Photonic Quantum Information Processing OPTI 647: Lecture 3

Saikat Guha

September 03, 2019

Associate Professor
College of Optical Sciences Meinel 523

Outline for today

- Coherent states and linear optics
- Quantizing the field
- Distinguishing pure states

General pure state of a single mode

Mode $\phi(t)$, a quantum system, is excited in a coherent state $|\alpha\rangle, \alpha \in \mathbb{C}$
If we do ideal direct detection of mode $\phi(t)$, the total number of photons K is a Poisson random variable of mean N

Mode $\phi(t)$, a quantum system, is excited in a number state $|n\rangle, n \in\{0,1, \ldots, \infty\}$
If we do ideal direct detection of mode $\phi(t)$, the total number of photons $\mathrm{K}=\mathrm{n}$ (exactly so; K is not a random variable).

A mode of ideal laser light is in a coherent state. Number (Fock) state of a given mode is very hard to produce experimentally
There are infinitely many other types of "states" of the mode $\phi(t)$.

This orthogonality (in the Hilbert state) is different from that of modes (in L_{2} norm space)

Coherent state and Fock state are just two example class of states
$|n\rangle, n \in\{0,1, \ldots, \infty\}$ Fock states of a mode are special: they form an orthonormal basis that spans any general quantum state $|\psi\rangle$ of that mode

$$
\langle m \mid n\rangle=\delta_{m n} \quad \text { and } \quad|\psi\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle, \sum_{n=0}^{\infty}\left|c_{n}\right|^{2}=1
$$

Coherent state as a quantum state

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n=0}^{\infty}\left(\frac{e^{-\frac{|\alpha|^{2}}{2}} \alpha^{n}}{\sqrt{n!}}\right)|n\rangle \quad \begin{array}{l}
\text { Fock states can } \\
\text { be thought of as } \\
\text { infinite-length } \\
\text { unit-length } \\
\text { column vectors } \\
\text { corresponding to } \\
\text { the orthogonal } \\
\text { axes of an } \\
\text { infinite- } \\
\text { dimensional } \\
\text { vector space }
\end{array}
\end{aligned}
$$

Ideal photon detection is a von Neumann quantum measurement described by projectors, $\{|n\rangle\langle n|\}, n=0,1, \ldots, \infty$

Ideal direct detection on a coherent state $|\alpha\rangle$ produces outcome " n "
(i.e., n "clicks") with probability, $p_{n}=|\langle n \mid \alpha\rangle|^{2}=\left|c_{n}\right|^{2}=\frac{e^{-N} N^{n}}{n!}$

Poisson detection statistics in a laser pulse is a result of the projection of the quantum state of the laser pulse-a coherent state-on to one of the Fock states

Coherent states and "linear-optical transformations" (beam-splitters)

$$
\begin{aligned}
& \left.\stackrel{\left|\beta_{2}\right\rangle}{\substack{ \\
\left|\alpha_{1}\right\rangle \in(0,1)}} \begin{array}{l}
\text { Transmissivity, } \eta=\cos ^{2} \theta \\
\left|\alpha_{2}\right\rangle \\
\text { Complex Unitary matrix, } \left.T^{-1}=\beta_{1}\right\rangle \\
\beta_{1}
\end{array}\right)=\left(\begin{array}{cc}
e^{i \phi} \cos \theta & -\sin \theta \\
e^{i \phi} \sin \theta & \cos \theta
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}} \\
& T(\theta, \phi)
\end{aligned}
$$

Mach Zehnder Interferometer (MZI):
$T(\theta, \phi)=$

An arbitrary 2-mode linear optical unitary can be realized with a MZI - two 50-50 beam-splitters and two phases

Arbitrary N -mode linear optical unitary

THE UNIVERSITY OF ARIZONA

- Any N-by-N unitary U can be realized with $\mathrm{M}=\mathrm{N}(\mathrm{N}-1) / 2$ Mach Zehnder Interferometers, $T_{m, n}(\theta, \phi)$. So, we need $\mathrm{N}(\mathrm{N}-1)$ 50-50 beam-splitters and $\mathrm{N}(\mathrm{N}-1)$ tunable phases to realize any N -mode linear optical unitary U

Reck et al., PRL 73, 1 (1994)

Clements et al., Optica 3 (12), 1460-1465 (2016)

$$
T_{m, n}(\theta, \phi)=
$$

- By an appropriate choice of modal basis, any "multi-mode" coherent state can always be expressed as a single mode coherent state

$$
\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle \ldots\left|\alpha_{K}\right\rangle \equiv|\beta\rangle|0\rangle \ldots|0\rangle
$$

- In other words... if we have a deterministic field in any spatio-temporal shape (of any given polarization), we can always represent that as a single-mode coherent state of an appropriate normalized mode
- We will see later, this is not true for other quantum states in general. For example, a multimode thermal state or a multimode squeezed state, etc.

Slicing a coherent state pulse (in time)

(1) Single-mode coherent state of this mode: $\phi(t)$ $|\alpha\rangle, \alpha=\sqrt{N}, N=E^{2} T$

(2) M-mode coherent state of the modes: $\psi_{k}(t), k=1, \ldots, M$
$|\beta\rangle|\beta\rangle \ldots|\beta\rangle \quad, \beta=\sqrt{\frac{N}{M}}=\frac{\alpha}{\sqrt{M}}$

$$
M=\frac{T}{\tau}
$$

Orthogonal temporal modes

Slicing a coherent state pulse (in space)

Examples of optical qubits

- Single-rail qubit

$$
|\mathbf{0}\rangle=|0\rangle,|\mathbf{1}\rangle=|1\rangle
$$

- Dual-rail qubit

$$
|\mathbf{0}\rangle=|0,1\rangle,|\mathbf{1}\rangle=|1,0\rangle
$$

- Cat-basis qubit

$$
\begin{array}{r}
|\mathbf{0}\rangle=N_{+}(|\alpha\rangle+|-\alpha\rangle) \\
|\mathbf{1}\rangle=N_{-}(|\alpha\rangle-|-\alpha\rangle)
\end{array}
$$

Prove that the cat-basis qubit states are mutually orthogonal, and find the normalization constants N_{+}and $\mathrm{N}_{\text {}}$ in terms of α

Binary pure-state discrimination

$\left|\psi_{1}\right\rangle$ (hypothesis H_{1}) vs. $\left|\psi_{2}\right\rangle$ (hypothesis H_{2})

- Assume equal priors: $p_{1}=p_{2}=\frac{1}{2}$

Inner product between the two states
$\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\sigma$

Consider a von Neumann projective measurement:
$\Pi_{1}=\left|w_{1}\right\rangle\left\langle w_{1}\right|$
$\Pi_{2}=\left|w_{2}\right\rangle\left\langle w_{2}\right|$
$|1\rangle=\binom{0}{1} \quad \begin{aligned} & \left|w_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right] \\ & \left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}\sqrt{1+\sigma} \\ \sqrt{1-\sigma}\end{array}\right]\end{aligned}$

-

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}} \\
& \left|w_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
P_{e}=P\left(\mathrm{H}_{1}\right) P\left(\mathrm{H}_{2} \mid \mathrm{H}_{1}\right)+P\left(\mathrm{H}_{2}\right) P\left(\mathrm{H}_{1} \mid \mathrm{H}_{2}\right)
$$

$$
=\frac{1}{2}\left|\left\langle w_{2} \mid \psi_{1}\right\rangle\right|^{2}+\frac{1}{2}\left|\left\langle w_{1} \mid \psi_{2}\right\rangle\right|^{2}
$$

Show that: $P_{e}=\frac{1}{2}\left[1-\sqrt{1-|\sigma|^{2}}\right]$ and find the expression for minimum average error probability for $P\left(\mathrm{H}_{1}\right)=p, P\left(\mathrm{H}_{2}\right)=1-p$

Coherent states are not orthogonal

- Distinguishability of two coherent states
- Recall: $|\alpha\rangle=\sum_{n=0}^{\infty}\left(\frac{e^{-\frac{|\alpha|^{2}}{2}} \alpha^{n}}{\sqrt{n!}}\right)|n\rangle$
- Inner product between two coherent states:

$$
\begin{aligned}
& \langle\alpha \mid \beta\rangle=\exp \left[\alpha^{*} \beta-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)\right] \\
& |\langle\alpha \mid \beta\rangle|^{2}=e^{-|\alpha-\beta|^{2}}
\end{aligned}
$$

Binary phase shift keying (BPSK) coherent-state modulation

- Optimal measurement operators are cat states
- Minimum probability of error

$$
P_{e}=\frac{1}{2}\left[1-\sqrt{1-e^{-4|\alpha|^{2}}}\right]
$$

Kennedy receiver: a suboptimal receiver

- Displace the BPSK states, then use direct detection

$$
\begin{aligned}
X & =1 \quad|-\alpha\rangle \\
X & =2 \quad|\alpha\rangle \\
P_{e}(N) & =\min _{\beta}\left[\frac{1}{2} e^{-(2 \alpha+\beta)^{2}}+\frac{1}{2}\left(1-e^{-\beta^{2}}\right)\right] \\
& =\frac{1}{2} e^{-4 N}, \beta=0 \quad \text { (exact nulling case) }
\end{aligned}
$$

BPSK error probability

Optimize (minimize) the probability of error of the optimal-nulling Kennedy receiver (find optimal β) and plot the probabilities of error as function of N, as above Problem 6

Density operator - pure and mixed states

- State of a quantum system
- Complete knowledge is a pure state $|\psi\rangle$
- Incomplete knowledge is a statistical (classicallyrandom) mixture of pure states
- density operator: positive and unit trace, $\rho=|\psi\rangle\langle\psi|$

$$
\rho_{X}=\sum_{x} p_{X}(x)\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|=\sum_{i} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|
$$

Mixture of pure states, $\sum p_{X}(x)=1$
the states don't have to be orthogonal

Take the statistical mixture intuition with a pinch of salt -- same density operator can be expressed as different mixtures

Spectral decomposition

$$
\sum_{i} \lambda_{i}=1
$$

$$
\left\langle\lambda_{i} \mid \lambda_{j}\right\rangle=\delta_{i j}
$$

- Measure state, ρ with projective measurement

Probability of outcome j

Conditional postmeasurement state

$$
\begin{aligned}
& p(j)=\operatorname{Tr}\left(\rho \Pi_{j}\right) \\
& \rho_{j}=\frac{\Pi_{j} \rho \Pi_{j}}{p(j)}
\end{aligned}
$$

Projective measurement on mixed state

- Consider ensemble of pure states, $\mathcal{E}=\left\{p_{X}(x),\left|\psi_{x}\right\rangle\right\}$
- Density operator, $\rho=\sum_{x} p_{X}(x)\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|$
- Measurement projectors, $\left\{\Pi_{j}\right\}_{j}$ where $\sum_{j} \Pi_{j}=I$
- Assume the state in the ensemble was $\left|\psi_{x}\right\rangle$
- Post-measurement states: $\frac{\Pi_{j}\left|\psi_{x}\right\rangle}{\sqrt{p_{J \mid X}(j \mid x)}}$

$$
-p_{J \mid X}(j \mid x)=\left\langle\psi_{x}\right| \Pi_{j}\left|\psi_{x}\right\rangle
$$

- If we get outcome j, we have conditional ensemble

$$
\mathcal{E}_{j} \equiv\left\{p_{X \mid J}(x \mid j), \Pi_{j}\left|\psi_{x}\right\rangle / \sqrt{p_{J \mid X}(j \mid x)}\right\}_{x \in \mathcal{X}}
$$

- with $p_{X \mid J}(x \mid j)=p_{J \mid X}(j \mid x) p_{X}(x) / p_{J}(j)$

$$
p_{J}(j)=\sum_{x \in \mathcal{X}} p_{J \mid X}(j \mid x) p_{X}(x)
$$

Projective measurement on mixed state

- Density operator of this poststates \mathcal{E}_{j}

$$
\sum_{x \in \mathcal{X}} p_{X \mid J}(x \mid j) \frac{\Pi_{j}\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right| \Pi_{j}}{p_{J \mid X}(j \mid x)}
$$

$$
=\Pi_{j}\left(\sum_{x \in \mathcal{X}} \frac{p_{X \mid J}(x \mid j)}{p_{J \mid X}(j \mid x)}\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|\right) \Pi_{j}
$$ $\begin{aligned} & \text { measurement } \\ & \text { ensemble of }\end{aligned}=\Pi_{j}\left(\sum_{x \in \mathcal{X}} \frac{p_{X \mid J}(x \mid j)}{p_{J \mid X}(j \mid x)}\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|\right) \Pi_{j}$

$$
=\Pi_{j}\left(\sum_{x \in \mathcal{X}} \frac{p_{J \mid X}(j \mid x) p_{X}(x)}{p_{J \mid X}(j \mid x) p_{J}(j)}\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|\right) \Pi_{j}
$$

$$
=\frac{\Pi_{j}\left(\sum_{x \in \mathcal{X}} p_{X}(x)\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|\right) \Pi_{j}}{p_{J}(j)}
$$

$$
=\frac{\Pi_{j} \rho \Pi_{j}}{p_{J}(j)}
$$

- Probability of outcome j

$$
\begin{aligned}
p_{J}(j) & =\sum_{x \in \mathcal{X}} p_{J \mid X}(j \mid x) p_{X}(x) \\
& =\sum_{x \in \mathcal{X}} p_{X}(x)\left\langle\psi_{x}\right| \Pi_{j}\left|\psi_{x}\right\rangle \\
& =\sum_{x \in \mathcal{X}} p_{X}(x) \operatorname{Tr}\left\{\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right| \Pi_{j}\right\} \\
& =\operatorname{Tr}\left\{\sum_{x \in \mathcal{X}} p_{X}(x)\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right| \Pi_{j}\right\} \\
& =\operatorname{Tr}\left\{\rho \Pi_{j}\right\} .
\end{aligned}
$$

Statistical mixture of coherent states

- Classical state: P function representation

$$
\rho=\int_{\mathbb{C}} P(\alpha)|\alpha\rangle\langle\alpha| d^{2} \alpha
$$

- Statistical field in classical EM theory

What is the P function of a coherent state $|\beta\rangle$?

- Multimode classical state $\rho=\int_{\mathbb{C}^{n}} P(\boldsymbol{\alpha})|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| d^{2 n} \boldsymbol{\alpha}$

$$
\text { where }|\boldsymbol{\alpha}\rangle=\left|\alpha_{1}\right\rangle \ldots\left|\alpha_{n}\right\rangle
$$

- cannot in general be written as a single mode state unlike a multimode coherent state

Single-mode thermal state

- Gaussian mixture of coherent states

$$
\rho=\int_{\mathbb{C}} P(\alpha)|\alpha\rangle\langle\alpha| d^{2} \alpha \quad P(\alpha)=\frac{e^{-|\alpha|^{2} / N}}{\pi N}
$$

- Probability distribution for photon counting, $\left\{\Pi_{n}=|n\rangle\langle n|\right\}$ $P(n)=\operatorname{Tr}(|n\rangle\langle n| \rho)=\langle n| \rho|n\rangle$
- Show that $P(n)=\frac{N^{n}}{(1+N)^{1+n}} ; n=0,1, \ldots$
- Show that, $\langle n| \rho|m\rangle=0$, if $m \neq n$
- Hence, $\rho=\sum_{n=0}^{\infty} P(n)|n\rangle\langle n|$

Phase scrambled coherent state

- Application of a phase, $U_{\theta}|\alpha\rangle=\left|\alpha e^{i \theta}\right\rangle$
- Consider the state after application of a random phase to a coherent state:

$$
\rho=\int_{0}^{2 \pi} U_{\theta}|\alpha\rangle\langle\alpha| U_{\theta}^{\dagger} d \theta
$$

- Show that: $P(n)=\langle n| \rho|n\rangle=\frac{e^{-N} N^{n}}{n!} ; n=0,1, \ldots$
- and that $\langle n| \rho|m\rangle=0$, if $m \neq n$
- So, ρ is diagonal in the number basis, $\rho=\sum_{n=0}^{\infty} P(n)|n\rangle\langle n|$

Problem 8

- Circularly-symmetric states are diagonal in the number basis (we will revisit this later)

Annihilation operator of a mode

- Recall field quantization:

$$
E(t)=\sum_{k=1}^{K} a_{i} \phi_{i}(t) \quad \hat{E}(t)=\sum_{k=1}^{K} \hat{a}_{i} \phi_{i}(t)
$$

Coherent state of modes $\phi_{i}(t)$ with complex field amplitudes, a_{i}

Field operator for the set of modes $\phi_{i}(t)$, with modal annihilation operators \hat{a}_{i}

- Annihilation operator \hat{a} of a single mode
- Eigenstate is a coherent state $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$
- "Annihilates" photon number, $\quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle$
- Number operator, $\hat{N}=\hat{a}^{\dagger} \hat{a}$

$$
\hat{N}|n\rangle=n|n\rangle
$$

- Show that, $\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{a} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}=\hat{I}$

The phase operator

- Application of a phase, $U_{\theta}|\alpha\rangle=\left|\alpha e^{i \theta}\right\rangle$
- The phase operator,

$$
U_{\theta}=e^{i \theta \hat{N}}=e^{i \theta \hat{a}^{\dagger} a}
$$

- Show that random phase scrambling of any pure state leads to a number diagonal state

$$
\rho=\int_{0}^{2 \pi} U_{\theta}|\psi\rangle\langle\psi| U_{\theta}^{\dagger} d \theta=\sum_{n=0}^{\infty} P(n)|n\rangle\langle n|
$$

- With $P(n)=|\langle n \mid \psi\rangle|^{2}$

Problem 10

Coherent states resolve the identity

- Recall: $\hat{I}=\sum|n\rangle\langle n|$
- Prove that: ${ }^{n=0}$

$$
\frac{1}{\pi} \int_{\mathbb{C}}|\alpha\rangle\langle\alpha| d^{2} \alpha=\hat{I}
$$

Problem 11

- Coherent states are an "over-complete" basis
- They are not orthogonal (and hence cannot be distinguished perfectly)
- They form a positive operator valued measure (POVM) - the most general description of a quantum measurement

Quantization of the field: summary

- Classical (deterministic) field (coherent state)

$$
E(t)=\sum_{k=1} a_{i} \phi_{i}(t)
$$

- Quantum description of the field: $\hat{E}(t)=\sum_{k=1}^{K} \hat{a}_{i} \phi_{i}(t)$
- Field becomes an operator
- Field described by a quantum state of constituent modes
- Modal annihilation operator: \hat{a}_{i}
- Classical field is a special case: each mode i is excited in a coherent state $\left|\alpha_{i}\right\rangle, \alpha_{i}=a_{i}$
- Classical statistical field is a mixture of coherent states, density operator $\rho=\int P(\boldsymbol{\alpha})|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| d \boldsymbol{\alpha},|\boldsymbol{\alpha}\rangle=\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle \ldots\left|\alpha_{K}\right\rangle$

Recap of what we learnt today

- Coherent state is always single mode $|\alpha\rangle=\sum_{n=0}^{\infty}\left(\frac{e^{-\frac{|a|^{2}}{2}} \alpha^{n}}{\sqrt{n!}}\right)|n\rangle$
- "splitting" a coherent state: product of coherent states
- Classical state is a mixture of coherent states
- Coherent states are not orthogonal $|\langle\alpha \mid \beta\rangle|^{2}=e^{-|\alpha-\beta|^{2}}$ yet they resolve the identity, $\frac{1}{\pi} \int_{\mathbb{C}}|\alpha\rangle\langle\alpha| d^{2} \alpha=\hat{I}$
- Distinguishing equally-likely states, $\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right\},\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\sigma$ the minimum average Pr (error), $P_{e}=\frac{1}{2}\left[1-\sqrt{1-|\sigma|^{2}}\right]$
- The coherent state is an eigenstate of the "field" operator, $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle ; \hat{a}|n\rangle=\sqrt{n}|n-1\rangle, \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$
- Canonical commutation relation, $\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{a} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}=\hat{I}$
- Applying random phase to a pure state gives us a "circularly symmetric" state, which is number diagonal

Upcoming topics

- Single mode quantum optics
- Phase space, Characteristic functions, Wigner functions, Entanglement
- Squeezed states

