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Plan for today

• Recap: observables in quantum mechanics
• Heisenberg Uncertainly Principle (HUP) and 

Minimum uncertainty product (MUP) states
• Homodyne detection



Observables in quantum mechanics

• Observable: Hermitian operator     , i.e.,
•
• Eigenvalues      are real valued
• “Measuring observable    ”  = von Neumann 

measurement described by,
• If      measured on the state    , 

– probability of outcome k,
– post-measurement state,
– Average value of measurement outcome
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Heisenberg uncertainty principle (HUP)

• Non-commuting observables,      and
–
– Define 
– Define
– Therefore,

• Heisenberg uncertainly relation (we will prove it!)

• Mathematical meaning of non-commuting operators
– They are not simultaneously diagonalizable

• Physical meaning of non-commuting observables
– the observables cannot be simultaneously measured
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[Â, B̂] = jĈ
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Heisenberg uncertainty principle, contd.

• For two non-commuting observables, show that

– Since                     ,     is Hermitian, i.e.,
• Multiply to verify that:
• Cauchy-Schwarz inequality                                    :

– With equality iff for some
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h |�Â2| ih |�B̂2| i � |h |�Â�B̂| i|2
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Heisenberg uncertainty principle, contd.

• The rest is algebra…

– With equality iff
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Heisenberg uncertainty principle, contd.

• So, we have shown:

– With equality iff for a real

• States      that meet the Heisenberg lower bound 
on the product of variances for a given pair of 
non-commuting observables are called 
“minimum uncertainly product” (MUP) states

• Note that the HUP is an “either or” proposition
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Field quadrature operators

• Quadrature operators     and      defined as:

– Show that 
(1)       and       are Hermitian operators
(2) Their commutator is given by

– They are non-commuting observables
• Therefore, the HUP states that:
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1

16



Quadrature measurement on number states

• Mean,
– Therefore,                                  and

• Second moment,

• Uncertainly product for quadrature variances:
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Quadrature measurement on 
coherent states
• Mean,

– Therefore,                                  and
• Second moment,

• Complete this calculation and show that the 
uncertainly product for quadrature variances is:
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Signal-to-noise ratio

• Quadrature measurement on

–

– Measurement of             yields a Gaussian random 
variable with mean                 and variance 1/4 

• Number measurement on coherent state

– Prove that

– This is consistent with the fact that                               ,                      
the Poisson distribution has mean N and variance N
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Ideal direct direction for a strong pulse
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Homodyne detection
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Balanced detector
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Homodyne detection; quantum 
measurement of  
• Local Oscillator (LO) is strong w.r.t. signal,
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Substitute these, take         
limit and pick an appropriate 
scaling S, to show that:
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Discriminating BPSK with Homodyne
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Compare the probability or error 
achieved by Homodyne detection 
with that of the Kennedy receiver
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Upcoming topics

• Quadrature eigenkets
• Squeezed states of light
• Phase space picture of quantum optical states

– Characteristic functions, and Wigner functions


