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Plan for today

• Tracing out a quantum system
• Positive operator valued measure
• Quantizing the field
• Heisenberg Uncertainly Principle (HUP) and 

Minimum uncertainty product (MUP) states



Recap

• Coherent state is always single mode
• “splitting” a coherent state: product of coherent states
• Classical state is a mixture of coherent states

– Single mode classical state
• P function

– n-mode classical state

• Distinguishing equally-likely states,                           
the minimum average Pr(error),
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Subsystem: concept of “tracing out”

• Consider a state of two modes,
• The (marginal) state of mode A is given by

• Example:

• Fact: if quantum systems A and B are entangled, 
the reduced states of A or B are both mixed states

Orthonormal basis 
for mode B



General quantum measurement: POVM

• Positive operator valued measure (POVM) 

operators

– Hermitian:

– Positive:

– Complete:

• Measurement statistics
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Special case: If POVM elements are 

orthogonal projectors, it is a projective 
measurement. Projective measurement 
described by orthonormal vectors       ), 

are von Neumann measurements (with

POVM elements,                       )

One can construct POVM out of non-

orthogonal projectors

{|wii}

⇧j = |wjihwj |

{|wii}



Annihilation operator of a mode

• Recall field quantization:

• Annihilation operator     of a single mode
– Eigenstate is a coherent state,
– “Annihilates” photon number,

– Number operator,

– Show that,
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amplitudes, ai
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The phase operator

• Application of a phase,
• The phase operator,

• Show that random phase scrambling of any pure 
state leads to a number diagonal state

– With
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Coherent states resolve the identity

• Recall:
• Prove that:

• Coherent states are an “over-complete” basis
• They are not orthogonal (and hence cannot be 

distinguished perfectly)
• They form a POVM with elements
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Coherent state overcomplete basis

• Use the fact                                  to show that 

any operator      can be expressed in terms of its 
coherent state matrix elements,             , i.e.,

• Hint:
• Any state can be written in this “basis”:
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Representation in the coherent state 
(overcomplete) basis is NOT unique

• Coherent state                 can be expressed as:

• (1) 

• (2) 

• BUT, the P function of “classical states” is 
unique. P function of        is: 
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The Q function

• Trace of an operator

• Since trace of a density operator is 1,

–
– is a proper probability distribution
– We will later see this is the probability distribution of the 

output of heterodyne detection on 
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Examples of Q functions

• Coherent state

• Number state

Evaluate the Q functions of the following two states:

• Cat state                                       , 
– Use the correct value of       such that      is normalized

• Thermal state
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More on the coherent-state basis…

• Show that: â =
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Lets revisit some quantum mechanics

• Observable: Hermitian operator     , i.e.,
•
• Eigenvalues      are real valued
• “Measuring observable    ”  = von Neumann 

measurement described by,
• If      measured on the state    , 

– probability of outcome k,
– post-measurement state,
– Average value of measurement outcome
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Heisenberg uncertainty principle (HUP)

• Non-commuting observables,      and
–
– Define 
– Define
– Therefore,

• Heisenberg uncertainly relation (we will prove it!)

• Mathematical meaning of non-commuting operators
– They are not simultaneously diagonalizable

• Physical meaning of non-commuting observables
– the observables cannot be simultaneously measured
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hÂi = Tr(Â⇢) = h |Â| i, B7 ⇢ = | ih |
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Heisenberg uncertainty principle, contd.

• For two non-commuting observables, show that

– Since                     ,     is Hermitian, i.e.,
• Multiply to verify that:
• Cauchy-Schwarz inequality                                    :

– With equality iff for some
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Heisenberg uncertainty principle, contd.

• The rest is algebra…

– With equality iff
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Heisenberg uncertainty principle, contd.

• So, we have shown:

– With equality iff for a real

• States      that meet the Heisenberg lower bound 
on the product of variances for a given pair of 
non-commuting observables are called 
“minimum uncertainly product” (MUP) states

• Note that the HUP is an “either or” proposition
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Field quadrature operators

• Quadrature operators     and      defined as:

– Show that 
(1)       and       are Hermitian operators
(2) Their commutator is given by

– They are non-commuting observables
• Therefore, the HUP states that:
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Quadrature measurement on number states

• Mean,
– Therefore,                                  and

• Second moment,

• Uncertainly product for quadrature variances:
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✓
2n+ 1

4

◆2

� 1

16



Quadrature measurement on 
coherent states
• Mean,

– Therefore,                                  and
• Second moment,

• Complete this calculation and show that the 
uncertainly product for quadrature variances is:
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Signal-to-noise ratio

• Quadrature measurement on

–

– Measurement of             yields a Gaussian random 
variable with mean                 and variance 1/4 

• Number measurement on coherent state

– Prove that

– This is consistent with the fact that                               ,                      
the Poisson distribution has mean N and variance N
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Homodyne detection; quantum 
measurement of  
• Local Oscillator (LO) is strong w.r.t. signal,
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Upcoming topics

• Quadrature eigenkets
• Squeezed states of light
• Phase space picture of quantum optical states

– Characteristic functions, and Wigner functions


