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Outline for today

• Coherent states and linear optics
• Quantizing the field
• Distinguishing pure states



General pure state of a single mode

If we do ideal direct detection of mode         , the total number of 
photons K is a Poisson random variable of mean N

�(t)

Mode         , a quantum system, is excited in a coherent state�(t) |↵i ,↵ 2 C

Mode         , a quantum system, is excited in a number state�(t) |ni, n 2 {0, 1, . . . ,1}

If we do ideal direct detection of mode         , the total number of 
photons K = n (exactly so; K is not a random variable).

�(t)

A mode of ideal laser light is in a coherent state. 
Number (Fock) state of a given mode is very hard to produce 
experimentally

There are infinitely many other types of “states” of the mode        . 
Coherent state and Fock state are just two example class of states

�(t)

|ni, n 2 {0, 1, . . . ,1} Fock states of a mode are special: they form an orthonormal 
basis that spans any general quantum state        of that mode
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This orthogonality 
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Coherent state as a quantum state
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Ideal photon detection is a von Neumann quantum measurement described 

by projectors,{|nihn|} , n = 0, 1, . . . ,1
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Fock states can 

be thought of as 

infinite-length 

unit-length 

column vectors 

corresponding to 

the orthogonal 

axes of an 

infinite-

dimensional 

vector space

. . .

Ideal direct detection on a coherent state      produces outcome “n” 

(i.e., n “clicks”) with probability, pn = |hn|↵i|2 = |cn|2 =
e�NNn

n!

|↵i

Poisson detection statistics in a laser pulse is a result of the projection of the 

quantum state of the laser pulse—a coherent state–on to one of the Fock states



Coherent states and “linear-optical 
transformations” (beam-splitters)

|↵1i

|↵2i

⌘ 2 (0, 1)

|�1i

|�2i
Transmissivity,

Mach Zehnder Interferometer (MZI):

An arbitrary 2-mode linear optical unitary can be realized with 
a MZI – two 50-50 beam-splitters and two phases

Complex Unitary matrix,



Arbitrary N-mode linear optical unitary
• Any N-by-N unitary U can be realized with M = N(N-1)/2 Mach 

Zehnder Interferometers,                . So, we need N(N-1) 50-50 
beam-splitters and N(N-1) tunable phases to realize any N-mode 
linear optical unitary U
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... Reck et al., PRL 73, 1 (1994)

Clements et al., Optica 3 (12), 1460-1465 (2016)
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A coherent state is always single mode

• By an appropriate choice of modal basis, any 
“multi-mode” coherent state can always be 
expressed as a single mode coherent state

– In other words… if we have a deterministic field in any 
spatio-temporal shape (of any given polarization), we 
can always represent that as a single-mode coherent 
state of an appropriate normalized mode

– We will see later, this is not true for other quantum 
states in general. For example, a multimode thermal 
state or a multimode squeezed state, etc.
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Slicing a coherent state pulse (in time)
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(2) M-mode coherent state of the modes:  k(t), k = 1, . . . ,M
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Slicing a coherent state pulse (in space)
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Examples of optical qubits

• Single-rail qubit

• Dual-rail qubit

• Cat-basis qubit

|0i = |0i, |1i = |1i

|0i = |0, 1i, |1i = |1, 0i

|0i = N+(|↵i+ |� ↵i),
|1i = N�(|↵i � |� ↵i)

Prove that the cat-basis qubit states are mutually 
orthogonal, and find the normalization constants N+ and 
N- in terms of ↵

Problem 4



Binary pure-state discrimination

– Assume equal priors:
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projective measurement:
⇧1 = |w1ihw1|
⇧2 = |w2ihw2|
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Show that:                                              and find the expression 
for minimum average error probability for Problem 5P (H1) = p, P (H2) = 1� p



Coherent states are not orthogonal

• Distinguishability of two coherent states

– Recall:

– Inner product between two coherent states:
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Binary phase shift keying (BPSK) 
coherent-state modulation

• Optimal measurement operators are cat states
• Minimum probability of error
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Kennedy receiver: a suboptimal receiver

• Displace the BPSK states, then use direct detection
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BPSK error probability
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Optimize (minimize) the probability of error of the optimal-nulling Kennedy receiver 
(find optimal   ) and plot the probabilities of error as function of N, as above� Problem 6
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How to design a 
structured receiver 
(Dolinar receiver) that 
achieves the minimum 
error probability. See 
OPTI 495B/595B 
[Dolinar, MIT Ph.D. 
Thesis, 1976]



Density operator – pure and mixed states

16

• State of a quantum system
– Complete knowledge is a pure state
– Incomplete knowledge is a statistical (classically-

random) mixture of pure states
• density operator: positive and unit trace,

| i

⇢X =
X

x

pX(x)| xih x| =
X

i

�i|�iih�i|
X

x

pX(x) = 1
X

i

�i = 1

h�i|�ji = �ij

Spectral decompositionMixture of pure states,                       

the states don’t have to be orthogonal

⇢ = | ih |

Take the statistical mixture intuition with a 
pinch of salt -- same density operator can 
be expressed as different mixtures



Projective measurement on mixed state

• Measure state,        with projective measurement

Probability of outcome j

Conditional post-
measurement state



Projective measurement on mixed state
• Consider ensemble of pure states,

– Density operator,
• Measurement projectors,
• Assume the state in the ensemble was

– Post-measurement states:

–
• If we get outcome j, we have conditional ensemble

– with

E = {pX(x), | xi}
⇢ =

X

x

pX(x)| xih x|

| xi



Projective measurement on mixed state

• Density 
operator of 
this post-
measurement 
ensemble of 
states Ej



Projective measurement on mixed state

• Probability of outcome j



Statistical mixture of coherent states

• Classical state: P function representation

• Statistical field in classical EM theory

• Multimode classical state

– cannot in general be written as a single mode state 
unlike a multimode coherent state

⇢ =

Z

C
P (↵)|↵ih↵|d2↵

⇢ =

Z

Cn

P (↵)|↵ih↵|d2n↵
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P function of 
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state      ?|�i



Single-mode thermal state

• Gaussian mixture of coherent states

– Probability distribution for photon counting,

– Show that

– Show that,

– Hence,
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P (n) = Tr(|nihn|⇢) = hn|⇢|ni
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;n = 0, 1, . . .
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Phase scrambled coherent state

• Application of a phase,
• Consider the state after application of a random 

phase to a coherent state:

– Show that:
– and that
– So,     is diagonal in the number basis,

• Circularly-symmetric states are diagonal in the 
number basis (we will revisit this later)

U✓|↵i = |↵ei✓i
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Annihilation operator of a mode

• Recall field quantization:

• Annihilation operator     of a single mode
– Eigenstate is a coherent state
– “Annihilates” photon number,

– Number operator,

– Show that,

Ê(t) =
KX
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âi�i(t)E(t) =
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Coherent state of modes     
with complex field 
amplitudes, ai

Field operator for the set of 
modes          , with modal 
annihilation operators âi

�i(t)
�i(t)

â
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N̂ |ni = n|ni

[â, â†] = ââ† � â†â = Î Problem 9



The phase operator

• Application of a phase,
• The phase operator,

• Show that random phase scrambling of any pure 
state leads to a number diagonal state

– With

U✓|↵i = |↵ei✓i

U✓ = ei✓N̂ = ei✓â
†a

⇢ =

Z 2⇡

0
U✓| ih |U †
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Coherent states resolve the identity

• Recall:
• Prove that:

• Coherent states are an “over-complete” basis
• They are not orthogonal (and hence cannot be 

distinguished perfectly)
• They form a positive operator valued measure

(POVM) – the most general description of a 
quantum measurement
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Quantization of the field: summary

• Classical (deterministic) field (coherent state)

• Quantum description of the field:
– Field becomes an operator
– Field described by a quantum state of constituent modes
– Modal annihilation operator:
– Classical field is a special case: each mode i is excited in 

a coherent state
– Classical statistical field is a mixture of coherent states, 

density operator                                 , 
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Recap of what we learnt today

• Coherent state is always single mode
• “splitting” a coherent state: product of coherent states
• Classical state is a mixture of coherent states
• Coherent states are not orthogonal                     , yet 

they resolve the identity,
• Distinguishing equally-likely states,                           

the minimum average Pr(error),
• The coherent state is an eigenstate of the “field” 

operator,                   ; 
• Canonical commutation relation,
• Applying random phase to a pure state gives us a 

“circularly symmetric” state, which is number diagonal
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Upcoming topics

• Single mode quantum optics
– Phase space, Characteristic functions, Wigner functions, 

Entanglement
– Squeezed states


