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Plan for today A’w
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Tracing out a quantum system
Positive operator valued measure
Quantizing the field

Heisenberg Uncertainly Principle (HUP) and
Minimum uncertainty product (MUP) states
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Recap oo = (n|
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Coherent state is always single mode | = i (7;) n)

“splitting” a coherent state: product of coherent states
Classical state is a mixture of coherent states
— Single mode classical state p = / P(a)|a) (a|d*a

* P function C

— n-mode classical state p = / Pla)|a){ald™a

n

where |@) = |a1) ... |ay,)

Distinguishing equally-likely states,{|§m>, [2)} 5 (Prlahe) = o
the minimum average Pr(error), P. = [1 ~ m]



Subsystem: concept of “tracing out” Aw
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Consider a state of two modes, pAB
The (marginal) state of mode A is given by

pa=Trp(pan)

= > B nlpAB|n

n=0° Orthonormal basis
for mode B
| _10)]1) +11)]0) _10){0] + 1) (1]
Example: [YaB) = 7% pA = 5

« Fact: if guantum systems A and B are entangled,
the reduced states of A or B are both mixed states
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General quantum measurement: POVM e
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* Positive operator valued measure (POVM)

operators {II; } , 7 =1,..., N

— Hermitian: H;L- = 11,
— Positive: 11, > 0

— Complete: Z 1, =1
J
Measurement statistics

Special case: If POVM elements are
orthogonal projectors, it is a projective
measurement. Projective measurement
described by orthonormal vectors {|w;) }),
are von Neumann measurements (with
POVM elements, 1I; = |w;)(w;]|)

One can construct POVM out of non-
orthogonal projectors  {|w;)}

p— 1L} —J
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Annihilation operator of a mode THE UNNERSITY
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* Recall fiel}c{l guantization:

E(t) =) aipi(t) == Lt Zazcbz

k=1
Coherent state of modes ¢;(t) Field operator for the set of
with complex field modes ¢;(?) , with modal
amplitudes, a; annihilation operators CLZ

with mode i excited in coh. st. |a;)

- Annihilation operator ¢ of a single mode
— Eigenstate is a coherent state, ala) = a|a)
— “Annihilates” photon number, aln) = /njn — 1)

) a'ln) =+vn+1jn+1)
— Number operator, N = a'a

— Show that, [4,a"] =aa' —a'a =1 | Problem9



The phase operator A
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» Application of a phase, Ug|a) = |ae®)
 The phase operator,

U, — SN _ ifaTa

« Show that random phase scrambling of any pure
state leads to a number diagonal state

27
pzf Us|h) ([T d6 ZP
0

— With P(n) = |(n|y)]? Problem 10



Coherent states resolve the identity Aw
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* Recall: =Y |n)(n|
* Prove that: =Y

1 .
= / ‘Oz> <Oz‘d2()z — T Problem 11
T Jc

* Coherent states are an “over-complete” basis

* They are not orthogonal (and hence cannot be
distinguished perfectly)

* They form a POVM with elements{Il,},a € C
o la)al

o —
T




Coherent state overcomplete basis le
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« Use the fact l/ o) (a|d?a = I to show that

any operator G can be expressed in terms of its
coherent state matrix elements, (a|G|p), i.e.,

= [ [T s

Problem 12

A AN

+ Hint: G = IGI
* Any state can be written in this “basis™:

1 > o
:aéw®mde®—<w>



Representation in the coherent state A
(overcomplete) basis is NOT unique e e

» Coherent state |¢)) = |5) can be expressed as:

) ) =
/w Yayd2a, (a) = {aly)

w(a) = (alf) = exp [a*5 = 5 (laf + |

« BUT, the P function of “classical states” is
unique. P function of |(3) is: P(a) = d(ax — 3)



The Q function le

OF ARIZONA

 Trace of an operator

() = Y (nlGim = [ % al6la)

T

n=0

» Since trace of a density operator is 1,

[ 2 alpla) =1

T

— (a|p|a) % 0,Va € C
— Q(a) = —{a|p|a), a € C is a proper probability distribution

_ We will later see this is the probability distribution of the
output of heterodyne detection on p



Examples of Q functions Aw
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» Coherent state p = |3)(S]

2 —|B—al®
Q) = ~{alpla) = 1D _
alm)? _ e ol

 Number state Q(a) = T - ™!

Evaluate the Q functions of the following two states:
Problem 13

« Catstate |¢) = No(Jo) +|—«)), p=|{)(¥]

— Use the correct value of N such that |¢)is normalized

A 2 o—lal?/N
e Thermal state p:/CP(a)\OMOé’d a ,Pla)=—=
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More on the coherent-state basis... Y
d2

. Show that: &:/—a\Oz)( \
Tr

it = [Tt a

. d*o
aa! =/—|a\ a)a
.

At da 2
Problem 14 a' a = — (Ja]” = 1)) (¢



Lets revisit some quantum mechanics le
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Observable: Hermitian operatorfl, l.e., AT = A
Alag) = akla)
Eigenvalues aj. are real valued

“Measuring observable A” =von Neumann
measurement described by, {IIx = |ag)(ax|}
If A measured on the state p ,

— probability of outcome k, P(k) = (ax|p|ar)

— post-measurement state, |a )

— Average value of measurement outcome

(A); =) apP(k) = Tr(pA)
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leisenberg uncertainty principle (|

Non-commuting observables, A and B
~ Define (A) = Tr(Ap) = (Y| Alv),if p = [) (v
— Define AA = A — (A)
— Therefore, (AA2%) = (A?) — (A)?
Heisenberg uncertainly relation (we will prove it!)
. A 11 ~ |2
(AAABY) > 5 [(C)
Mathematical meaning of non-commuting operators
— They are not simultaneously diagonalizable

Physical meaning of non-commuting observables
— the observables cannot be simultaneously measured



leisenberg uncertainty principle, contd. Aw
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* For two non-commuting observables, show that
[./21, B]T = —[A, B] Problem 15
— Since [121, E] = jé, C Is Hermitian, i.e., Ct=C

+ Multiply to verify that: [AA, AB] = jC |Problem 16
» Cauchy-Schwarz inequality (X?)(Y?) > [(XY)|*:

(W AAZ ) (Y|AB2 ) > [(Y|AAAB[Y) |

— With equality iff AA|y) = jJAAB|y) for some A € C



leisenberg uncertainty principle, contd.

A
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e Therestis a

[(Y|AAABY)|? =

|V

gebra...

~ ~ ~ ~ ~ ~ 2
AAAB + ABAA+ |[AAAB
(Wl ( FAPOATIAA ]> %)

AAAB + ABAA
(Y] 5

AAAB + ABAA
(Y] >

wiC)| /4

) )

2

) )+ 2 wlCl)

_|_

(¥|C|Y)

2

— With equality iff (10| AAAB|Y) = —(1)|ABAAJ)



leisenberg uncertainty principle, contd. Aw
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« So, we have shown: (p|AA%|[) ()| AB ) > )wré\w 2/4

(aA) AR = O]

— With equality iff AA|¢) = jJAAB|Y) for a real A

- States |¢) that meet the Heisenberg lower bound
on the product of variances for a given pair of
non-commuting observables are called
“minimum uncertainly product” (MUP) states

* Note that the HUP is an “either or” proposition



Field quadrature operators A
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« Quadrature operators a;and a, defined as:

a = a1 + jas i1 = (a+a')/2
T =@y — jas Go = (6 —a')/2j

Q>

— Show that Problem 17

(1) @1 and (o are Hermitian operators
(2) Their commutator is given by [G1, G2| = =
— They are non-commuting observables

 Therefore, the HUP states that:

1
Aas)(Aa3) > —
( CL1>< az) > 16



Quadrature measurement on number stateszuwlmﬁy
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* Mean, (n|a|ln) =0
— Therefore, (a41) = (n|ai|n) = 0 and (a2) = (n|az|n) =0
« Second moment,

. 6+ a'|?
) = tal (“HEE ) )
(nla?|n) + (nlaa! |n) + (nlataln) + (n]a'?n)

4
~ 2(nlaTaln)+1  2n+1
B 4 4

* Uncertainly product for quadrature variances:

5 Equality holds only for the
2n + 1 1 vacuum state. Number
~ 2 A2\
(Aay)(Aay) = ( A ) > 16 states are not minimum
uncertainly-product states




Quadrature measurement on ZAS
coherent states T b

e Mean, (alala) = a = a1 + jas
— Therefore, (G1) = (alai|a) = a1 and {(az2) = (alaz|a) = ay
« Second moment,

@ladla) = (ol (L) jo

« Complete this calculation and show that the
uncertainly product for quadrature variances is:

1
<A&%> _ <A&§> _ Z Problem 18
| Coher_ept states
(NG (AG2) = —, Yo uncertainly

Y
16 product states
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» Quadrature measurement on |a), |a|* = N

(@) Re(a)
— SN uadrature = ~ — =1
SNR quadrat (Aa?) /1 Re(a)

— Measurement of aie’? yields a Gaussian random
variable with mean Re(ae’®) and variance 1/4

* Number measurement on coherent state

A

(N)?
(AN2)

— Prove that SNRumber = — |a|* =N | Problem 19

— This is consistent with the fact that P(n) = e " N"/n!,
the Poisson distribution has mean N and variance N



Homodyne detection; quantum ZAS
measurement of a; ¢/¢ S
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* Local Oscillator (LO) is strong w.r.t. signal, N0 > N

. i (1
a=VNe ) BN
T
1/2 S/ i(t)dt=» Y
. 0
aLo = v Npo e? laro) —>
i (t
’Z,_|_(t T
) ‘ — S | (di>K
2 0 \
Y ~ N(p,07) 1/2 Y = S(Ky — K_)
K= S(N+ o N—) « —_ I
, laLo) s [ 0dids o A
o =295 (N_+_—|—N_) 2_(t 0
Substitute these, take Ni.o > N . a+aro |’
limit and pick an appropriate X+ ~ Poisson(N) ~ NNy, Ny Ny = /2
scaling S, to show that:

ooy 1 K_ ~ Poisson(N_) ~N(N_,N_); N_ = o — QLO
¥ V| Belae ) 4) Problem 20

N



Upcoming topics Aw
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* Quadrature eigenkets
* Squeezed states of light

* Phase space picture of quantum optical states
— Characteristic functions, and Wigner functions



