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Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to
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We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry
when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the
guided mode does not reach the strong-coupling regime for individual atoms, one can obtain high cooperativity
for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive
interference over the entire chain of trapped atoms. We calculate the dyadic Green’s function, which determines
the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation
induced on the guided light by the trapped atoms. The Green’s function is related to a full Heisenberg-Langevin
treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to
quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection
of atom number for atoms in a completely mixed spin state and the squeezing of projection noise for atoms in
clock states. Compared with squeezing of atomic ensembles in free space, we capitalize on unique features that
arise in the nanofiber geometry including anisotropy of both the intensity and polarization of the guided modes.
We use a first-principles stochastic master equation to model the squeezing as a function of time in the presence
of decoherence due to optical pumping. We find a peak metrological squeezing of ∼5 dB is achievable with
current technology for ∼2500 atoms trapped 180 nm from the surface of a nanofiber with radius a = 225 nm.
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I. INTRODUCTION

Strong coupling between atoms and photons is at the heart
of many quantum information processing protocols including
efficient generation of remote entanglement [1,2], quantum
data storage and retrieval [3], and quantum nondemolition
(QND) measurements [4]. From a general perspective, strong
coupling arises when atoms radiate predominantly into the
electromagnetic field mode that defines the quantum atom-
light interface. For an individual atom, the strong-coupling
regime is attained via the Purcell effect, whereby the boundary
conditions of nearby dielectrics and/or conductors enhance
radiation into a desired mode relative to all other modes.
This can be achieved with Fabry-Perot cavities (cavity QED)
[5] and/or via nanophotonic structures engineered such that
the radiation is predominantly into a specified mode [6–8].
The Purcell enhancement factors for emission into a guided
or cavity mode scale respectively as �1D/�vac ∼ σ0/A and
�cav/�vac ∼ Qλ3/V ∼ Fσ0/A. Here �vac is the free space
spontaneous emission rate, σ0 ∝ λ2 is the resonant absorption
cross section, Q, V , and F , are the cavity quality factor,
volume, and finesse respectively, and A is the effective area
of the cavity or guided mode that couples to the atom. The
strongest coupling occurs on resonance, and thus much effort
has been devoted to developing the largest possible �cav and
�1D through ultrahigh-Q, small-volume resonators [5,9,10]
and through nanophotonic plasmonic [11,12], metamaterial
[13], and dielectric [8,14] waveguides.

In free space, where there is no Purcell enhancement, strong
coupling can be achieved via the cooperativity of atomic
ensembles. This is most naturally implemented in a dispersive
regime, off resonance, where light elastically scattered from
the ensemble constructively interferes to match the mode of an

exciting paraxial probe [15]. The cooperativity per atom in a
typical paraxial beam is small, �1D/�vac ∼ σ0/A ∼ 10−6. The
total cooperativity, however, can be significant for sufficiently
large ensembles, e.g., NA ∼ 107 atoms. The key parameter that
characterizes cooperativity is the total resonant optical density
of the ensemble, OD = NA(σ0/A). Such strong cooperativity
in free space has been employed in a variety of applications
including quantum memory for storage of photonic states [16]
and the generation of squeezed states of the collective spin of
the ensemble via QND measurement [17–20].

A particular system that combines the elements above con-
sists of cold atoms trapped in the evanescent field of the guided
mode of a tapered optical nanofiber with a subwavelength
diameter [21–25] (see Fig. 1). The typical resonant OD per
atom, or OD/NA, in the nanofiber (σ0/A ∼ 10−2) is boosted
by orders of magnitude over free space for paraxial beams.
However, one cannot reach the strong-coupling regime where
�1D is on the order of �vac as is possible in engineered
nanophotonic waveguides, such as those arising in photonic
crystals [8], where atoms can be trapped at positions of
peak intensity of the field. One can, however, achieve strong
cooperativity in the dispersive regime with a moderately sized
ensemble. When compared to free space, all light scattered
into the guided mode is automatically mode matched, and
thus, given the relatively large ratio σ0/A, one can achieve
high OD with only a few thousand atoms (see Fig. 1).
Such strong cooperativity opens the door to new regimes to
create non-Gaussian quantum states of the ensemble [26] and
potentially to implement nonlinear optics at the level of a few
photons [27–29].

One-dimensional optical lattices in nanofibers based on
multiple co- and counterpropagating trapping beams have been
loaded with up to several thousand alkali-metal atoms [21,22].
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FIG. 1. Cooperativity and mode matching for various atom-light
geometries. (a) The beam area at the waist of a tightly focused
beam is closely matched with the atomic scattering cross section,
but the scattered light of a single atom is poorly mode-matched
with the probe. (b) A paraxial beam probing a rarefied atomic cloud
whose scattered radiation interferes constructively in the forward
direction. (c) Atoms trapped in a 1D optical lattice near the surface
of an optical nanofiber interacting with a fiber-guided probe. The
tight confinement and automatic mode matching that accompanies
scattering into the guided mode leads to strong cooperativity in the
atom-photon interaction.

This has proved a fruitful platform for quantum information
processing. The anisotropic nature of the strong atom-light
coupling has been exploited for control of internal atomic
states [30], enhanced coupling into a preferred propagation
direction [31,32], and optical switching [29]. Off resonance,
dispersive coupling has allowed for nondestructive atom
counting [33,34] and storage of fiber-guided light [35,36].
Recent demonstrations of photonic crystal cavities fabricated
on the nanofiber [37–39] promise further enhanced atom-light
coupling.

In this paper we study the quantum atom-light interface in
the dispersive regime for an optical nanofiber geometry. We
focus here on the coupling between the atomic spin and light
polarization induced by the elastic scattering of photons by
tensor-polarizable cesium atoms trapped near the surface of the
nanofiber. This provides an entangling interaction that can be
employed to generate spin squeezing via QND measurement.
Our analysis unifies a variety of different approaches found in
the literature, including direct calculation of the dyadic Green’s
function for photon scattering [6,11,40–45] and the input-
output formalism studied for one-dimensional field theories
based on Heisenberg-Langevin equations [46–51].

The remainder of this article is organized as follows. In
Sec. II we solve for the mode decomposition of the dyadic
Green’s function which determines the electric field scattered
by a point dipole near the surface of the nanofiber. This allows
us to calculate the phase shift and polarization transformation
for fiber-guided photons induced by tensor-polarizable atoms
in the dispersive regime. We connect this with a fully quantum-
mechanical treatment based on a Heisenberg-Langevin picture
in Sec. III. The formalism we develop is used in Sec. IV
to study QND measurement of atoms based on polarization
spectroscopy. We consider shot-noise-limited atom detection
as well as measurement-backaction-induced squeezing of

spin projection noise. We study squeezing of the collective
pseudospin associated with ensembles of atoms in the atomic
clock state and calculate its dynamics based on a first-
principles stochastic master equation that includes both the
effects of QND measurement as well as decoherence due to
optical pumping. We conclude with a summary and outlook
for future research in Sec. V.

II. DYADIC GREEN’S FUNCTION AND INPUT-OUTPUT
FIELD RESPONSE

Given a point particle with tensor polarizability
↔
α at

position r′ near the surface of a nanofiber, the field at frequency
ω0 is given by the solution to the wave equation,[ − ∇ × ∇ × + n2(r)k2

0

]
E(r) = −4πk2

0δ
(3)(r − r′)

↔
α ·E(r),

(1)

where k0 = ω0/c and n(r) is the spatially varying index of
refraction that describes the fiber; Gaussian-cgs units are used
throughout. For an asymptotic input field Ein(r), the scattering
solution to Eq. (1) is given by the Lippmann-Schwinger
equation [44],

Eout(r) = Ein(r) + ↔
G(+)(r,r′; ω0) · ↔

α ·Eout(r′) (2a)

≈ Ein(r) + ↔
G(+)(r,r′; ω0) · ↔

α ·Ein(r′), (2b)

where in Eq. (2b) we have made the first Born approximation
valid for weak scattering. The fundamental object that fully
characterizes the scattered radiation as well as the energy level
shift and modified decay rate of a scatterer near the dielectric

is the dyadic Green’s function,
↔
G(r,r′; ω0). This determines

the scattered field from a point dipole at r′, Escat(r) =
↔
G(+)(r,r′; ω0) · d, and satisfies the equation of motion,[ − ∇ × ∇ × + n2(r)k2

0

]↔
G(r,r′; ω0) = −4πk2

0δ
(3)(r − r′)

↔
I ,

(3)

where
↔
I is the unit tensor.

The solution for the Green’s function
↔
G(r,r′; ω0), follow-

ing from Maxwell’s equations, has been studied previously
[40,42,44]. As we are interested here in the forward-scattered
components that lead to phase shifts and polarization transfor-

mations, we directly calculate
↔
G(r,r′; ω0) through a decompo-

sition into normal modes. A complete set of eigenmodes in the
presence of lossless, spatially inhomogeneous dielectric are
defined according to the procedure of Glauber and Lewenstein
[52]. We seek the eigenmodes fη(r), indexed by η, that satisfy
the homogeneous wave equation in the absence of sources, i.e.,
Eq. (1) for

↔
α = 0 with the wave number of the eigenmodes

k0 → kη. To do so, one defines functions gη(r) ≡ n(r)fη(r) that
form a complete basis, as they are eigenfunctions of the Her-
mitian operator, H(k0) = − 1

n(r)∇ × ∇ × 1
n(r) + k2

0, according

to H(k0)gη(r) = ληgη(r). The eigenvalue, λη = (ω2
0 − ω2

η)/c2,
determines the wave number for a given mode at frequency
ωη. We are interested specifically in the generalized transverse
functions satisfying ∇ · [n(r)gη(r)] = 0 with eigenvalues λn 	=
0 [44]. These fall into two categories, guided (η = μ) and
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unguided (η = ν) modes, which together form a complete,
orthonormal set for transverse vector functions,∫

d3r g∗
η(r) · gη′ (r) =

∫
d3r n2(r)f∗

η (r) · fη′(r) = δη,η′ , (4)∑
η

gη(r)g∗
η(r′) =

∑
μ

gμ(r)g∗
μ(r′) +

∑
ν

gν(r)g∗
ν(r′)

= δ̃(T )(r − r′)
↔
I , (5)

where δ̃(T )(r − r′) is the δ function for generalized transverse
vector fields [53]. It follows that the generalized transverse
dyadic Green’s function can be decomposed in terms of the
eigenfunctions [40,42]

↔
G(T )(r,r′; ω0) = −4π

∑
η

ω2
0fη(r)f∗

η′(r′)

ω2
0 − ω2

η

, (6)

where the eigenvalues appear as ω2
η = c2k2

η . The sum includes
both guided and unguided contributions. We focus here on the
guided-mode contribution to the Green’s function.

We treat an optical nanofiber of radius a with step-index
profile,

n(r⊥) =
{
n1, r � a

n2, r > a
, (7)

for a silica core (n1 = 1.4469) [54] and infinite vacuum
cladding (n2 = 1). For a cylindrically symmetric dielectric
the guided modes are fμ(r) = uμ(r⊥)eiβz/

√
2π , with indices

μ = {j,β,p} for the j th guided mode with propagation
constant β at frequency ωμ = ω(β) and polarization p.
The transverse mode functions are normalized according to∫

d2r⊥ n2(r⊥)u∗
μ(r⊥) · uμ′(r⊥)|β=β ′ = δj,j ′δp,p′ and have units

1/
√

A [55]. Two convenient guided-mode bases are the
quasilinear and quasicircular polarization modes, described
in Appendix A [54].

We consider nanofibers that support only the lowest HE11

guided modes at the relevant frequency ω0 [56], and thus we
drop the mode index j . In this case there are four guided modes:
two polarizations p, each with propagation constant β(ω0) =
±β0 corresponding to forward and backward propagation. The
guided-mode contribution to the dyadic Green’s function is
then

↔
Gg(r,r′; ω0) =

∫ ∞

−∞
dβ

∑
p

−2ω2
0

ω2
0 − ω2(β)

uβ,p(r⊥)u∗
β,p(r′

⊥)

× eiβ(z−z′), (8)

where ω(β) is the frequency of the guided HE11 for a given β.
For z > z′ (z < z′), the contribution of the guided modes

to the retarded (causal) Green’s function is found by the usual
displacement of the pole on the positive (negative) β axis into
the upper (lower) half of the complex plane. The result for
z 	= z′ is [6]

↔
G(+)

g (r,r′; ω0) = 2πi
∑
b,p

Res|β=bβ0

[ −2ω2
0

ω2
0 − ω2(β)

]

× ubβ0,p(r⊥)u∗
bβ0,p

(r′
⊥)eibβ0(z−z′)

= 2πi
ω0

vg

∑
b,p

ub,p(r⊥)u∗
b,p(r′

⊥)

× eibβ0(z−z′)�[(z − z′)b], (9)

where b = ± indicates the propagation direction, vg =
|dω/dβ|β=β0 is the group velocity at ω0, and �[b(z − z′)]
is a Heaviside function enforcing causality for the forward-
and backward-scattered fields. In the second line, we have
suppressed the label β0 as it is implicit in the definition of the
guided modes at frequency ω0.

Radiative properties of a scatterer (the decay rate and
energy-level shift) are determined by evaluation of the dyadic
Green’s function at the source point r = r′ [45]. However, for
z = z′ we cannot close the contour. Instead, we expand the
resonant denominator in Eq. (8) with the poles moved to yield
the retarded (causal) response,

1

(ω0 + iε)2 − ω2(β)

= 1

2ω(β)

[
1

ω0 + iε − ω(β)
− 1

ω0 + iε + ω(β)

]
,

and employ the usual distribution identities [42],

lim
ε→0+

1

ω0 + iε ∓ ω(β)
= P

[
1

ω ∓ ω(β)

]
+ iπδ[ω0 ∓ ω(β)].

(10)
Only the positive-frequency component contributes to the
δ function, and it follows that the imaginary part of the
Green’s function at r = r′ that determines the resonant Purcell
enhancement of spontaneous emission into the guided modes
is [41,45,57]

Im[
↔
G(+)

g (r′,r′; ω0 = ωeg)] = π
ωeg

vg

∑
b,p

ub,p(r′
⊥)u∗

b,p(r′
⊥),

(11)
where ωeg is resonance frequency of the atomic scatterer. The
energy-level shift of the scatterer due to its proximity to the
dielectric is found from the real part of the Green’s function
at r = r′. To find the total modified spontaneous emission rate
and energy-level shift one must include the unguided radiation
modes [49] or employ other representations of the Green’s
function [43].
Equation (9) is the central result from which we can
calculate the dispersive response. Consider a forward-
propagating input field in the guided modes with frequency ω0,
positive-frequency amplitude F (+)

0 , and arbitrary polarization,
E(+)

in (r) = F (+)
0 uin(r⊥)eiβ0z dispersively coupled to an atom at

position r′. The effective mode area at the atom’s position is
determined from the total cycle-averaged power transported
along the nanofiber, Pin,z = (vg/2π )

∫
d2r n2(r⊥)|E(+)

in (r)|2,
and the intensity at the atom, Iin(r′) = (c/2π )|E(+)

in (r′)|2, via
the relation [58]

Ain ≡ Pin

Iin(r′)
= 1

ng|uin(r′
⊥)|2 , (12)

where ng ≡ c/vg is the group index of refraction.
Substitution of the guided-mode Green’s function, Eq. (9),

into the Lippman-Schwinger equation, Eq. (2b), yields
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the transmitted (forward-scattered) and reflected (backward-
scattered) output fields, Eout(r) = F (+)

0 [u+,out(r⊥)eiβ0z +
u−,out(r⊥)e−iβ0z],

u+,out(r⊥) =
∑
p,p′

cptpp′u+,p′ (r⊥), (13a)

u−,out(r⊥) =
∑
p,p′

cprpp′u−,p′ (r⊥), (13b)

where we have decomposed the input into the polarization
eigenmodes, uin(r⊥) = ∑

p cpu+,p(r⊥). For z > z′, the trans-
mission and reflection matrices are

tpp′ = δp,p′ + 2πik0ng u∗
+,p(r′

⊥) · ↔
α ·u+,p′ (r′

⊥), (14a)

rpp′ = 2πik0ng u∗
−,p(r′

⊥) · ↔
α ·u+,p′ (r′

⊥)e2iβ0z
′
. (14b)

We focus here on the transmitted fields whose interference
with the input field for z > z′ results in a phase shift and a
polarization transformation. For weak scattering the diagonal
terms, tpp ≈ √

1 − Rpeiδφp , determine the phase shift and
attenuation induced on each polarization mode,

δφp = 2πk0

Ain
Re(αpp), (15a)

Rp = 4πk0

Ain
Im(αpp). (15b)

Here, the {p,p′} element of the tensor polarizability is given
by αpp′ ≡ e∗

p′ · ↔
α ·ep, with unit vectors for each of the forward-

propagating mode functions, ep ≡ u+,p(r′
⊥)/|u+,p(r′

⊥)|.
The phase shift per atom, Eq. (15a), is modified over free

space in two ways, both of which are captured by the effective
mode area Ain. First, although material dispersion in an optical
fiber is negligible over the distances we consider, additional
waveguide dispersion can lead to a significant reduction in the
group velocity [8,14]. Such “slow light” enhances the atom-
photon coupling strength. In the nanofiber geometry this effect
is moderate—we calculated the group index to be ng ≈ 1.40.
Second and more importantly, the tight spatial confinement
as measured by OD/NA significantly increases the coupling
strength over free space for every atom along the nanofiber,
which yields strong cooperativity. In contrast, in free space
diffraction restricts the collective phase shift for an ensemble
of atoms [15,59]. For a Gaussian beam with beam waist w0,
the total phase shift induced by a collection of polarizable
atoms will be δφ = Neff2πk0Re(α)/A, where A = πw2

0/2 is
the beam area at the focus and Neff is the effective number of
atoms that radiate into this mode. One can couple strongly to
few atoms at the center by tightly focusing the beam or couple
weakly to many atoms by choosing a larger focal volume, but
hence, smaller cooperativity per atom.

The off-diagonal terms in the transmission matrix,
Eq. (14a), describe the polarization transformation. For exam-
ple, if we take the polarization of the modes to be quasilinear,
p = {H,V } as defined in Eq. (A4), then tHV ≡ χFar is the
rotation angle of the Stokes vector on the Poincaré sphere cor-
responding to the Faraday effect [60,61]. The phase difference
in that basis, δφH − δφV , corresponds to birefringence induced
on the guided mode and tHV to Faraday rotation. Analyzed

in the quasicircular polarization modes (p = ±), given in
Eq. (A3), the differential phase δφ+ − δφ− corresponds to
Faraday rotation and t+− to birefringence. We make use of such
polarization transformations as a means to nondestructively
measure the atoms and generate collective spin squeezing.

III. HEISENBERG-LANGEVIN-PICTURE SOLUTION AND
ATOMIC RESPONSE

The Lippmann-Schwinger solution, Eq. (2b), determines
the input-output relation for linear atomic response given

by the polarizability tensor
↔
α . In this section we connect this

with the fully quantum-mechanical description of dispersive
atomic response and input-output relations for the quantized
guided modes. Following Ref. [49], we use a Heisenberg-
Langevin approach for one-dimensional systems.

The positive frequency component of the quantized electric-
field operator decomposes into guided and radiation (un-
guided) modes, Ê(+) = Ê(+)

g + Ê(+)
r , where

Ê(+)
g (r) =

∑
b,p

∫ ∞

0
dω

√
�ω

vg

âb,p(ω)uμ(r⊥)eibβ(ω)z, (16a)

Ê(+)
r (r) =

∑
m,p

∫ ∞

0
dω

∫ kn2

−kn2

dβ
√

�ω âm,p(ω,β)uν(r⊥)eiβ(ω)z.

(16b)

The HE11 guided modes are specified by μ = (ω,b,p),
where ω is the mode frequency, p is the polarization, and
the propagation direction b = ± corresponds to wave number
bβ(ω). The radiation modes are specified by ν = (ω,β,m,p),
where m is the azimuthal (angular momentum) quantum
number, p labels the two orthogonal polarizations, and
longitudinal propagation constant β can vary continuously
from −kn2 to kn2, with k = ω/c [42,49]. The creation
and annihilation operators satisfy the usual continuous-
mode commutation relations, [âμ,â

†
μ′ ] = δb,b′δp,p′δ(ω − ω′)

and [âν,â
†
ν ′ ] = δm,m′δp,p′δ(ω − ω′)δ(β − β ′).

The Hamiltonian for the system is

Ĥ = ĤF + ĤA + Ĥint, (17)

where the free-field Hamiltonian decomposes into guided and
unguided modes,

ĤF =
∑
b,p

∫ ∞

0
dω �ωâ†

μâμ +
∑
m,p

∫ ∞

0
dω

∫ kn2

−kn2

dβ �ωâ†
ν âν .

(18)
We consider here alkali-metal atoms with ground and excited
levels, {|g〉 = |nS1/2,f,mf 〉}, {|e〉 = |nPj ′ ,f ′,mf ′ 〉}, where
|f,mf 〉 denotes the hyperfine sublevels. The free atomic
Hamiltonian is

ĤA =
∑

g

Egσ̂gg +
∑

e

Eeσ̂ee, (19)
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where σ̂ij ≡ |i〉〈j |. In the rotating wave approximation, the
atom-field interaction Hamiltonian is

Ĥint = −d̂ · Ê = −
∑
e,g

[
d̂eg · Ê(+)(r′) + d̂ge · Ê(−)(r′)

]
,

(20)

where the atomic dipole operator is projected between excited
and ground subspaces, d̂eg = P̂ed̂P̂g . The interaction Hamil-
tonian then takes the form

Ĥint = −
∑
e,g

⎛
⎝∑

b,p

∫ ∞

0
dω �gμ,e,g âμ σ̂eg

+
∑
m,p

∫ ∞

0
dω

∫ kn2

−kn2

dβ �gν,e,g âν σ̂eg

)
+ H.c., (21)

where the coupling constants for guided and radiation modes
are

�gμ,e,g =
√

�ω

vg

〈e|d̂|g〉 · uμ(r′
⊥)eibβ(ω)z, (22a)

�gν,e,g =
√

�ω 〈e|d̂|g〉 · uν(r′
⊥)eiβ(ω)z. (22b)

The Heisenberg equations of motion are

dâμ

dt
= −iωâμ + i

∑
e,g

g∗
μ,e,gσ̂ge, (23a)

dâν

dt
= −iωâν + i

∑
e,g

g∗
ν,e,gσ̂ge, (23b)

dσ̂ge

dt
= −iωegσ̂ge + i

∫ ∞

0
dω

∑
e′,g′

[(
δee′ σ̂gg′ − δgg′ σ̂e′e

)

×
{∑

b,p

gμ,e′,g′ âμ +
∑
m,p

∫ kn2

−kn2

dβ gν,e′,g′ âν

}]
.

(23c)

Integrating the field equations,

âμ(t) = âμ(t0)e−iω(t−t0) + i
∑
e,g

g∗
μ,e,g

∫ t

t0

dt ′e−iω(t−t ′)σ̂ge(t ′),

(24a)

âν(t) = âν(t0)e−iω(t−t0) + i
∑
e,g

g∗
ν,e,g

∫ t

t0

dt ′e−iω(t−t ′)σ̂ge(t ′),

(24b)

substituting into Eq. (23c), and making the usual Markov
approximation [49] gives an expression for the ground-excited

coherences. This yields

dσ̂ge

dt
= − iωegσ̂ge −

∑
e′

�ee′

2
σ̂ge′+i

∑
e′,g′

[
(δe,e′ σ̂gg′−δg,g′ σ̂e′e)

×
∫ ∞

0
dω

{ ∑
b,p

gμ,e′,g′ âμ(t0)

+
∑
m,p

∫ kn2

−kn2

dβgν,e′,g′ âν(t0)

}
e−iω(t−t0)

]
,

where the decay rates of excited-populations and coherences
are given by

�ee′ = 2π
∑
μ,g

gμ,e,gg
∗
μ,e′,g|ω=ωeg

+ 2π
∑
m,p,g

∫ kn2

−kn2

dβ gν,e,gg
∗
ν,e′,g|ω=ωeg

, (25)

and the small energy shift is absorbed into the transition
frequency ωeg = (Ee − Eg)/�. Equation (25) captures the
modification of the spontaneous emission rate due to the
nanofiber. The first sum describes decay into the guided
modes and the second into the unguided radiation modes
[43,49,62–64]. The decay rate of a given excited state into
all guided modes is given by

�1D
e = 2π

∑
b,p,g

|gμ,e,g|2ω=ωeg
= 2π

�

ωeg

vg

∑
b,p,g

|〈e|d̂|g〉 · ubp(r′
⊥)|2.

(26)
This is in agreement with the expected expression from the
guided-mode contribution to the dyadic Green’s function in
Eq. (11),

�1D
e = 2

�

∑
g

〈g|d̂|e〉 · Im[
↔
G(+)

g (r′,r′; ωeg)] · 〈e|d̂|g〉, (27)

which is enhanced over the free space rate by the Purcell factor.
Here we are interested in linear response for excitation

far from resonance. We follow Ref. [65] and consider an atom
sufficiently far from the fiber surface such that the modification
of the spontaneous emission rate is small. In this case the
decay rate is approximated as �ee′ ≈ δe,e′�e, where �e is the
total decay rate from excited state |e〉, given by the diagonal
elements of Eq. (25). In steady state, the dipole operator in the
linear regime (σ̂ee′ → 0) is approximately

σ̂ge ≈ −
∑
g′

σ̂gg′

∫ ∞

0
dω

( ∑
b,p

gμ,e,g′

ω − ωeg + i�e/2
âμ(t0)

+
∑
m,p

∫ kn2

−kn2

dβ
gν,e,g′

ω − ωeg + i�e/2
âν(t0)

)
e−iω(t−t0).

(28)

By substituting this into Eq. (24a) and defining
asymptotic modes, âin(ω) = limt0→−∞ â(t0)eiωt0 , âout(ω) =
limt→+∞ â(t)eiωt [51], we obtain the input-output relationship
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for the guided modes,

âout
μ (ω) =âin

μ (ω) − 2πi
∑
b′,p′

∑
e,g,g′

σ̂gg′
g∗

μ,e,ggμ′,e,g′

ω − ωeg + i�e/2
âin

μ′(ω)

− 2πi
∑
m,p

∑
e,g,g′

∫ kn2

−kn2

dβσ̂gg′
g∗

μ,e,ggν ′,e,g′

ω−ωeg+i�e/2
âin

ν (ω).

(29)

This input-output relation contains the phase shift on
forward scattered modes as well as attenuation due to elastic
scattering into all other modes. For a probe with frequency
ω0, Eq. (29) agrees with the expected form given by the
Lippmann-Schwinger equation in the first Born approximation
[66],

Ê(+)
out,g(r,ω0) =Ê(+)

in,g(r,ω0) + ↔
G(+)

g (r,r′,ω0) · ↔̂
α

· [
Ê(+)

in,g(r′,ω0) + Ê(+)
in,r (r′,ω0)

]
, (30)

by noting that for the guided-mode dyadic Green’s function
given in Eq. (9),∫

d2r⊥ u∗
μ(r⊥) · ↔

G(+)
g (r,r′,ω0) · ↔̂

α · uμ′ (r′
⊥)

= i
2πω0

vg

u∗
b,p(r′

⊥) · ↔̂
α · ub′,p′ (r′

⊥). (31)

Here, the atomic polarizability operator [61,68,69], is given
by

↔̂
α = −1

�

∑
e,g,g′

|g〉 〈g|d̂|e〉〈e|d̂|g′〉
�eg + i�e/2

〈g′|, (32)

and �eg = ω0 − ωeg is the laser detuning from the atomic
transition. For an atom in ground state |g〉 and polarization p,
the phase shift can be expressed as [65]

δφp,g = 2π
ω0

vg

u∗
+,p(r′

⊥) · Re
[〈g|↔̂α |g〉] · u+,p(r′

⊥)

= −ω0

vg

∑
e

2π |〈e|d̂|g〉 · u+,p(r′
⊥)|2

��eg

. (33)

We employ this dispersive response for QND measurement of
atoms, as we describe in the next section.

IV. QND MEASUREMENT OF ATOMS

The dispersive interface between the atoms and nanofiber
guided photons provides the entangling mechanism necessary
to perform a QND measurement on the atoms. We restrict
here to the quasilinear modes, p = {H,V }, of a single HE11

guided mode at frequency ω0, whose form is given explicitly
in Eq. (A4). In typical experimental configurations, two one-
dimensional arrays of atoms are trapped on either side of the
nanofiber (see Fig. 2). We define coordinate axes (x,y,z) with
z oriented along the fiber axis for forward propagation, and the
two chains of atoms lie in the x-z plane at azimuthal angles
φ′ = {0,π}. In the evanescent region, the H mode is purely ex

polarized at φ = ±π/2 and the V mode is purely ey polarized
at φ = {0,π}. At other azimuthal angles the electric field is

FIG. 2. Quantum interface for spin-polarization coupling of two
one-dimensional lattices of cold, trapped atoms and the guided modes
of an optical nanofiber. (a) Schematic of the interface. A linearly
polarized probe is launched into the nanofiber and the output light
is analyzed in a polarimeter. The atoms (green circles), trapped in
the x-z plane, couple to the evanescent portion of the guided H and
V modes. Contours of the H - and V -mode intensities in (b) the x

direction and (c) the transverse x-y plane show the mode anisotropy
at the atomic positions.

generally rotating along an ellipse in the x-z plane. The atoms
at φ′ = 0 experience H and V fields,

ub,H (r⊥,φ = 0) =
√

2[exur (r⊥) + ibezuz(r⊥)], (34a)

ub,V (r⊥,φ = 0) =
√

2eyuφ(r⊥), (34b)

where the real-valued functions uα(r⊥), given in Eq. (A5),
depend only on the radial coordinate. On the opposite side
of the fiber at φ′ = π , atoms experience the same transverse
electric field, but the z component changes sign. This broken
symmetry has been used to selectively address and separately
control the two atomic arrays [30,32,36].

We consider quasimonochromatic fields at carrier fre-
quency ω0 that are sufficiently narrow band, �ω � ω0. For
each guided mode we define input propagating, continuous-
mode field operators in the interaction picture [46,47,50],

âb,p(z,t) = 1√
2π

∫ ∞

0
dω âb,p(ω)ei[bβ0z−(ω−ω0)t], (35)

that satisfy the free field commutation relations,

[âb,p(z,t),â†
b′,p′ (z′,t ′)] = δb,b′δp,p′δ[t − t ′ − (z − z′)/vg].

(36)
In terms of these propagating modes the quantized electric-
field operator, Eq. (16a), becomes

Ê(+)(r⊥,φ,z; t) =
∑
b,p

√
2π�ω0

vg

ub,p(r⊥,φ)âb,p(z,t)eibβ0z.

(37)
Considering here only the forward-propagating guided modes
(b = +), we drop the b index. The propagating electric field,
Eq. (37), interacts with the trapped atoms via the dispersive
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light-shift Hamiltonian [61,69,70],

ĤLS = −
NA∑
n=1

Ê(−)(r′
n; t) · ↔̂

α (n) · Ê(+)(r′
n; t), (38)

where
↔̂
α (n) is the atomic tensor polarizability operator, given

in Eq. (32), for the nth atom trapped near the nanofiber surface
at position r′

n. We ignore here any effects of atomic motion
and treat the atoms as localized at fixed positions in space.

The Lippmann-Schwinger scattering equation, Eq. (30),
follows in the time domain as the evolution of coarse-grained
input-ouput modes [46,51,65]. Since multiple scattering is
negligible and the propagation time across the ensemble
is small compared to the atomic dynamics, we drop the
position label z and index the propagating fields by time
alone; âb,p(z,t) → âb,p(t) as is standard in input-output theory
[46,71]. It follows that the effects of retardation can be
ignored, in which case each term in the sum over atoms
contributes equally for all atoms (for details see [50,70]). The
forward-propagating output fields are then given by the Fourier
transform of Eq. (29), yielding [50]

âout
p (t) = âin

p (t) + i
2πω0

vg

∑
p′

[N0u∗
p(r ′

⊥,0) · ↔̂
α · up′ (r ′

⊥,0)

+ Nπu∗
p(r ′

⊥,π ) · ↔̂
α · up′ (r ′

⊥,π )]âin
p′ (t), (39)

where {N0,Nπ } are the total number of atoms trapped at φ′ =
{0,π}. The quantum effects from the first term give rise to shot
noise in the transmitted field at the detector. The second term
represents scattering into the guided modes, as described by
the dyadic Green’s function, Eq. (27).

We introduce the vector Stokes operators that describe the
polarization of the propagating fields in the quasilinear HV

basis,

Ŝ1(t) = 1
2 [â†

H (t)âH (t) − â
†
V (t)âV (t)], (40a)

Ŝ2(t) = 1
2 [â†

H (t)âV (t) + â
†
V (t)âH (t)], (40b)

Ŝ3(t) = 1
2i

[â†
H (t)âV (t) − â

†
V (t)âH (t)], (40c)

that satisfy equal-z commutation relations following from
Eq. (36),

[Ŝi(t),Ŝj (t ′)] = iεijkδ(t − t ′)Ŝk(t). (41)

These, along with the total photon flux operator,

Ŝ0(t) = 1
2 [â†

H (t)âH (t) + â
†
V (t)âV (t)], (42)

are used to reexpress the Hamiltonian, Eq. (38), in the HV

basis,

ĤLS = − 2π�k0ng

∑
φ′=0,π

Nφ′ {[K̂HH (φ′) + K̂V V (φ′)]Ŝ0(t)

+ [K̂HH (φ′) − K̂V V (φ′)]Ŝ1(t)

+ [K̂HV (φ′) + K̂V H (φ′)]Ŝ2(t)

+ i[K̂HV (φ′) − K̂V H (φ′)]Ŝ3(t)}. (43)

The atomic couplings to the {H,V } modes,

K̂pp′ (φ′) ≡ |u∗
p(r ′

⊥,φ′)||up′(r ′
⊥,φ′)| α̂pp′(φ′), (44)

are determined by components of the quantum-mechanical
tensor operator weighted by the transverse-mode functions

at the atomic position, α̂pp′(φ′) = e∗
p′ (φ′) · ↔̂

α · ep(φ′), whose
classical analog appeared in Eq. (15a).

We explore a QND measurement of 133Cs atoms in the
electronic ground state, 6S1/2, via polarization spectroscopy
based on the collective atom-light coupling described by the
dispersive light-shift Hamiltonian in Eq. (43). Polarization
transformations occur due to the tensor nature of the atomic
response,

↔̂
α =

∑
f,f ′

α0(�ff ′)
∑
i,j

↔̂
A(f,f ′), (45)

where the operator
↔̂
A(f,f ′) = ∑

i,j Âij (f,f ′)ei ⊗ ej decom-
poses into irreducible components within each ground hyper-
fine multiplet f for light detuned near excited multiplet f ′,

Âij (f,f ′) = C
(0)
ff ′δi,j + iC

(1)
ff ′εijkf̂k

+ C
(2)
ff ′

[
1
2 (f̂i f̂j + f̂j f̂i) − 1

3 f̂ · f̂δi,j

]
. (46)

Here, α0(�ff ′) = − σ0
8πk0

�
�ff ′+i�/2 is the characteristic dynamic

polarizability where σ0 = 3λ2/2π is the resonant scattering
cross section, f̂ is the atomic spin operator in hyperfine
multiplet f , and C

(K)
ff ′ are coefficients for irreducible rank-K

components defined in [61].
In addition to the atomic tensor response, the nanofiber

geometry gives rise to unique features of polarization spec-
troscopy not present in free space. The spatial anisotropy of the
intensity for the quasilinearly polarized guided modes leads to
unequal scattering of the H and V modes, producing intrinsic
birefringence even for a purely scalar atomic polarizability.
In particular, atoms trapped on the quasi-H axis leads to a
phase delay of this mode relative to the fast quasi-V axis.
This birefringence was exploited by Dawkins et al. [33] as a
mechanism for implementing a dispersive QND measurement
of the number of atoms trapped around the nanofiber, as we
treat in the next section.

A. Dispersive atom number measurement

The anisotropy of the guided modes provides a mechanism
for counting the number of atoms trapped around the nanofiber
based on polarization spectroscopy. We consider NA atoms,
each in a completely mixed hyperfine spin state. In this
case the atomic polarizability tensor in Eq. (46) reduces
to 〈Âij (f,f ′)〉 = C

(0)
ff ′δi,j , and the collective interaction is

determined entirely by the the scalar (rank-0) terms. With the
atoms trapped along the quasi-H axis, while 〈K̂HH 〉 	= 〈K̂V V 〉,
the off-diagonal elements in Eq. (43) do not contribute to
the birefringent interaction we are interested in and actually
vanish (〈K̂HV 〉 = 〈K̂V H 〉 = 0) when the x, y, or z axis is
chosen as the quantization axis which includes the one close
to the optimal choice of quantization axis for spin squeezing,
as we will discuss in the next section. Atoms on either side of
the nanofiber experience the same scalar light shift yielding
from Eq. (43) the Hamiltonian for QND measurement of atom
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number,

ĤN = −2π�k0ng

∑
φ′={0,π}

Nφ′ [〈K̂HH (φ′)〉 − 〈K̂V V (φ′)〉]Ŝ1(t)

= �χNNAŜ1(t). (47)

This birefringent interaction induces a rotation of the Stokes
vector around the S1 axis on the Poincaré sphere through an
angle,

χN = σ0

AN

∑
f,f ′

C
(0)
ff ′

�

2�ff ′
, (48)

characterized by an effective area, A−1
N ≡ (ng/2)[|uH (r′

⊥)|2 −
|uV (r′

⊥)|2].
Dawkins et al. [33] used this interaction to make a

dispersive measurement of NA via birefringence polarimetry
in the usual way: launching linearly polarized light at 45◦

to the quasi-H axis, uin = (uH + uV )/
√

2, and measuring
the differential power between the guided right-and left-
circularly polarized photons. Thus, the integrated measure-
ment is described by the operator M̂ ≡ ∫ T

0 dt ′Ŝout
3 (t ′). The

shot-noise variance of the polarimeter, �M2|SN = χ2
NṄLT

for integration time T , determines the fundamental resolution
of the polarimeter. The smallest detectable atom number using
this dispersive measurement is thus δNA ∼ (χ2

NṄLT )−1/2 [72].
In an ideal setting, δNA can always be reduced by increasing
the integration time, but in practice this time is limited by
atom loss. As a coarse approximation we take this time to be
T = γ −1

s , where γs is the photon scattering rate in free space,
and assume perfect quantum efficiency of the detectors. For
detuning � large compared to the excited hyperfine splitting
on the D1 or D2 line (j ′ = 1/2 or 3/2), the unit-oscillator
scattering rate is γs = σ0

Ain
( �

2�
)
2
ṄL, with the effective area

determined by the probe at the atomic position, Eq. (12). In this
limit, the rotation angle χN = C

(0)
j ′ (σ0/AN )(�/2�), Eq. (48),

yields a shot-noise limited atom number resolution,

δNA ∼ 1

C
(0)
j ′

√
A2

N

Ainσ0
, (49)

where C
(0)
j ′ = ∑

f,f ′ C
(0)
ff ′ are the far-detuned, rank-0 coef-

ficients on a j → j ′ transition [61]. Using the parameters
reported by Dawkins et al. [33], we find the shot-noise
limited minimum detectable atom number δNA ∼ 10 for atoms
trapped at 1.8a–2.0a from the fiber axis with a D2-line probe
light.

In practice, loss and decoherence limit the atom-number
resolution [33,73]. The experimental implementation reported
by Dawkins et al. [33] implies a resolution of a few tens
of atoms for 200–1000 trapped atoms. A similar experiment
based on a two-color QND measurement in a nanofiber
geometry was recently carried out by Béguin et al. [34] to
squeeze the uncertainty in the number of trapped atoms. They
achieved an atom number uncertainty of δNA = 8 for NA ∼
2500 atoms, well below standard quantum limit, δNA = √

NA.

B. Collective spin squeezing via QND measurement

The same birefringent interaction, Eq. (43), can be
utilized in a QND measurement to squeeze the projec-
tion noise of the collective atomic spin. We consider
squeezing of the uncertainty associated with the “clock
states” of cesium, |↑〉 = |6S1/2,f = 4,mf = 0〉 and |↓〉 =
|6S1/2,f = 3,mf = 0〉, which define a pseudospin within each
atom and associated Pauli operators {σ̂1,σ̂2,σ̂3}. The quantum
uncertainty in the collective pseudospin,

Ĵ3 = 1

2

NA∑
n=1

σ̂
(n)
3 , (50)

fundamentally limits the precision of atomic clocks [74]. For
atoms prepared in a spin coherent state (SCS) the projection
noise, �J 2

3 |SCS = NA/4, sets the standard quantum limit for
spin measurements. A spin squeezed state (SSS) exhibits
reduced fluctuations, �J 2

3 |SSS < NA/4, due to negative pair-
wise correlations between the atoms [75]. Spin squeezing is
typically quantified with the metrological squeezing parameter
defined by Wineland et al. [74],

ξ 2 ≡ NA

�J 2
3

〈Ĵ||〉2
, (51)

where 〈Ĵ||〉 is the mean collective spin along the direction of
spin polarization.

The clock states are defined to have zero projection of angu-
lar momentum with respect to a bias magnetic field that defines
a quantization axis, ez̃. Within the clock-state subspace the
rank-1 vector light shift in the dispersive Hamiltonian, Eq. (43),
vanishes since 〈↑|f̂k|↑〉 = 〈↓|f̂k|↓〉 = 0 for any direction of
the spin, k, and any quantization axis, ez̃. Furthermore, as
shown below, atoms on either side of the nanofiber experience
the same birefringent coupling. The resulting Hamiltonian,
restricted to the clock subspace, couples the guided field of the
nanofiber to the J3 component of the collective pseudospin.
The interaction has contributions from both the scalar and
tensor light shifts,

ĤJ3 = �{[(χH,↑ + χV,↑) − (χH,↓ + χV,↓)]Ĵ3Ŝ0(t)

+ [(χH,↑ − χV,↑) − (χH,↓ − χV,↓)]Ĵ3Ŝ1(t)}, (52)

where the coupling strength between an atom in the clock
subspace and a photon with polarization p = {H,V } is

χp,f ≡ −2πk0ng|up(r⊥)|2〈f,0|α̂pp|f,0〉, (53)

and f = {4,3} labels {↑ , ↓}. The diagonal terms in the
polarizability tensor are the same for atoms at positions above
and below the nanofiber, and thus all atoms contribute equally.
In addition, a constant birefringence proportional to Ĵ0Ŝ1 is
neglected here as it can be canceled with a compensating
wave plate. Finally, the first term in Eq. (52) does not affect
polarization spectroscopy, but will act to rotate the pseudospin
around the J3 axis of the generalized Bloch sphere proportional
to classical intensity fluctuations. While this does not affect the
squeezing of projection noise in Ĵ3, it affects the metrologically
relevant squeezing by adding uncertainty to the direction of the
mean spin. By choosing a “magic frequency” at which the light
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shifts on the two clock states are equal,

χH,↑ + χV,↑ = χH,↓ + χV,↓, (54)

this term can be canceled [76], where we have ignored the
imaginary part of the coupling strengths in the dispersive
regime. Using the D1 line of 133Cs atoms as the probe light,
there are two magic-frequency solutions, ω̃3 and ω̃4, shown in
Fig. 3(a).

Because the guided probe light at the position of the
atom will generally be elliptical, the light-shift interaction
coherently couples different magnetic sublevels in a given
manifold f , and thus does not conserve Ĵ3. For example, the
ellipticity of the probe light leads to a fictitious magnetic field
proportional to iE(−)

in (r′) × E(+)
in (r′) that causes a precession of

the spin within hyperfine manifold f . This can be mitigated
by a sufficiently strong bias magnetic field compared to the
fictitious field [77].

The remaining QND interaction Hamiltonian is

ĤJ3 = �χJ3 Ĵ3Ŝ1(t), (55)

where the rotation angle on the Poincaré sphere at the magic
wavelength is

χ = (χH,↑ − χV,↑) − (χH,↓ − χV,↓) = 2(χH,↑ − χH,↓).
(56)

FIG. 3. Parameters of the atom-light interface using the clock
states of 133Cs. (a) Energy level structure for atoms probed with
one of two magic frequencies on the D1-line. (b) Magnitude of the
magic detunings at which the clock states are equally light-shifted,
|�̃f |/2π ≡ |ω0 − ω̃f |/2π (in units of MHz). There are two solutions
shown as blue (dashed) and red lines. (c) The coupling strength, as
measured by the magnitude of the polarization rotation angle on the
Poincaré sphere, |χ

J3
|, for an atom trapped in the x-z plane at a

distance r ′
⊥ = 1.8a from the fiber center. In both (b) and (c) we plot

the parameter as the direction of the clock-state quantization axis
is varied in the x-y plane, for the two possible choices of magic
detunings. See text for details.

In the standard way, squeezing the uncertainty in Ĵ3 by QND
measurement can be generated by preparing the atoms in a
SCS along Ĵ1, passing a probe prepared along Ŝ2 with photon
flux ṄL, and continuously monitoring the S3 component of the
guided light in a polarimeter. The measurement strength,

κ ≡ |χJ3 |2ṄL, (57)

quantifies the rate at which we squeeze projection noise, with
χJ3 given in Eq. (56). In the absence of any decoherence, such a
QND measurement for integration time T squeezes the initial
uncertainty in Ĵ3 according to (�J 2

3 )out = (�J 2
3 )in/(1 + r),

where

r = κT
(
�J 2

3

)
in (58)

is the integrated measurement strength [15,60].
The strength of the birefringent interaction arises from two

fundamental sources. The anisotropy of the H and V polarized
modes leads to a polarization-dependent index of refraction,
as described in Sec. IV A. In addition there is a dependence
of the atom-photon coupling on the internal spin state of the
atom due to the atomic tensor polarizability. In particular, we
are interested in the dependence on the two clock states of the
atom. This spin-dependent coupling will depend on the choice
of quantization axis that defines the clock state with projection
mf = 0.

We combine these two effects and obtain a compact
expression for the coupling strength χJ3 using the irreducible
tensor decomposition of the atomic polarizability, Eq. (46).
Let {ex̃ ,eỹ ,ez̃} be a space-fixed Cartesian coordinate system,
where ez̃ defines the quantization axis of the atom, set by the
magnetic field. Because of the azimuthal symmetry of clock
state around the ez̃ axis, the polarizability tensor is diagonal in
that basis. Noting that 〈f,0|f̂z̃|f,0〉 = 0 and 〈f,0|f̂ 2

x̃ |f,0〉 =
〈f,0|f̂ 2

ỹ |f,0〉 = 〈f,0|f̂2|f,0〉/2 = f (f + 1)/2, it follows that
the expectation value of the irreducible rank-2 component of
the atomic polarizability is

〈f,0|↔̂α (2)|f,0〉 =
∑
f ′

α0(�ff ′)C(2)
ff ′

f (f +1)

6
(
↔
I −3ez̃ ⊗ ez̃).

(59)

The combined scalar and tensor light shifts yield a coupling
strength, Eq. (53),

χp,f = ngσ0[af |up(r′
⊥)|2 − bf |ez̃ · up(r′

⊥)|2], (60)

with coefficients that depend on detunings and atomic struc-
ture,

af =
∑
f ′

(
C

(0)
ff ′ + f (f + 1)

6
C

(2)
ff ′

)
�

4�ff ′
, (61)

bf = f (f + 1)

2

∑
f ′

C
(2)
ff ′

�

4�ff ′
. (62)

At the magic wavelength set by Eq. (54),

a4 − a3

b4 − b3
= |ez̃ · uV (r′

⊥)|2 + |ez̃ · uH (r′
⊥)|2

|uH (r′
⊥)|2 + |uV (r′

⊥)|2 , (63)

which depends on the choice of quantization axis.
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We write the effective rotation angle in the Hamiltonian,
Eq. (55), as

χJ3 = σ0

AJ3

�

2�J3

, (64)

with an “effective detuning” set by the magic-wavelength
condition,

�−1
J3

≡ 4

�
(b4 − b3) =

∑
f ′

(
C

(2)
4f ′

10

�4f ′
− C

(2)
3f ′

6

�3f ′

)
, (65)

and an effective area given by

A−1
J3

= ng

|ez̃ · uV (r′
⊥)|2|uH (r′

⊥)|2 − |ez̃ · uH (r′
⊥)|2|uV (r′

⊥)|2
|uH (r′

⊥)|2 + |uV (r′
⊥)|2 .

(66)

We see here the explicit dependence of the coupling strength
on both the anisotropy of the modes and on the tensor atomic
response, which in turn depends on a particular choice of
clock states. The quantization axis that maximizes χJ3 is that
which minimizes AJ3 at a given magic detuning. Since the z

component of the guided modes is 90◦ out of phase with the
transverse components, the quantization axis maximizing the
atom-light coupling is specified by an angle in the transverse
x-y plane, ϕ,

ez̃ = cos ϕex + sin ϕey. (67)

The dependence of the magic detunings on the direction of
quantization axis is shown in Fig. 3(b) for atoms trapped
at a typical distance of r ′

⊥ = 1.8a on the x axis. In typical
operating regimes, the magic frequencies are hundreds of
MHz from resonance with either excited state, placing the
interaction in the off-resonant, dispersive regime. Using these
magic detunings, in Fig. 3(c) we show the variation in χJ3

as a function of ϕ. This suggests that, based solely on
the strength of the coherent interaction, the x axis is the
optimal quantization axis. As we will see in the next section,
the optimal quantization axis is significantly modified when
decoherence due to optimal pumping is included.

C. Decoherence due to optical pumping

The treatment above considers an idealized QND interac-
tion. The coupling of the atoms to the probe, however, will
always lead to scattering of photons into modes other than
the forward-scattered guided mode. This is accompanied by
optical pumping that destroys the entanglement associated
with spin squeezing. In addition it reduces the metrologi-
cally useful signal. The maximum achievable metrologically
relevant squeezing is determined by the balance of this
decoherence with the QND measurement.

We model this using a first-principles stochastic master
equation description (SME) [15,78],

dρ̂ = s

√
κ

4
H[ρ̂]dW + κ

4
L[ρ̂]dt +

∑
n

Dn[ρ̂]dt, (68)

where s = sgn(χJ3 ) and ρ̂ is the collective atomic state.
The measurement strength κ = |χJ3 |2ṄL determines the rate

of the spin squeezing in the absence of decoherence. The
first two terms describe the QND measurement, where dW

is a stochastic Weiner increment satisfying dW 2 = dt . The
conditional dynamics that result from the measurement are
generated by the superoperator

H[ρ̂] = Ĵ3ρ̂ + ρ̂Ĵ3 − 2〈Ĵ3〉ρ̂, (69)

and the collective Lindblad map is

L[ρ̂] = − 1
2

(
ρ̂Ĵ 2

3 + Ĵ 2
3 ρ̂

) + Ĵ3ρ̂Ĵ3. (70)

The final term in Eq. (68) describes the effect of optical
pumping acting locally on each atom along the nanofiber.

The optical pumping map is governed by a standard
master equation [61]. Restricting to the two-dimensional
subspace associated with the clock states, the action on the nth
atom is

Dn[ρ̂] =
∑

f =3,4

{
− γf

2

[
ρ̂(|f,0〉〈f,0|)(n) + (|f,0〉〈f,0|)(n)ρ̂

]

+
∑

f̃ =3,4

γf →f̃ (|f̃ ,0〉〈f,0|)(n)ρ̂(|f,0〉〈f̃ ,0|)(n)

}
.

(71)

Here, γf is the total rate of photon scattering by atoms in
state |f,0〉 and γf →f̃ is the rate of optical pumping between
the clock states, |f,0〉 → |f̃ ,0〉 (see Appendix B). Expressed
in terms of Pauli operators on the clock-state pseudospin, the
map acts as

Dn[ρ̂] = −
[

2(γ↑ + γ↓) − γ↑→↑ − γ↓→↓
4

]
ρ̂

− γ↑ − γ↓ − γ↑→↑ + γ↓→↓
4

(
σ̂

(n)
3 ρ̂ + ρ̂σ̂

(n)
3

)
+ γ↑→↑ + γ↓→↓

4
σ̂

(n)
3 ρ̂σ̂

(n)
3

+ γ↑→↓σ̂
(n)
− ρ̂σ̂

(n)
+ + γ↓→↑σ̂

(n)
+ ρ̂σ̂

(n)
− . (72)

There are three important features of this map that are not
typical in a QND measurement of ideal spin- 1

2 particles.
First, the map is not trace preserving because atoms can be
pumped out of the clock states. Second, unequal rates of optical
pumping for |↑〉 and |↓〉 polarize the mean 〈Ĵ3〉 towards a
value different from that found in the QND measurement.
Third, owing to the large ground hyperfine splitting, photons
arising from optical pumping of f → f̃ = 3 and f → f̃ = 4
are distinguishable, thus these processes destroy coherences
between |↑〉 and |↓〉.

We calculate the squeezing parameter as a function of time
based on the evolution of atomic correlation functions, where
operators evolve according to the adjoint form of the SME in
Eq. (68). The collective atomic variables obey the following
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FIG. 4. Squeezing on the clock states as a function of time in units of the scattering rate γs for 2500 atoms trapped in the x-z plane at a
distance r ′

⊥ = 1.8a from the axis of the nanofiber. The optimal quantization axis (red) is compared to the quantization along the x axis (blue).
Dashed lines indicate simulations without optical pumping, i.e., no decoherence. (a) Metrological spin squeezing parameter ξ−2, Eq. (51), in
dB. (b) Collective mean spin 〈Ĵ1〉 and decaying atom number in the clock states, NC (inset). (c) Conditional squeezed variance �J 2

3 . The
inset shows the decomposition at the optimal quantization axis of �J 2

3 (red dashed) into the single-body variance, NA(�j
(1)
3 )2 (green) and the

two-body covariance, NA(NA − 1)〈�j
(1)
3 �j

(2)
3 〉 (black), as given by Eq. (75).

stochastic equations of motion (see Appendix C):

dNC = −γ00NCdt + 2γ03〈Ĵ3〉dt, (73a)

d〈Ĵ1〉 = −γ11〈Ĵ1〉dt, (73b)

d〈Ĵ3〉 = s
√

κ�J 2
3 dW − γ33〈Ĵ3〉dt + 1

2γ30NCdt, (73c)

d�J 2
3 = −κ

(
�J 2

3

)2
dt − 2γ33�J 2

3 dt

+ 1
4

(
2γ33 − γ00

)
NCdt + 1

2 (γ03 − 2γ30)〈Ĵ3〉dt,

(73d)

where the decay and feeding rates are given in Eq. (C4). The
total number of atoms in the clock-state subspace is given
by NC , which primarily decays at rate γ00. The final term in
Eq. (73d), proportional to 〈Ĵ3〉, is typically negligible since in
most applications 〈Ĵ3〉 � NC . We retain this small correction
since unbalanced optical pumping acts to polarize the atoms
and alters the rate of atom loss.

To find the peak squeezing in the presence of optical
pumping, we numerically integrate Eqs. (73a)–(73d) and then
use Eq. (51) to calculate the metrological squeezing parameter,
ξ 2, as a function of time. We choose here the magic frequency
close to the f = 4 ↔ f ′ = 4 transition, ω̃4, which is furthest
from resonance with both excited hyperfine transitions. Typical
time evolution is shown in Fig. 4 for 2500 atoms trapped at
distance r ′

⊥ = 1.8a from the center of the nanofiber, where
time is scaled to the characteristic scattering rate,

γs ≡ σ0

Ain

�2

4�2
J3

ṄL. (74)

We study the dynamics for two choices of quantization axis:
(i) along the x axis and (ii) along the numerically determined
optimal axis. Figure 4(a) shows the time evolution of the
squeezing parameter. We achieve a maximum squeezing of
4.7 dB when the clock states are chosen along the optimal
axis; ϕopt ≈ 86◦ in Eq. (67).

The peak squeezing is ultimately limited by the combined
effects of optical pumping on both 〈Ĵ1〉 and �J 2

3 . Here, as
in a free space model [15], the primary factor that limits
metrological squeezing is the decay of the collective mean

spin 〈Ĵ1〉. A scattered photon eliminates the initial coherence
between |↑〉 and |↓〉 within a single atom, thus depolarizing
〈Ĵ1〉. Atoms optically pumped to magnetic sublevels outside
of the clock subspace decay NC , further reducing 〈Ĵ1〉. These
effects are captured by the depolarization rate γ11 in the
equation for 〈Ĵ1〉, Eq. (73b), whose solution is plotted in
Fig. 4(b).

We can gain deeper understanding in the microscopic
effects of optical pumping on spin squeezing by looking at
the evolution of the one- and two-body correlation functions.
In terms of its constituent pseudospins, the collective variance
takes the form

�J 2
3 = NA

(
�j

(1)
3

)2 + NA(NA − 1)
〈
�j

(1)
3 �j

(2)
3

〉
(75)

for permutationally symmetric states considered here, where
(1) and (2) label any two atoms in the ensemble. Loss of atoms
affects the first (single-body) variance term, which scales as
NA. The two-body correlations which contribute as N2

A to the
collective fluctuations,

〈�j
(1)
3 �j

(2)
3 〉 ≡ 1

4

(〈
σ̂

(1)
3 ⊗ σ̂

(2)
3

〉 − 〈
σ̂

(1)
3

〉2)
. (76)

have a much larger influence on the total variance. Spin-spin
correlations at the heart of spin squeezing, 〈σ̂ (1)

3 ⊗ σ̂
(2)
3 〉,

rapidly generated by the measurement backaction decohere
by optical pumping according to Eqs. (C2)–(C3),

d

dt

〈
σ̂

(1)
3 ⊗ σ̂

(2)
3

〉∣∣
op = − 2γ33

〈
σ̂

(1)
3 ⊗ σ̂

(2)
3

〉
+ γ30

〈
1̂

(1)
C ⊗ σ̂

(2)
3 + σ̂

(1)
3 ⊗ 1̂

(2)
C

〉
, (77)

where 1̂
(n)
C ≡ (|↑〉〈↑| + |↓〉〈↓|)(n) is the single-body projector

onto the clock states. In addition, atoms that return to the clock
subspace after scattering a photon inject additional noise into
�J 2

3 . All of these effects are included in the equation for
�J 2

3 , Eq. (73d), whose overall and decomposed dynamical
evolutions are shown in Fig. 4(c).

With our model, we explore optimal conditions for gen-
erating spin squeezing. The choice of quantization axis ez̃

that defines clock states affects both the measurement strength
and the relative rates of optical pumping. We plot the peak
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FIG. 5. Dependence of the parameters that determine metro-
logical squeezing on the direction of the quantization axis that
defines the clock states, ez̃. In all cases we consider 2500 atoms
trapped in the x-z plane at distance r ′

⊥ = 1.8a from the axis of
the nanofiber. In (b)–(d) ez̃ is confined to the x-y plane, where the
optimal peak squeezing occurs. (a),(b) Peak achievable squeezing at
the maximum time, measured in dB, as a function of the direction of
ez̃. (c) OD/NA = σ0Ain/A

2
J3

, Eq. (78). (d) Rates of atom loss γ00 and
depolarization γ11 relative to the characteristic scattering rate γs . See
Eqs. (C4a) and (C4e).

squeezing as a function of the direction of ez̃ in the x-y
plane in Fig. 5(b). We gain insight into the tradeoffs between
QND entangling interaction and decoherence by independent
inspection of the measurement strength and optical pumping
rates. First, the rate of squeezing is determined by the effective
optical density per atom on resonance,

OD/NA ≡ κ

γs

= σ0Ain

A2
J3

, (78)

which peaks when ez̃ is along the y axis, as seen in Fig. 5(c).
Choosing ez̃ along y, the OD/NA is about 50% larger than
along x axis. The various forms of decoherence similarly vary
with quantization axis, as seen in Fig. 5(d), where we plot the
dominant rate of atom loss γ00 and the depolarization rate of
the mean pseudospin 〈Ĵ1〉, γ11. Because the magic frequency
ω̃4 is nearly equidistant from f ′ = 3 and f ′ = 4 when the
quantization axis is near the y axis [see Fig. 3(b)] this choice of
quantization axis provides more protection from decoherence.
While the decoherence rates in Fig. 5(d) are largest near the
y axis, the increase in κ more than compensates to provide
optimal peak squeezing.

Finally, we explore the optimal conditions as a function of
the trapping geometry. The dispersive entangling interaction
is based on the collective atomic coupling to the evanescent
guided-mode fields, which decay exponentially away from the
nanofiber surface, as seen in OD/NA plotted in Fig. 6(a). From
Eq. (73d), the optimal choice of quantization axis depends
not only on distance from the fiber but also weakly on the
atom number, Fig. 6(b), because of the competition between
squeezing and decoherence. At the optimal quantization axis,
the strong dependence of peak achievable squeezing on
distance from the fiber is as seen in Fig. 6(c) along with the
expected increase as more atoms contribute to the atom-light
interface.

Several effects limit the reliability of the simulations for
atoms trapped very near the fiber surface as r ′

⊥ → a. First,
strong van der Waals interactions modify the light shifts
and magic frequencies [22,79]. Second, the optical pumping
model used here breaks down when the local density of states
is significantly modified by the presence of the dielectric
nanofiber [49,80]. At distances r ′

⊥ > 1.5a the atoms’ local
environment is roughly that of unmodified vacuum [49] and a
free-space optical pumping model in Eq. (72) suffices.

V. SUMMARY AND OUTLOOK

We studied the strong cooperativity in the atom-light
interface that can be achieved based on atoms trapped in
the evanescent field surrounding an optical nanofiber, and
interacting with a guided mode in the dispersive regime. The
key parameter that determines the coupling is the resonant

FIG. 6. Parameters that define squeezing as a function of trapping distance r ′
⊥ and initial atom number NA. (a) OD/NA. Inset is the

corresponding magic detuning in units of MHz (see text). (b) Optimal quantization axis orientation angle ez̃ in the x-y plane for different
atom numbers. The line with 500 atoms terminates when the squeezing effect is too weak to be observed (r ′

⊥ > 2.3a). (c) Peak metrological
squeezing at the optimal ez̃ for different atom numbers.
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optical density per atom. Due to the tight confinement of the
guided mode over the entire chain of atoms this parameter is
OD/NA ∼ 10−2 for typical geometries used in current exper-
iments, which approaches that achieved for atomic ensembles
trapped inside optical cavities of moderate finesse [73,81].
In contrast, the atom-light coupling for atoms in free space
is typically orders of magnitude smaller, OD/NA ∼ 10−6.
Under ideal conditions the atom-light interaction is entirely
symmetric along the nanofiber, providing a platform for long-
range correlations independent of distance between the atoms.
As the light is entirely guided, fiber- or waveguide-coupled
atomic ensembles can be networked together or coupled to
other physical systems in a hybrid platform [82–85] for truly
long-range entanglement generation and distribution.

We calculated the dispersive response based on a modal
decomposition of the dyadic Green’s function, which provides
a general method to calculate the induced phase shifts and
polarization rotations of the guided modes. With this we
studied the QND measurement of atoms via polarization
spectroscopy. In particular, we studied squeezing of the
collective pseudospin associated the atomic clock states of
cesium. The atoms induce a birefringent index of refraction
on the light, conditional on the spin state, which provides
a mechanism for measuring the atomic spin projection and
thus squeezing its uncertainty. Based on our formalism we
calculated the nanofiber-enhanced measurement strength that
determines the rate of squeezing.

The peak squeezing one can generate depends on a detailed
balance between the reduction of spin projection noise based
on QND measurement and the damage done to the spin
ensemble due to optical pumping. Both measurement and
optical pumping arise from the same physical mechanism—
scattering of photons by atoms. The former corresponds to
cooperative forward scattering into the guided mode whereas
the latter corresponds to local scattering into all other modes,
primarily the unguided “radiation” modes. The cooperativity,
specified by the effective OD/NA, determines the ratio of
these two effects and thus the ultimate power of the quantum
atom-light interface.

We studied QND measurement using a first-principles
stochastic master equation model, which allowed us to track
the atomic correlation functions that define the metrologically
relevant squeezing parameter. These include the atomic pro-
jection noise uncertainty as well as the length of the collective
spin vector that defines the metrological signal. We find that
decoherence acts primarily to depolarize the mean pseudospin
and optically pump atoms out of the clock subspace, which we
treat as loss. In addition, optical pumping decoheres the spin
correlations at the heart of spin squeezing, but at a reduced
rate compared with the effect on the mean pseudospin. The
combined effect of QND measurement and decoherence yields
a peak squeezing approaching 5 dB with ∼2500 atoms. Larger
enhancements in atom-light coupling and QND squeezing are
possible with modest increases in the number of trapped atoms
and/or for atoms trapped closer to the nanofiber surface.

Whereas we have assumed here that atoms can be prepared
in a desired clock state defined by a particular quantization
axis, in practice such preparation will require optical pumping
that may be challenging for atoms near the surface of the
nanofiber. In addition, though we have treated the atoms as

localized at well defined points, in practice the atoms’ thermal
motion can reduce the strong coupling described here. Our
formalism provides a starting point for developing models
necessary to study the dynamics of optical pumping, including
the possibility of cooling atoms to the vibrational ground state,
where thermal motion is negligible.

Finally, though we have treated here the case of strong
coupling due solely to tight confinement of the guided
mode for atoms near the surface of the nanofiber, we can
achieve even greater enhancement by combining this effect
with longitudinal confinement provided by fiber-based optical
cavities [37,38,86–88]. The coupling can be further improved
under electromagnetically induced transparency conditions
that substantially slow the group velocity [35,36,89,90]. In
addition, quantum control of the internal hyperfine state
[91] can greatly enhance the entangling power of the atom-
light interface [92,93]. For large enough coupling, QND
measurement should allow production of highly entangled spin
states beyond the Gaussian regime [71,94].
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APPENDIX A: GUIDED-MODE FUNCTIONS FOR THE
OPTICAL NANOFIBER

In this Appendix we provide, for reference, the fundamental
HE11 solutions to the homogeneous wave equation, Eq. (1),
with

↔
α = 0, for a cylindrical nanofiber of radius a and index

of refraction given by Eq. (7). At a given frequency, ω0 =
ck0, the magnitudes of the longitudinal and transverse wave
vectors for a guided mode are related by n2k2

0 = β2
0 + k2

⊥. The
positive propagation constant, β0 ≡ β(ω0), is determined from
the eigenvalue equation that results from enforcing physical
boundary conditions at the fiber surface [56],

J0(ha)

haJ1(ha)
= − n2

1 + n2
2

2n2
1

K ′(qa)

qaK1(qa)
+ 1

h2a2

−
[(

n2
1 − n2

2

2n2
1

K ′(qa)

qaK1(qa)

)2

+ β2
0

n2
1k

2

(
1

q2a2
+ 1

h2a2

)2]1/2

. (A1)

Inside the nanofiber the transverse wave vector is real,
k⊥ = q, where q =

√
β2

0 − n2
2k

2
0 , and outside the nanofiber

it is purely imaginary, k⊥ = ih, where h =
√

n2
1k

2
0 − β2

0 .
The vector eigenfunctions are expressed as fμ(r) =
(2π )−1/2ub,p(r⊥)eibβ0z, where the modes are indexed by
frequency ω0, propagation direction b = ±, and polarization
p.

A relatively simple form for the guided-mode functions can
be expressed in a cylindrical basis (r⊥,φ,z) with longitudinal
unit vector ez, oriented along the fiber axis. The transverse unit
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vectors are related to their fixed Cartesian counterparts via the
relations

er⊥ = ex cos φ + ey sin φ, (A2a)

eφ = −ex sin φ + ey cos φ. (A2b)

The transverse profile for the quasicircular guided modes,
p = ±, is

ub,±(r⊥) = [er⊥ur⊥ (r⊥) ± ieφuφ(r⊥) + ibezuz(r⊥)]e±iφ,

(A3)

and for the quasilinear guided modes, p = {H,V }, is

ub,H (r⊥) =
√

2
[
er⊥ur⊥ (r⊥) cos φ − eφuφ(r⊥) sin φ

+ ibezuz(r⊥) cos φ
]
, (A4a)

ub,V (r⊥) =
√

2[er⊥ur⊥ (r⊥) sin φ + eφuφ(r⊥) cos φ

+ ibezuz(r⊥) sin φ]. (A4b)

The modes are expressed in terms of real-valued functions that
depend only on the radial coordinate r⊥,

ur⊥ (r⊥) = u0[(1 − s)K0(qr⊥) + (1 + s)K2(qr⊥)], (A5a)

uφ(r⊥) = u0[(1 − s)K0(qr⊥) − (1 + s)K2(qr⊥)], (A5b)

uz(r⊥) = u0
2q

β0

K1(qa)

J1(ha)
J1(hr⊥), (A5c)

where u0 is set by the normalization condition,∫
d2r⊥n(r⊥)|uμ(r⊥)|2 = 1, Jn and Kn are the nth Bessel

functions of the first and second kind, f ′(x) indicates a
derivative with respect to the argument x, and

s = 1/(q2a2)2 + 1/(h2a2)2

[J ′
1(ha)/haJ1(ha) + K ′

1(qa)/qaK1(qa)]
. (A6)

Of particular interest is the z component, Eq. (A5c), which
can become appreciable. Note that the phase convention in
Eqs. (A3)–(A5) has been chosen to emphasize properties
of the quasilinear modes and differs from that of Le Kien
et al.—for instance in Ref. [65]. Further details about the
guided-mode fields inside the nanofiber (r⊥ � a), the radiation
(unguided) modes, and the quantized form of both can be found
in Refs. [42,49,54,79,95].

APPENDIX B: PHOTON SCATTERING AND OPTICAL
PUMPING RATES

In this Appendix we give the explicit expressions for the
photon scattering rates used in Sec. IV following the formalism
given in [61]. The total rate of photon scattering by an atom in
the clock state |f,0〉 is

γf = −2

�
Im[〈f,0|ĥeff|f,0〉], (B1)

where the effective non-Hermitian light-shift Hamiltonian for
one atom is

ĥeff = −Ê(−)
in (r′; t) · ↔̂

α · Ê(+)
in (r′; t) (B2)

as follows from Eq. (38), where α0(�ff ′ ) = − σ0
8πk0

�
�ff ′+i�/2 is

the complex polarizability and the irreducible tensor operator
↔̂
A(f,f ′) is given in Eq. (46).

The rate of optical pumping between clock states |f,0〉 →
|f̃ ,0〉 is

γf →f̃ =
∑

q

∣∣〈f̃ ,0|Ŵ f̃ f
q |f,0〉∣∣2

, (B3)

where Ŵ
f̃ f
q = ∑

f ′
�/2

�f ′ f̃ +i�/2 (e∗
q · D̂f̃ f ′)(ein · D̂†

f ′f ) are the

Lindblad jump operators for optical pumping between ground

levels f → f̃ [61]. Each jump operator Ŵ
f̃ f
q is associated with

absorption of the probe photon polarized along ein followed
by spontaneous emission of a photon with polarization eq ,
where q = {0, ± 1} labels spherical basis elements for π and
σ± transitions.

To find the dependence on the input field intensity, we
define a characteristic photon scattering rate, γs ≡ ��2

4�2
J3

=
σ0
Ain

�2

4�2
J3

ṄL, with Rabi frequency � = 2〈j ||d||j ′〉E (+)
in /�, re-

duced optical dipole matrix element 〈j ||d||j ′〉, and field
amplitude E (+)

in = |E(+)
in (r′)|. Equations (B1) and (B3) yield

γ
f

= ngṄL

∑
f ′

σ (�ff ′)u∗
in(r′

⊥) · 〈f,0|↔̂A(f,f ′)|f,0〉 · uin(r′
⊥ )

(B4a)

≈ γs

∑
f ′

�2
J3

�2
ff ′

∑
q

∣∣oj ′f ′
jf C

f 0;1q

f ′q

∣∣2
e∗
q · (eine∗

in) · eq, (B4b)

γ
f →f̃

≈γs

∑
f ′

�2
J3

�2
ff ′

∑
q

∣∣oj ′f ′

j f̃
o

j ′f ′
jf C

f̃ 0;1q

f ′q C
f 0;1q

f ′q

∣∣2
e∗
q ·(eine∗

in) ·eq,

(B5)

where σ (�ff ′) = σ0�
2/4�2

ff ′ is the scattering cross section at

the probe detuning, C
f 0;1q

f ′q = 〈f ′q | f 0; 1q〉 are the Clebsch-
Gordan coefficients, and

∣∣oj ′f ′
jf

∣∣2 = (2j ′ + 1)(2f + 2)

{
f ′ 7/2 j ′
j 1 f

}
(B6)

are the relative oscillator strengths determined by the relevant
Wigner 6-J symbol.

APPENDIX C: DERIVATION OF THE EQUATIONS OF
MOTION FOR THE MOMENTS

In this Appendix we derive the equations of motion for the
correlation functions that define the metrologically relevant
squeezing parameter, ξ 2 = NA�J 2

3 /〈Ĵ1〉2. We seek the time
evolution of the one- and two-body correlation functions:

〈N̂C〉 =
∑

n

〈
1̂

(n)
C

〉
, (C1a)

〈Ĵ1〉 = 1

2

∑
n

〈
σ̂

(n)
1

〉
, (C1b)
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〈Ĵ3〉 = 1

2

∑
n

〈
σ̂

(n)
3

〉
, (C1c)

〈
Ĵ 2

3

〉 = 〈N̂C〉
4

+ 1

4

∑
m	=n

〈
σ̂

(m)
3 ⊗ σ̂

(n)
3

〉
, (C1d)

where 1̂C ≡ |↑〉〈↑| + |↓〉〈↓| is the single-atom projector onto
the clock states. To include optical pumping, we apply the
following equations of motion. For a collective, single-body
operator, X̂ = ∑

n x̂(n), the evolution due to optical pumping is
d〈X̂〉|op = ∑

n Tr[Dn[ρ̂]X̂]dt = ∑
n〈D†

n[x̂(n)]〉dt , where the
map, which acts locally on atoms along the nanofiber, is given
in Eq. (72). Two-body microscopic operators decay by optical
pumping according to [15]

d

dt
〈x̂(m) ⊗ ŷ(n)〉|op =〈D†

m[x̂(m)] ⊗ ŷ(n)〉 + 〈x̂(m) ⊗ D†
n[ŷ(n)]〉,

(C2)

where the superscripts refer to the mth and nth atoms.
Applying the adjoint map to the single-atom operators

yields

D†[1̂C] = −γ001̂C + γ03σ̂3, (C3a)

D†[σ̂3] = −γ33σ̂3 + γ301̂C, (C3b)

D†[σ̂1] = −γ11σ̂1, (C3c)

with rates

γ00 = γ↑ + γ↓ − γ↑→↑ − γ↑→↓ − γ↓→↓ − γ↓→↑
2

, (C4a)

γ03 = −γ↑ + γ↓ + γ↑→↑ + γ↑→↓ − γ↓→↓ − γ↓→↑
2

, (C4b)

γ33 = γ↑ + γ↓ − γ↑→↑ + γ↑→↓ − γ↓→↓ + γ↓→↑
2

, (C4c)

γ30 = −γ↑ + γ↓ + γ↑→↑ − γ↑→↓ − γ↓→↓ + γ↓→↑
2

, (C4d)

γ11 = γ↑ + γ↓
2

. (C4e)

Given Eqs. (C2) and (C3), the equations for the two-body spin
correlations, Eq. (77), follow. Similarly, one can derive equa-
tions of motion for the remaining two-body microscopic oper-

ator correlations 〈1̂(m)
C ⊗ 1̂

(n)
C 〉 and 〈1̂(m)

C ⊗ σ̂
(n)
3 + σ̂

(m)
3 ⊗ 1̂

(n)
C 〉

when m 	= n and from these, the macroscopic operator expec-
tation values 〈Ĵ 2

3 〉, 〈N̂2
C〉, and 〈N̂CĴ3〉. As we have examined

numerically, on the time scale of the QND measurement, the
correlation between atom number in the clock state subspace
and the pseudospin moment is weak, and one can thus treat
the atom number operator in the clock state subspace as
a c number. We therefore set 〈N̂CĴ3〉 − 〈N̂C〉〈Ĵ3〉 = 0 and
〈N̂2

C〉 − 〈N̂C〉2 = 0 and define NC ≡ 〈N̂C〉.
The equations of motion for the moments of Ĵ3 are now

found from the SME, Eq. (68),

d〈Ĵ3〉 = s
√

κ�J 2
3 dW − γ33〈Ĵ3〉dt + 1

2γ30NCdt, (C5a)

d〈Ĵ 2
3 〉 = 2s

√
κ〈Ĵ3〉�J 2

3 dW − 2γ33〈Ĵ 2
3 〉dt + 1

4

(
2γ33 − γ00

)
×NCdt + γ30〈Ĵ3〉NCdt + 1

2 (γ03 − 2γ30)〈Ĵ3〉dt.

(C5b)

The stochastic term in d〈Ĵ 2
3 〉 was simplified by assuming

Gaussian statistics [78], 〈Ĵ 3
3 〉 = 3〈Ĵ 2

3 〉〈Ĵ3〉 − 2〈Ĵ3〉3. Finally,
the Itō calculus governing the stochastically evolving moments
requires that differentials be taken to second order, and
the evolution of the variance is given by d�J 2

3 = d〈Ĵ 2
3 〉 −

2〈Ĵ3〉d〈Ĵ3〉 − (d〈Ĵ3〉)2. The equation of motion for the condi-
tional variance, Eq. (73d), then follows from Eqs. (C5).
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[3] M. D. Eisaman, A. Andrè, F. Massou, M. Fleischhauer, A. S.
Zibrov, and M. D. Lukin, Nature (London) 438, 837 (2005).

[4] K. Eckert, O. Romero-Isart, M. Rodriguez, M. Lewenstein, E.
S. Polzik, and A. Sanpera, Nat. Phys. 4, 50 (2008).

[5] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D.
Boozer, and H. J. Kimble, J. Phys. B 38, S551 (2005).

[6] V. S. C. Manga Rao and S. Hughes, Phys. Rev. B 75, 205437
(2007).

[7] K. Hakuta and K. P. Nayak, Adv. Nat. Sci: Nanosci. Nanotech-
nol. 3, 015005 (2012).

[8] C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H.
J. Kimble, New J. Phys. 15, 083026 (2013).

[9] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

[10] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[11] D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, Phys. Rev. B
82, 075427 (2010).

[12] M. S. Tame, K. R. McEnery, K. Ozdemir, J. Lee, S. A. Maier,
and M. S. Kim, Nat. Phys. 9, 329 (2013).

[13] P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam,
and S. Hughes, Phys. Rev. B 80, 195106 (2009).

[14] A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz,
J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E.
Chang, O. Painter, and H. J. Kimble, Nat. Commun. 5, 3808
(2014).

[15] B. Q. Baragiola, L. M. Norris, E. Montano, P. G. Mickelson,
P. S. Jessen, and I. H. Deutsch, Phys. Rev. A 89, 033850
(2014).

[16] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T.
A. B. Kennedy, and A. Kuzmich, Nature (London) 438, 833
(2005).

[17] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85,
1594 (2000).

[18] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N.
Kjærgaard, and E. S. Polzik, Proc. Natl. Acad. Sci. USA 106,
10960 (2009).

023817-15

http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1103/PhysRevB.75.205437
http://dx.doi.org/10.1103/PhysRevB.75.205437
http://dx.doi.org/10.1103/PhysRevB.75.205437
http://dx.doi.org/10.1103/PhysRevB.75.205437
http://dx.doi.org/10.1088/2043-6262/3/1/015005
http://dx.doi.org/10.1088/2043-6262/3/1/015005
http://dx.doi.org/10.1088/2043-6262/3/1/015005
http://dx.doi.org/10.1088/2043-6262/3/1/015005
http://dx.doi.org/10.1088/1367-2630/15/8/083026
http://dx.doi.org/10.1088/1367-2630/15/8/083026
http://dx.doi.org/10.1088/1367-2630/15/8/083026
http://dx.doi.org/10.1088/1367-2630/15/8/083026
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1103/PhysRevB.80.195106
http://dx.doi.org/10.1103/PhysRevB.80.195106
http://dx.doi.org/10.1103/PhysRevB.80.195106
http://dx.doi.org/10.1103/PhysRevB.80.195106
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1103/PhysRevA.89.033850
http://dx.doi.org/10.1103/PhysRevA.89.033850
http://dx.doi.org/10.1103/PhysRevA.89.033850
http://dx.doi.org/10.1103/PhysRevA.89.033850
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106


QI, BARAGIOLA, JESSEN, AND DEUTSCH PHYSICAL REVIEW A 93, 023817 (2016)

[19] T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi, Phys. Rev.
Lett. 102, 033601 (2009).

[20] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N.
Behbood, and M. W. Mitchell, Phys. Rev. Lett. 109, 253605
(2012).

[21] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and
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[41] H. T. Dung, L. Knöll, and D.-G. Welsch, Phys. Rev. A 62,

053804 (2000).
[42] T. Søndergaard and B. Tromborg, Phys. Rev. A 64, 033812

(2001).
[43] V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).
[44] M. Wubs, L. G. Suttorp, and A. Lagendijk, Phys. Rev. A 70,

053823 (2004).
[45] D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, Phys.

Rev. A 71, 013815 (2005).
[46] C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
[47] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,

Phys. Rev. A 42, 4102 (1990).
[48] J. T. Shen and S. Fan, Opt. Lett. 30, 2001 (2005).
[49] F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, Phys.

Rev. A 72, 032509 (2005).

[50] F. Le Kien and K. Hakuta, Phys. Rev. A 77, 033826 (2008).
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[68] S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, Phys.

Rev. A 70, 052117 (2004).
[69] F. L. Kien, P. Schneeweiss, and A. Rauschenbeutel, Eur. Phys.

J. D 67, 1 (2013).
[70] B. Q. Baragiola, Ph.D. thesis, University of New Mexico,

Albuquerque, 2014.
[71] J. K. Stockton, R. van Handel, and H. Mabuchi, Phys. Rev. A

70, 022106 (2004).
[72] G. A. Smith, S. Chaudhury, and P. S. Jessen, J. Opt. B 5, 323

(2003).
[73] H. Zhang, R. McConnell, S. Ćuk, Q. Lin, M. H. Schleier-Smith,
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