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Logistical information

• Course instructor: Saikat Guha, saikat@optics.arizona.edu, OSC 
523, (520) 621-7595

• Course assistant: Brianna Moreno, bmoreno@optics.arizona.edu, 
OSC 501, (520) 621-4842

• Lectures 8 am – 9:15 am Tuesdays and Thursdays, OSC 307

• Office hours 11 am – noon, Wednesdays, 11-noon?

• Problem sets – problems assigned during lectures, due by 
Monday noon, submit to Brianna Moreno at OSC 501
– First problem set will be due Tuesday, September 3

• Last two lectures: 15-minute student presentations on one
“advanced” homework problem(s) of your own choice

• Grading: problem sets (70%), presentation (30%): A/B/C/D/F

mailto:saikat@optics.arizona.edu
mailto:bmoreno@optics.arizona.edu


Pre-requisites

• Basic quantum mechanics 
– unless arranged with instructor

• Mathematical preparation
– Complex numbers
– Basic linear algebra (matrices, eigenvalues, etc.)
– Probability: random variables and random processes
– Calculus
– Fourier transforms (basic)

• Software
– MATLAB (or, equivalent)



Some related courses
• OPTI 595B “Information in a Photon”, Prof. Saikat Guha

– Focus on quantum information theory and quantum
estimation theory, applications to optical communications 
and sensing

• ECE 501B; “Quantum Information Processing and 
Quantum Error Correction”, Prof. Quntao Zhuang
– Focus on quantum error correction, quantum computation 

and algorithms, entanglement, quantum sensing (this year)
• OPTI 646; “Introduction to Quantum Information and 

Computation”, Prof. Poul Jessen
– Introductory quantum optics, quantum gates, circuits, 

algorithms, physical implementations (atomic/SC/ions)
• OPTI 570; “Quantum Mechanics”, Prof. Brian Anderson

– Graduate level quantum mechanics, some quantum optics



Preamble
• All forms of light, processing of light, and detection of 

light is fundamentally governed by quantum physics
– Some forms of light, processing, and detection needs 

quantum theory to describe their behavior correctly. For 
some, semiclassical (shot-noise) theory suffices

• Quantum processing of information is more powerful
• Quantum information and estimation theories

– Evaluating fundamental limits in optics based information 
processing (e.g., communication, sensing, imaging)

– Optical detection must add noise
– This noise degrades quality of information extraction
– Information-bearing light may be manipulated in the optical 

domain. This can result in the inevitable detection noise to 
affect the information extraction efficiency favorably



Course outline

• Modal theory 
• Mathematics of quantum optics: states, transformations, and 

measurements
• Spatio-temporal analysis of quantum non-linear optics: 

preparation of non-classical states of light
• “Quantifying” quantum information
• Photonic quantum information processing: application study



Evolution of physical systems is governed by quantum 
mechanical principles, which is hard to compute on a classical 
computer. Can we design physical systems as “computers” to 
mimic other physical systems of interest? E.g., simulating 
molecular systems for drug discovery

Qubit is the simplest quantum physical system. If we replaced 
every bit in our computers with qubits, it will be able to solve 
problems cannot be solved on our classical computer. E.g., 
Finding factors of a large number (current internet security 
relies on factoring being hard!)

Quantum information processing



Quantum computing

M = p⇥ q

Shor’s quantum algorithm can 
factor numbers very quickly

Difficulty of factorizing is the basis 
for modern cryptosystems used on 
the internet

Best classical 
algorithm:
1024 steps

Shor’s quantum 
algorithm:
1010 steps

On classical THz 
computer:

150,000 years

On quantum THz 
computer:
<1 second

Example: factor a 300-digit number

M = 
10941738641570527421809707322040357612003732945449205990913842131476349984288934784717997257891267332497625
752899781833797076537244027146743531593354333897

p = 102639592829741105772054196573991675900716567808038066803341933521790711307779

q =  106603488380168454820927220360012878679207958575989291522270608237193062808643

This was factored on August 22, 1999 in a span of six months, by a team led by Herman te Riele

The factorization was found using the general number field sieve algorithm and an estimated 4000 days worth of computational 
time on a 1GHz clock computer

Factoring:



LIGO: Laser Interferometer 
Gravitational-Wave Observatory

Quantum (squeezed) light can enhance sensitivity of 
estimating a small unknown phase modulation

MSE ⇠ 1

N
! MSE ⇠ 1

N2



Quantum secured communications

• Un-decodable communications: Quantum key 
distribution (QKD)

• Un-detectable communications: Quantum
secured covert communications



Quantum enhanced photonic 
information processing

Communications

Higher capacity communications for 
deep space lasercom with quantum 
enabled receivers

Quantum networking: Communicating 
classical bits and quantum bits (qubits) 
reliably, generating shared entangled bits 
(ebits), Networked communications

Imaging and sensing

Physics-based securityComputing

Active imaging and sensing: Quantum-
enhanced ranging, metrology, velocimetry, 
vibrometry, atomic force microscopy, 
spectroscopy, reading

Passive imaging and sensing: Super-
resolution passive imaging, hyperspectral 
imaging

Quantum computing
Factoring, Discrete Log
Search (e.g., on graphs)
Simulations: chemistry, cond.-matter

Special purpose computing
Quantum annealing
Boson sampling
Quantum receivers (comm, sensing)

Secure communication
Quantum key distribution (QKD)
Covert communications and sensing

Secure multiparty (classical and 
quantum) computing

Digital signatures
Private-bid auctions
Symmetric private information retrieval
Blind quantum computing



Notion of an optical “mode”



Modes

• An optical mode is the “shape” of a confined EM 
field in space, time and polarization (the three 
independent degrees of freedom of the photon)

• Time & Frequency are the same degree of freedom 
(related by Fourier transform)

�⌫(r, t); r 2 A, t 2 [0, T ), ⌫ = 1, 2
Z

A

Z T

0
�⌫(r, t)�

⇤
⌫(r, t)drdt

=

Z

A

Z T

0
|�⌫(r, t)|2 drdt = 1

We will take a 
mode to be 
normalized



Orthogonal modes

• Two modes               and               are orthogonal if,

– If              , the two modes will be orthogonal regardless of 
their spatial and temporal shapes

– When            , we will drop the polarization subscript 
– When we say two “temporal modes” s1(t) and s2(t) are 

orthogonal, we will implicitly assume the mode functions 
being referred to have the same spatial modes and 
polarization
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Maximum number of orthogonal modes

• Consider temporal modes,                               

• …and their Fourier transforms,

• How many (K) orthogonal modes            can be “fit 

into” a time-bandwidth product of T x W? i.e.,

– , and   

– While ensuring orthogonality:

• Answer:                  , and these optimal mode 

functions are “Prolate Spheroidal” functions

• All of above holds for spatial modes as well
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Slepian, D. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extension to many dimensions; 
Generalized prolate spheroidal functions Bell Syst. Tech. J., vol. 43, pp. 3009-3057, Nov. 1964.



Some intuition: choices of WT modes
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Coherent state “of a mode”

• Consider a temporal mode:
• And a                      unit field                                       

of a temporal pulse
– Take     to be real valued, WLOG

• The mean photon number in the pulse:

• Quantum description is a coherent state       , 
with       

• Classical deterministic field,
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Mode sorting

• Temporally (or spatially) separated, i.e., non-overlapping 
modes are trivially orthogonal
– Example:

• Orthogonal modes can be perfectly separated (even if they 
are overlapping)

• Consider an orthogonal mode basis with K = TW functions
, 
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Example of overlapping orthogonal modes
• Orthogonal “chip waveforms” (used in CDMA)

• Consider a coherent state field:

– In the above mode basis, quantum state:
– Express the quantum state of this in the non-

overlapping mode basis of the previous slide

t0 T
|

p
1/T

t
T
|

p
1/T

�
p
1/T

�2(t) :

�1(t) :

E(t) = a1�1(t) + a2�2(t)

t
T
|

0
|a1i|a2i

Problem 1

Whenever writing 
a ket (quantum 
state), we MUST 
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Hermite Gaussian (HG) modes

• Consider the one dimensional infinite HG basis

– Hermite polynomials
– The q=0 function is the Gaussian:
– Consider the coherent state of the q=0 mode with mean 

photon number N and phase 0;

• Consider the coherent state of                  , the shifted 
Gaussian mode (mean photon number N and phase 0)
– Can you express this coherent state in the HG mode basis?
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• Quasi-mono-chromatic laser light pulse: in 
√(photons/m2-sec) units

• Mean photon number, 

Laser light pulse

Spatial mode Temporal mode

Ẽ(r, t) = E(r, t)e�j!0t+�, t 2 (0, T ], r 2 A
=  (r)s(t)e�j!0t+�, r ⌘ (x, y)Spatial and temporal 

dependence may not be 
factorable in general

Re

Im

Phase space picture: once we identify a 
spatio-temporal-polarization mode, a complex 
number describes the state of the laser pulse

No detector can accurately 
measure the fieldE(r, t)
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Coherent state of a flat-top temporal mode
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Ideal photon detection on a laser pulse

• Poisson point process (PPP) with rate,
– For constant rate PPP, interarrival time is exponentially distributed
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Quantization of the field

• Classical (deterministic) field (coherent state)

• Quantum description of the field:
– Field becomes an operator
– Field described by a quantum state of constituent modes
– Modal annihilation operator:
– Classical field is a special case: each mode i is excited in 

a coherent state
– Classical statistical field is a mixture of coherent states, 

density operator                                 , 
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âi

|↵ii



Upcoming topics…

• Review of single mode quantum optics
– Annihilation and creation operations, Density operators, phase 

space, Characteristic functions, Wigner functions, Entanglement
– Squeezed states of light




