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Self-focusing dynamics of ultraintense accelerating Airy waveforms in water
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We report experiments and numerical simulations on the self-focusing and filamentation of ultraintense
femtosecond Airy waveforms in water. The accelerating property of Airy waveforms results in the generation of
distinct features in the angularly resolved spectra of forward-propagating supercontinuum emission. Fitting these
features with appropriate phase-matching conditions allows for the quantification of the propagation history of
the waveforms.
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Studies of the self-action effects involved in the propagation
of ultraintense and ultrashort laser pulses in various transparent
media are a research area receiving significant contemporary
interest. These studies can be conceptually divided into two
broad classes: those on propagation in gaseous media such
as common air and those on propagation in condensed
media such as transparent liquids and solids. According to
the conventional paradigm, when a high-peak-power laser
pulse propagates in a transparent gas, Kerr self-focusing is
balanced, in a dynamic way, by the beam diffraction and the
defocusing effect of plasma generated on the beam axis via
multiphoton ionization [1–3]. It has recently been suggested
that the above filamentation scenario needs to be reconsidered
with the inclusion of higher order defocusing terms in the
instantaneous Kerr response of the propagation medium [4].
These new terms become operative at a sufficiently high optical
intensity and stabilize filament propagation without the need
for the defocusing action from plasma. The debate on the
validity of this new filamentation paradigm is ongoing at the
time of writing. In either of the two filamentation scenarios,
the competition among various participating focusing and
defocusing effects results in the generation of extended plasma
channels or filaments that have various technologically im-
portant properties and may have practical utility. Transparent
condensed media offer a convenient platform for experimental
studies of filament formation, as the critical power for self-
focusing is lower by three orders of magnitude than that in a
gas under normal conditions.

Although filamentations of ultraintense laser pulses in
gaseous and condensed media bear certain similarities, the
two cases are significantly different. In a gas, the dispersion
of the medium cannot be completely ignored, but it does not
play the dominant role in the stabilization of self-focusing.
In a condensed medium, the material dispersion becomes
the major player in the propagation dynamics. The laser
pulse is typically split into subpulses upon propagation. The
temporal pulse splitting arrests the self-focusing collapse to
a singularity in this case [5]. Although plasma is generated
through multiphoton ionization in condensed media, its effect
in stabilizing filament propagation is secondary to that of
dispersion, except for cases where the peak power of the
laser pulse significantly exceeds the threshold power for
self-focusing [6].
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The overwhelming majority of prior studies on pulse-
splitting dynamics and other phenomena associated with
laser filamentation in transparent condensed media utilized
Gaussian or Gaussian-like laser pulses with durations ranging
from tens of femtoseconds to several nanoseconds. Temporal
pulse shaping, an approach that has proven to be very
powerful in various fields of science and technology such
as optical lithography [7], microscopy [8], and chemistry [9],
remains largely unexplored in the context of femtosecond laser
filamentation. The application of linearly chirped pulses as a
means of delaying the onset of filamentation in a dispersive
medium has been demonstrated [10], but the use of more
complex temporal pulse waveforms in filamentation studies
has yet to be adequately studied and may turn out to be a
fruitful direction for future research.

One type of waveform that may be particularly interesting in
the context of filamentation is the Airy pulse. The electric-field
envelope of this waveform is described in terms of a truncated
or apodized Airy function of time. Airy pulses are temporal
analogs of Airy beams [11]. As Airy beams resist diffraction
and self-bend upon propagation in free space, Airy pulses resist
dispersion and their dominant intensity features accelerate
temporally. Furthermore, Airy waveforms, both spatial and
temporal, regenerate their dominant intensity features should
those features be selectively absorbed or distorted. Since
filamentation of ultrashort laser pulses in condensed media
involves temporal pulse splitting as the dominant stabilization
mechanism, the self-healing property of the Airy waveform
may result in an even more rich and complex propagation
scenario compared to that in filaments generated by Gaussian
or Gaussian-like pulses.

In practice, Airy pulses are generated by applying a cubic
spectral phase to the spectrum of Gaussian pulses. Depending
on the sign of the cubic phase applied, the dominant intensity
peak of the generated Airy waveform propagates either in front
of its oscillatory tail (positive cubic phase) or behind the tail
(negative cubic phase).

Temporal Airy waveforms have recently been studied in
the context of their use for the construction of linear spa-
tiotemporal light bullets [12,13]. Results on supercontinuum
generation in a microstructured fiber with Airy pulses, where
the self-healing ability of these temporal waveforms resulted
in the generation of distinct spectral features, have also been
recently reported [14].

In the present paper, we report experiments and numerical
simulations on filamentation of intense femtosecond Airy
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waveforms in a transparent condensed medium (water). Direct
measurements of the pulse evolution in this case are chal-
lenging, because the very high level of optical intensity in the
filamentation zone (∼1013 W/cm2) precludes straightforward
beam sampling along the propagation path. To study pulse
evolution experimentally, we employ an indirect approach
that relies on the analysis of the angularly resolved spectrum
(or k-ω spectrum) of the forward-propagating supercontinuum
emission that is generated along the filament [15,16]. Our re-
sults show that this analysis is quite sensitive to changes in the
velocities of the temporal features generated upon propagation
of the pulse. Our numerical simulations reproduce the ex-
perimentally measured velocities of the generated subpulses,
under various conditions, without using any fitting parameters.
The excellent agreement between our experimental results
and numerical simulations demonstrates that this approach is
capable of yielding quantitative information about propagation
dynamics of sophisticated ultraintense pulse waveforms.

As mentioned above, the splitting of the ultraintense laser
pulse into subpulses constitutes the natural mechanism that
arrests the self-focusing beam collapse to a singularity in a
transparent condensed medium. The supercontinuum radiation
that is generated along the propagation path is emitted, in
the forward direction, in the form of colored rings, with the
particular relation between the ring color and the emission
angle relative to the propagation axis. This relationship can be
understood with the help of the so-called effective three-wave
mixing (ETWM) picture [16]. The ETWM argument is based
on the fulfillment of phase matching for the linear scattering
of the continuously generated weak supercontinuum radiation
on a transient “material wave.” The latter results from the
instantaneous nonlinear polarization response following the
two intense subpulses generated through the pulse-splitting
event. The phase-matching condition governing the direction
of propagation of various frequency components of the
scattered supercontinuum, for a particular generated subpulse,
reads

kz (ω◦,0) − kz (ω,k⊥) + ω − ω◦
Vp

= 0, (1)

where kz and k⊥ are the longitudinal and transverse wave
numbers, respectively, ω◦ is the angular frequency correspond-
ing to the central wavelength of the incident laser pulse, and
ω is the variable that indexes the angular frequency of the
scattered supercontinuum. Vp stands for the group velocity of
the generated subpulse. Generally, both the subpulse velocity
and its amplitude evolve upon propagation. The dominant
contribution to the k-ω spectral map, from a particular gen-
erated subpulse, results from the propagation interval through
which the amplitude of the subpulse is at or near a maximum.
Accordingly, the value of Vp used in the phase-matching
condition (1) should correspond to the sub-pulse velocity at
the point of its maximum amplitude.

Experimentally, one measures the two-dimensional far-field
spectra in the coordinates of the optical wavelength and
θ , the emission angle relative to the propagation axis. The
relationship between θ and k⊥ is as follows:

θ = tan−1

(
k⊥
kz

)
. (2)

Note that although the propagation dynamics for a par-
ticular input pulse waveform can be excessively complex
and the velocities of the generated subpulses can be, in
general, arbitrary, the phase-matching condition, (1), contains
only the velocity of the generated subpulse, at the point of
its maximum amplitude, and the linear dispersion relation
of the medium. The latter enters through the (assumed to
be known) dependence of the wave number on the angular
frequency.

The generation of each subpulse results in the population
of a set of lines or branches on the k-ω spectral map, in
accordance with condition (1) with the corresponding velocity
Vp for that particular subpulse. For the case of a normally
dispersive medium, such as water at a laser wavelength of about
800 nm, the branches have characteristic X shapes, and their
extent is related to the propagation distance through which the
corresponding subpulses survive before dissipating [16–18].
The feature corresponding to a particular subpulse consists of
two disconnected lines. The point on the k-ω spectral map with
coordinates (ω0,k⊥ = 0) corresponds to the on-axis emission
at the center frequency of the incoming pulse. That point is a
trivial solution of Eq. (1). For the trailing subpulse produced
through a particular pulse split, the branch that contains that
trivial point extends into the longer wavelength range relat-
ive to the central wavelength of the incoming pulse, while the
branch corresponding to the leading subpulse that contains
the trivial solution point extends into the shorter wavelength
range.

The experimental setup that we use to record k-ω spectra
produced through filamentation of temporal Airy pulses in
water is essentially identical to that used previously in the ex-
periments on self-focusing of spatial self-bending Airy beams
[19]. To generate femtosecond temporal Airy waveforms, we
use a commercial acousto-optic pulse shaper system (Dazzler
by Fastlite) that is capable of imposing up to ±120 000 fs3

of cubic spectral phase modulation onto Gaussian pulses
produced by a Ti:sapphire regenerative amplifier operating
at 10 pulses per second. The output spectrum of the laser is
30 nm-wide and centered at 800 nm. In the setup, the pulse
shaper is placed before the pulse compressor stage of the
laser system, in order not to exceed the damage threshold
of the acousto-optic modulator crystal (∼100 MW/cm2).
Measurements of the generated waveforms with a femtosecond
FROG system showed an excellent fidelity of the Airy pulse
shapes, which were quantitatively consistent with the optical
bandwidth of the pulses and with the magnitude of the applied
cubic spectral phase.

The generated femtosecond Airy pulses have a nearly
ideal Gaussian spatial beam profile with a beam diameter
of about 5 mm. This beam is focused with a lens into a
6.5-cm-long cuvette containing pure water. The focal length
of the focusing lens used is 25 cm, and the linear focal
plane of the lens is positioned at a 1.5-cm distance from the
entrance into the water cuvette. Over the 1.5-cm propagation
distance in the water towards the focal plane, the contribution
to the cubic spectral phase from the third-order dispersion of
water is about 400 fs3, which is negligible in comparison
with the values of the cubic spectral phase imposed by the
pulse shaper. Single-shot angularly resolved spectra of the
generated forward-propagating supercontinuum radiation are
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recorded using an imaging spectrometer setup in the standard
configuration for this application [19].

The measured k-ω spectra are numerically simulated using
our standard femtosecond propagator code based on the
unidirectional pulse propagation equation (UPPE) [16,20].
Our model accounts for the linear dispersion and for the
instantaneous Kerr nonlinear response of the medium, as well
as for multiphoton absorption and plasma effects. The value for
the nonlinear Kerr refractive index n2 that we use corresponds
to the critical power for self-focusing of 3.9 MW [21].

Note that if the measured and numerically simulated k-ω
spectra are directly compared to each other on a linear scale,
one should not expect a good quantitative agreement between
experiments and simulations, because of the highly nonlinear
nature of the pulse propagation problem involved and the very
strong dependence of the generated spectra on the input power
and duration of the laser pulse [22]. On the other hand, as
we show, the morphology of the k-ω spectral maps, i.e., the
placements and inclinations of the dominant features on these
maps, is very well reproduced by numerical simulations, even
though the feature placement is quite sensitive to variations
in the velocities of the subpulses generated upon propagation.
Since we are not interested in the quantitative comparison
between the measured and the numerically simulated spectra,
but only in the comparison between the morphologies of
various branches on the spectral maps, in what follows, the
numerically simulated spectra are shown on a log scale, while
the spectra that are experimentally recorded are naturally
shown on a linear scale. Presenting numerical data on a log
scale allows for the generated branches on the k-ω spectral
maps to stand out more clearly.

Our experiment-theory comparison is done according to
the following procedure: The k-ω spectral map, for particular
pulse shape, power, and focusing conditions, is experimentally
recorded for a single laser shot. The pulse propagation, under
the same experimental conditions, is numerically simulated
using our propagator code. The simulation outputs the entire
history of the pulse evolution upon propagation, which, of
course, cannot be directly matched to the experiment. The
simulation also produces the k-ω spectral map of the generated
supercontinuum emission, which is compared to the map
experimentally recorded. Further, by following the temporal
pulse evolution upon propagation that is available from the
simulation, various pulse-splitting events are identified, and the
velocities of the generated subpulses, near the points of their
maximum intensity, are calculated based on the simulation.
The phase-matching conditions, (1), with those values of the
subpulse velocities are plotted on top of both numerically
simulated and experimentally measured k-ω spectral maps. It
is expected that the fitting with the phase-matching condition,
(1), will match the numerically simulated branches on the k-ω
spectral maps very well, as has been previously demonstrated
for the case of femtosecond Gaussian input pulses [16].
However, whether these fits can be applied directly, i.e.,
without any adjustments, to the experimentally measured
spectra, is not a priori clear. If the fitting procedure described
above is found to yield a robust quantitative agreement with
experiments, the procedure could, in principle, be inverted.
By fitting the branches of the experimentally recorded k-ω
spectra, one could deduce the number and velocities of the

subpulses generated upon propagation, without performing
a numerical simulation. This approach may be applied for
a partial reconstruction of the pulse propagation scenarios
in cases where the exact parameters of the experimental
setup are not precisely known, making numerical simulations
unfeasible.

In order to benchmark the procedure described above,
we first apply it to the extensively investigated case of
filamentation of a femtosecond Gaussian pulse. As we found
experimentally, in our focusing geometry and with a 35-fs
input pulse duration, white-light generation in the forward
direction becomes observable once the input pulse energy ex-
ceeds 0.8 μJ. The onset of white-light generation is commonly
associated with the self-focusing collapse of the beam. The
corresponding estimated peak power at that point is 23 MW,
which is about 6 times the critical power for self-focusing with
a large-diameter collimated beam at infinity [21].

When the input pulse energy is increased to 1.0 μJ, the
appearance of the experimentally observed k-ω spectrum sta-
bilizes and develops straightforwardly identifiable X-shaped
branches. Numerical simulation of this case reveals that the
propagation of the pulse in the water cell involves two
consecutive pulse-splitting events, at distances of 2.3 and
2.5 cm from the entrance into the cell. Each pulse split produces
a pair of subpulses, one of which is advancing ahead of the
incident pulse and the other trailing behind it. The subpulses
survive for little over 0.1 mm of propagation. Upon exami-
nation of the propagation history generated by the numerical
simulation, we find that the group velocities of the generated
subpulses, at the points of their maximum amplitude, are
V

(1)
lead = (1 + 0.0034)c/ng and V

(1)
trail = (1 − 0.0083)c/ng for

the first splitting event and V
(2)

lead = (1 + 0068)c/ng and V
(2)

trail =
(1 − 0.0140)c/ng for the second splitting event. Above, c is
the speed of light in vacuum and ng = 1.3434 is the linear
group refractive index of water at an 800-nm wavelength.

The phase-matching conditions, (1), for the two pairs of
subpulses resulting from the splitting events are plotted in
Fig. 1 by solid black lines. Evidently, the X-shaped branches
on the spectral map are fit well by these phase-matching
curves. As we mentioned above, the generation of each
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FIG. 1. (Color online) Numerically simulated k-ω spectrum
generated through filamentation of a 35-fs-long Gaussian pulse with
a 1-μJ pulse energy, under the experimental conditions described
in the text. Data are shown on a log scale. The pulse propagation
dynamics involves two pulse-splitting events. Solid black lines are
drawn according to the phase-matching condition, (1), for the two
generated pairs of subpulses.
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FIG. 2. (Color online) Experimentally observed k-ω spectrum for
the case corresponding to the simulation shown in Fig. 1. Solid lines
are exact replicas of the fitting curves reproduced here from the
numerical simulation in Fig. 1 without any adjustments. The dashed
line shows the fit according to Eq. (1), in which the velocity of
the leading subpulse is set to (1 + 0.0010)c/ng , which is different
from the correct velocities of both leading subpulses generated upon
propagation (c is the speed of light in vacuum and ng is the linear
group refractive index of water). The latter fit is clearly off the
experimentally recorded branches corresponding to the two leading
subpulses generated in this case.

subpulse results in the population of two disconnected lines
in the k-ω spectral map, one of which contains the trivial
solution point (ω0,k⊥ = 0). Only branches containing the
trivial solution point are shown in the figure. The other
branches are generally outside the spectral window shown,
except for the short-wavelength branch corresponding to one
of the trailing subpulses.

In Fig. 2, we show the k-ω spectrum measured under the
same experimental conditions as used in the simulation shown
in Fig. 1. The qualitative agreement in the appearance of
the measured and simulated spectra is immediately evident.
Furthermore, the phase-matching curves for the two pulse-
splitting events, directly replicated from the numerical fitting
of the spectrum shown in Fig. 1, line up nearly perfectly with
the X-shaped branches in the experimental plot.

To demonstrate the sensitivity of the feature placement in
the spectral maps to variations in the group velocity of the
subpulses, we show, in the same plot, the phase-matching
curve corresponding to the subpulse advancing with a group
velocity equal to (1 + 0.0010)c/ng , which is different from the
correct velocities of the two leading subpulses generated upon
propagation in this case. The resulting fitting curve is shown
in Fig. 2 by the dashed line. That fit noticeably disagrees with
the experimental data. This example shows that the fitting
procedure is sensitive to the changes in the group velocities
of the generated subpulses and that these velocities can, in
principle, be extracted from the experimentally measured k-ω
spectra. The accuracy of the reconstruction of the subpulse
velocities, relative to the linear group velocity in water, can be
roughly estimated as ∼20%.

After demonstrating the excellent agreement between ex-
periments and numerical simulations for the case of an input
Gaussian pulse, we move on to the more complex case of
accelerating Airy waveforms. These waveforms are synthe-
sized, both experimentally and numerically, by imposing cubic
spectral phases of different signs onto the optical spectrum of

an input Gaussian pulse. The pulse energy is adjusted so that
the peak power of the dominant intensity feature of the Airy
pulse matches that of the input Gaussian pulse used earlier. In
our case, the peak power matching, for the cases of a cubic
spectral phase of ±120 000 fs3, is achieved by increasing the
pulse energy from 1 to 1.6 μJ.

Note that, out of the two main features of an Airy waveform,
self-healing and free acceleration, the first feature is not
expected to be operative and produce a significant effect under
our experimental conditions. The self-healing of distorted or
attenuated intensity features relies on the temporal reshaping
of the waveform via chromatic dispersion. Accordingly, this
effect will reveal itself in the characteristic propagation
distances of the order of the dispersion length in the medium,
at a given pulse duration. In our case, the dispersion length
corresponding to the ∼70-fs intensity FWHM of the main peak
of the Airy pulse is about 7 cm, which is much longer than the
Rayleigh range of the laser beam in our focusing geometry.
On the other hand, as our results show, the accelerating feature
of the Airy waveform will play a significant role both in the
pulse propagation dynamics and in the resulting morphology
of the generated k-ω spectra.

Indeed, numerical simulations of the propagation of Airy
waveforms with ±120 000 fs3 of cubic spectral phase in
water, under our experimental conditions, reveal that the
pulse propagation dynamics for cases of the same magnitude
but opposite sign of the cubic spectral phase are markedly
different. In both cases, the main peak of the waveform splits
upon propagation three times, while the secondary peak of the
waveform undergoes a single splitting. The splits occur in the
range of propagation distances from 2.2 mm to 2.6 cm from
the entrance to the water cell. Due to the opposite directions
of temporal accelerations of Airy pulses with opposite signs
of cubic spectral phase, the velocities of the intensity features
that undergo splitting, as well as the velocities of the resulting
subpulses, are different, which translates into a noticeable
difference in the morphology of the generated k-ω spectral
maps.

For example, for a positive cubic spectral phase, in which
case the dominant intensity feature of the pulse propagates in
front of the oscillatory pulse tail, the three splits of the main
intensity feature of the waveform result in the population of
nearly overlapping branches in the k-ω spectral map. Fitting
curves based on the phase-matching condition, (1), with the
group velocities of the subpulses extracted from the numerical
simulation are shown, by solid lines, in the top part of Fig. 3.
The dashed line in the same figure shows the phase-matching
condition for the subpulse produced through the only split
of the secondary intensity feature of the pulse. That curve is
very close to the curves for the three consecutive splits of the
dominant intensity feature.

The simulated k-ω spectrum for the case of a negative cubic
spectral phase, corresponding to the dominant peak of the
waveform propagating behind its oscillatory tail, is shown in
the bottom part of Fig. 3. As in the previous case, the X-shaped
arms produced by the first two splits of the dominant intensity
feature of the pulse, as well as by the split of its secondary
feature, are nearly overlapping. However, the third split of
the dominant feature produces a standout arm shown by the
dashed line. In that case, the trailing subpulse moves with
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FIG. 3. (Color online) Numerically simulated k-ω spectra for
cases of Airy pulses with 1.6 μJ of pulse energy and with a positive
(top) and a negative (bottom) cubic spectral phase of 120 000 fs3.
Insets: The corresponding orientations of the waveforms. Spectra are
plotted on a log scale. For the positive phase case, the phase-matching
curves for the three splits of the dominant intensity feature of the
waveform are shown by solid lines. The dashed line shows the phase-
matching curve for the split of the secondary feature of the pulse.
For the negative phase case, the solid lines show the phase-matching
curves for the first two splits of the dominant intensity feature of
the pulse and for the only split of the secondary feature. The dashed
lines show the phase-matching curves for the third split of the main
intensity feature.

a group velocity of (1 − 0.0010)c/ng , which is very close
to the linear group velocity in water. Both branches of the
phase-matching curve, (1), for the trailing subpulse produced
in that splitting event are visible in the spectrum, as they both
fit into the measured spectral window. In the simulation plot
shown in the bottom part of Fig. 3, these branches are shown
by dashed lines.

The experimentally measured k-ω spectra for cases cor-
responding to the simulations shown in Fig. 3 are shown in
Fig. 4. The qualitative match between the numerical and the
experimental spectral patterns is evident, for the cases of both
positive and negative cubic spectral phases used to generate
these Airy waveforms. In the case of a positive cubic spectral
phase, one single extended diagonal arm is present on the blue
(right) side of the k-ω spectral map. In the case of a negative
cubic phase, two distinct diagonal arms on the blue (right)
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FIG. 4. (Color online) Experimentally observed k-ω spectra for
the cases of Airy pulses corresponding to the numerical simulations
shown in Fig. 3. The top figure corresponds to a positive, and the
bottom figure to a negative, cubic spectral phase of 120 000 fs3.
Lines are exact replicas of the corresponding fitting curves from the
numerical simulation plots shown in Fig. 3.

side of spectrum, as well as an extended arm close to the
horizontal axis on the red (left) side, are evident. Numerical
simulations reveal the origin of these features, as discussed
above. The phase-matching curves, directly replicated from
the simulation plots in Fig. 3 onto the experimental plots in
Fig. 4, show an excellent agreement with the placements of
the experimentally recorded spectral features.

In conclusion, we have analyzed, both experimentally
and numerically, the nonlinear propagation of femtosecond
accelerating Airy waveforms in water. We have shown that
analysis of the morphological features in the k-ω spectral maps
of forward-propagating supercontinuum emission provides
quantitative clues on the complex evolution of these sophis-
ticated pulse waveforms in the highly nonlinear propagation
regime.
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