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Outline for today A’w
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* Coherent states and linear optics
* Quantizing the field
 Distinguishing pure states
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General pure state of a single mode T
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Mode (,b(t) a quantum system, is excited in a coherent state |Ck> , X € C

If we do ideal direct detection of mode ¢(t), the total number of
photons K is a Poisson random variable of mean N

Mode gb(t) a quantum system, is excited in a number state |n> ,ne{0,1,...,00}
If we do ideal direct detection of mode ¢(t), the total number of |E¥® S —
photons K = n (exactly so; K is not a random variable). (in the Hilbert
A mode of ideal laser light is in a coherent state. state) is different
Number (Fock) state of a given mode is very hard to produce from tha_t of
experimentally modes (in L,

norm space
There are infinitely many other types of “states” of the mode ¢ ()’ pace)

Coherent state and Fock state are just two example class of states

In),n €{0,1,..., 00} Fock states of a mode are special: they form an orthonormal
basis that spans any general quantum state ]¢> of that mode

(m|n) = 0m, and |¢) = ch‘m ) Z en]® =1



Coherent state as a quantum state
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Fock states can
be thought of as
infinite-length
unit-length
column vectors
corresponding to
the orthogonal
axes of an
infinite-
dimensional
vector space

|deal photon detection is a von Neumann quantum measurement described

by projectors,{|n){n|},n=0,1,...,
Ideal direct detection on a coherent state |a)produces outcome “n

(i.e., n “clicks”) with probability, pn, = |(n|a)

p— ’C’I’L’2 p—
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e~ NN
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Poisson detection statistics in a laser pulse is a result of the projection of the
quantum state of the laser pulse—a coherent state—on to one of the Fock states



Coherent states and “linear-optical A

transformations” (beam-splitters) THE UNvERSITY
£ < (0,1) 2
n € (0, o B
Transmissivity, 7 = cos“6
1) CAJ » |51) Y. 1l

B1\ [ e®cos —sinf o
az) By )]\ e¥sinfd  cosf o

Complex Unitary matrix, 7! = T* T(0,9)

Mach Zehnder Interferometer (MZI):

T(0,6) = = oo

An arbitrary 2-mode linear optical unitary can be realized with
a MZ| — two 50-50 beam-splitters and two phases



Arbitrary N-mode linear optical unitary Aw
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« Any N-by-N unitary U can be realized with M = N(N-1)/2 Mach
Zehnder Interferometers, 1:,,» (0, ¢) . So, we need N(N-1) 50-50
beam-splitters and N(N-1) tunable phases to realize any N-mode
linear optical unitary U
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Reck et al., PRL 73, 1 (1994)
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Clements et al., Optica 3 (12), 1460-1465 (2016)

Tm,n(67¢) =5 >< — 50::50
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A coherent state is always single mode ..o
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* By an appropriate choice of modal basis, any
“multi-mode” coherent state can always be
expressed as a single mode coherent state

ap)|az) ... lak) =(6)|0)...]0)

— In other words... if we have a deterministic field in any
spatio-temporal shape (of any given polarization), we
can always represent that as a single-mode coherent
state of an appropriate normalized mode

— We will see later, this is not true for other quantum
states in general. For example, a multimode thermal

state or a multimode squeezed state, etc.
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Slicing a coherent state pulse (intime) .o
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(1) Single-mode coherent state of this mode: ¢(t) ¢%(_t_)_
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Slicing a coherent state pulse (in space) 'Z'R')'
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Examples of optical qubits Aw
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 Single-rail qubit |0) = |0),|1) = |1)
 Dual-rail qubit 0) =10,1),|1) = [1,0)

» Cat-basis qubit [0) = N, (|a) + | — «a)),
1) =N_(la) — | — a))

Prove that the cat-basis qubit states are mutually
orthogonal, and find the normalization constants N, and

N. in terms of &

Problem 4



Binary pure-state discrimination le

for minimum avera%e'error probability
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[401) (hypothesisHy) vs. |¢2) (hypothesis Hs) Inner product between
. 1 the two states
— Assume equal priors: p1 = p2 = 5 <¢1 W2> —
Consider a von Neumann
L _ A 1 1
projective measurement: ! lwy) = —
v2 [ 1

Iy = [wy)(wi| 1=
[Ty = wa) (wo]

Wz>:% [ _\/Ta]

]

| —|
| =

W) = —
|w2) 5

P. = P(H,)P(H2|H;) + P(H)P(H;|Hy)
1 1
=35 [(wa1hy)|* + 5 [ (wy |1h2)|?

1 _
Show that: P, = = |1 — /1 — |O|2l and find the expression
orP(H,) =p,P(Hy) =1—1p Problem 5




Coherent states are not orthogonal A’w
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 Distinguishability of two coherent states

o [ _lal2
— Recall: |a) = Z (6 \/Ha ) n)

n=0

— Inner product between two coherent states:

(@]6) = exp |06 — 3 (al* + |5])

(] B)|? = e leAF




Binary phase shift keying (BPSK) A
coherent-state modulation I

« Optimal measurement operators are cat states
e Minimum probability of error

1
Pe — 5 |:1 — \/1 — 6_4|O‘|2i|




Kennedy receiver: a suboptimal receiver le
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| ’ > | — ) B) e 200+ B)

v1—n
* Displace the BPSK states, then use direct detection

X=1 |-« Y =1

B)*
X=2 |l Y =2
P.(N) = min 163_(2O‘+B)2 + L (1 — 6_52)
: 3 |2 2
1

— —6_4N, B =0 (exactnulling case)



BPSK error probability 'Z'TA\'S'W
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DO | =

R | L T S S B R R |

—Kennedy with exact nulling
—Kennedy with optimal nulling
— Quantum limit

How to design a
structured receiver
(Dolinar receiver) that
achieves the minimum
error probability. See
OPTI 495B/595B
[Dolinar, MIT Ph.D.
Thesis, 1976]
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Optimize (minimize) the probability of error of the optimal-nulling Kennedy receiver
(find optimal (3) and plot the probabilities of error as function of N, as above ' Problem 6



Density operator — pure and mixed states Aw
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« State of a quantum system

— Complete knowledge is a pure state |1

— Incomplete knowledge is a statistical (classically-
random) mixture of pure states
- density operator: positive and unit trace, p = |¢> <¢\

px = pr )| ) (1| = ZA Ai){

Mixture of pure states, Z px(z) =1 Spectral decomposition
the states don’t have to be orthogonal Z o= 1
;=
Take the statistical mixture intuition with a < _’)\ > — 5
pinch of salt -- same density operator can 7Y

be expressed as different mixtures



Projective measurement on mixed state A
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- Measure state, p with projective measurement

p—| T} where Tl =1 | —

Probability of outcome | p(]) — TI'(/OHJ)
IL;pll;
p(j)

Conditional post- /OJ —
measurement state



Projective measurement on mixed state A
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« Consider ensemble of pure states, £ = {px (), |¢z)}
— Density operator, P = pr )W) (Vs ]

 Measurement prOJectors {II;}; where > II; =1

« Assume the state in the ensemble was [,
— Post-measurement states: _ 11i|%s)

VPaix (j)

= paix (J12) = W lL;[3)z)

* |If we get outcome j, we have conditional ensemble
&j = {PX|J($!J')>Hj\%>/\/PJ|X(J'!fE)}

— with pxs(z|j) = pax(Jlz)px(z)/ps(F)
() = pax(ilz)px (@)

reX

reX



Projective measurement on mixed state le
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» Density (z]5) 1 |vhs) (¥ |1L;
operator of ;{pxu 7 paxGle)
this post-
measurement = 11 (Z leJEng |¢m><¢m|>
ensemble of vex PIXY
states gj pyx(J]T)px ()
: (x;( Psix(72)ps () Vel ¥ |>
I (P aex Px (@) [¢a) (o] ) IL;
ps(J)
1L pIl;




Projective measurement on mixed state le
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* Probability of outcome |

1(J) = ZPJ|X(j’x)pX('T)

= pr ¢m|H3|¢m>
S @) Tr{ ) 1L}



Statistical mixture of coherent states Aw

OF ARIZONA

« Classical state: P function representation

,OZ/CP(@)‘OKMO"dQO‘ What is the

P function of

a coherent

. Statistical field in classical EM theory =177’

« Multimode classical state p:/ P(o)|a){a|d*™ o

where \a) — ’041> c o ‘Ozn>

— cannot in general be written as a single mode state
unlike a multimode coherent state



Single-mode thermal state Aw
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 (Gaussian mixture of coherent states

p:/@p(a)\@xa\d o Pla)=

o—lal?/N

N

— Probability distribution for photon counting, {II,, = |n)(n|}
P(n) = Tr(|n)(nlp) = (n|p|n)

- Show that P(n) = _I_]\][\;)Hn;n:(),l,...

— Show that, (n|p|m) = 0,ifm # n

— Hence, p= » P(n)|n)(n
n=0 Problem 7



Phase scrambled coherent state Aw
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» Application of a phase, Ug|a) = |ae®)

« Consider the state after application of a random
phase to a coherent state:

27
p= / Ug|or) (| U} df
0

e—NNn
n!

- Show that: P(n) = (n||n) n=0.1,...
— and that (n|p|m) = 0,ifm # n

— So, p is diagonal in the number basis, p = Z P(n)|n)(n|

Problem 8 n=0

 Circularly-symmetric states are diagonal in the
number basis (we will revisit this later)
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Annihilation operator of a mode g g
» Recall field quantization:
K K
E(t) =) aidi(t) == E(t)= a;o(t)
k=1 k=1

Coherent state of modes ¢; (%) Field operator for the set of

with complex field modes ¢;(t) , with modal

amplitudes, @; annihilation operators Q;

« Annihilation operator ¢ of a single mode
— Eigenstate is a coherent state a|a) = ala)
— "Annihilates” photon number, a|n) = \/n|n — 1)
) a'ln) = vn+1ln+1)
— Number operator, N = a'a
Nln) = n|n)
— Show that, [4,a"] =aa' —a'a =1 | Problem9



The phase operator A
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» Application of a phase, Ug|a) = |ae®)
 The phase operator,

U, — SN _ ifaTa

« Show that random phase scrambling of any pure
state leads to a number diagonal state

27
pzf Us|h) ([T d6 ZP
0

— With P(n) = |(n|y)]? Problem 10



Coherent states resolve the identity Aw
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* Recall: =Y |n)(n|
* Prove that: =Y

1 .
= / ‘Oz> <Oz‘d2()z — T Problem 11
T Jc

* Coherent states are an “over-complete” basis

* They are not orthogonal (and hence cannot be
distinguished perfectly)

* They form a positive operator valued measure
(POVM) — the most general description of a
gquantum measurement



Quantization of the field: summary Aw
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* Classical (deterministi}c{:) field (coherent state)

E(t) — Z @z'ﬁbz'(t)

=1
» Quantum description of the field: F(t Z (i ;i ()

— Field becomes an operator
— Field described by a quantum state of constituent modes
— Modal annihilation operator: a;

— Classical field is a special case: each mode i is excited in
a coherent state |«;), a; = a;

— Classical statistical field is a mixture of coherent states,
density operator p = [ P(a)|a)(a|lda , |a) = |ai)|as) ... |ak)



Recap of what we learnt today . <d~,ﬂg\i‘w
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Coherent state is always single mode | = > (7{“) n)

“splitting” a coherent state: product of Cohnej?ent states
Classical state is a mixture of coherent states

Coherent states are not orthogonal (o) B)? = el yet
they resolve the identity, - /C|a><a\d2a_1

Distinguishing equally-likely states, {|v1), [v2)}, (W1lw2) =0
the minimum average Pr(error), p. = % [1 - \/m}
The coherent state is an eigenstate of the “field”
operator, ala) = ala); aln) = Vnln —1),4'n) = Vi +1jn + 1)
Canonical commutation relation, [4,4'] = aa" —afa =1

Applying random phase to a pure state gives us a
“circularly symmetric” state, which is number diagonal




Upcoming topics A‘w
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« Single mode quantum optics

— Phase space, Characteristic functions, Wigner functions,
Entanglement

— Squeezed states



