

(N)?
(AN2)

— Prove that SNRumber = — |a|* =N | Problem 19

— This is consistent with the fact that P(n) = e " N"/n!,
the Poisson distribution has mean N and variance N
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Square pulse Z(t) Photocurrent
: ; i (9) (g) (9 (q) i
0 T 012 KT

Mean photon number

N — E27 K ~ Poisson(N)

.—»z(t)»b—» S/OT(-)dt +Y = qGSK

When N is large, Y ~ Gaussian(u, 0?), p = ¢GSN, 0% = (¢GS)*N
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E N = E°T = o? . (4 Balanced detector
0 T Qv _|_ aLO > T \"
Q > )+
‘ > V2 . -
1/2 G -)PS/ i(t)dt=P>
Ero _ 1(t 0 Y
aLo) — : aLO> B, ()~ i-(1)
\/§ i (t =G(ig i
0 T
Nio = E}oT = aig
0 T E+E 2
B - B Blis (1)) = q( ﬂLf)) e (0,T]
V2

Assume for now that both &, 1,0 are real, and Ny,o > N

K, ~ Poisson(N_) ~N(Ny,N,); N, = Q ﬂt/gLo
Y = ¢GS(Ky — K_)

K_ ~ Poisson(N_) ~ N(N_,N_); N_ = |2 —ng
2 By picking the constant S 1
Y ~ N(,LL, o) ) appropriately, we get: Y ~ N (a, Z)
’u — QGS(N+ B N_) — QQGS()(O(LQ Shot noise Iimit/

02 = (qGS)} (N1 + N_) = (4GS)*(a® + afo)
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* Local Oscillator (LO) is strong w.r.t. signal, N0 > N

a=VNe’ ) >
[/ T
1/2 S/ it)dt=»Y
. 0
aro = /Npo €¢ laLo) —> -
i (t
’Z:_|_ t T
) \ S | QdiwK,

2 0 M
YNN(,U,O') 1/2 Y_S(K+_K_)
K= S(N-l- o N—) o — T

, laLo) s [ 0dids o A
o —S (N_+_—|—N_) Z_(t 0
Substitute these, take Nr.o > N . &+ are 2
limit and pick an appropriate £+ ™~ Poisson(Ny) ~ N(Ny, Ny ); Ny = NG
scaling S, to show that: e
oo 1 K_ ~ Poisson(N_) ~ N(N_,N_); N_ = LO
~ Jjo\ = ) 3
Vi~ N(Re(ae™), 1) Toropiem 20 V2
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|C¥> Vs, | - C¥> o)y = Oro YNN(Re(ozejOLO),1>

9 =000 =0

Compare the probability or error
achieved by Homodyne detection
with that of the Kennedy receiver

Problem 21
S = py|x (y|z) —“

1
1 2 S
X \ : erfc(z) = %/Z e U dt
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* Quadrature eigenkets
* Squeezed states of light

* Phase space picture of quantum optical states
— Characteristic functions, and Wigner functions



