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Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles
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We study the three-dimensional nature of the quantum interface between an ensemble of cold, trapped atomic
spins and a paraxial laser beam, coupled through a dispersive interaction. To achieve strong entanglement
between the collective atomic spin and the photons, one must match the spatial mode of the collective radiation
of the ensemble with the mode of the laser beam while minimizing the effects of decoherence due to optical
pumping. For ensembles coupling to a probe field that varies over the extent of the cloud, the set of atoms that
indistinguishably radiates into a desired mode of the field defines an inhomogeneous spin wave. Strong coupling
of a spin wave to the probe mode is not characterized by a single parameter, the optical density, but by a collection
of different effective atom numbers that characterize the coherence and decoherence of the system. To model the
dynamics of the system, we develop a full stochastic master equation, including coherent collective scattering
into paraxial modes, decoherence by local inhomogeneous diffuse scattering, and backaction due to continuous
measurement of the light entangled with the spin waves. This formalism is used to study the squeezing of a
spin wave via continuous quantum nondemolition measurement. We find that the greatest squeezing occurs in
parameter regimes where spatial inhomogeneities are significant, far from the limit in which the interface is well
approximated by a one-dimensional, homogeneous model.
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I. INTRODUCTION

Cold atomic ensembles interacting with electromagnetic
fields are powerful tools in quantum information science with
applications that include quantum memory [1–3], quantum
communication [4,5], continuous variable quantum computing
[6], and metrology [7,8]. At the heart of these protocols is the
strong coupling between a quantum mode of the field and an
effective collective spin of the ensemble. This coupling can
generate entanglement between atoms and photons, such that
measurement of the light yields strong quantum backaction
on the atoms. Photons can also enable a quantum data bus for
entangling atoms with one another. Enhancing the atom-light
interface is thus essential for improving the performance of
quantum technologies and for reaching new regimes where a
quantum advantage becomes manifest. This can be achieved
through confined modes such as in optical cavities [8–10] or
wave guides in optical nanostructures [11–13].

Strong atom-photon coupling can also occur in free space
in the interaction between light and an extended ensemble
of atoms. This occurs when photons are indistinguishably
scattered by the ensemble, and interference enhances the
radiation into the probe mode relative to diffuse scattering
into 4π sr [14,15]. Early experiments demonstrated such
strong coupling and entanglement in high-pressure vapor cells
where a one-dimensional description of plane-wave modes
and uniform atomic density is applicable [16]. This theory
accurately describes a variety of experiments including the
entanglement of macroscopic ensembles in remote vapor cells
[17] and quantum memory for continuous variables [2].

More recently, experiments have employed ensembles of
ultracold atoms in pencil-shaped dipole traps probed by
focused laser beams [18–20]. When the radiation pattern of
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the light scattered from the average atomic ensemble is well
matched with the paraxial mode of the probe, the spatial
mode of the scattered photons is effectively indistinguishable
from the probe. In this case the probe mode becomes strongly
entangled with a collective variable of the atomic ensemble.
Such geometries have the potential to enhance the atom-photon
quantum interface, but their description is more complex and
requires a full treatment of radiation patterns, diffraction,
inhomogeneous coupling, and decoherence. Harnessing the
advantages of these atomic ensembles thus demands a three-
dimensional quantum theory of the underlying interaction,
including both coherent coupling and quantum noise.

In the last decade there has been significant progress in
developing a three-dimensional quantum description of the
atom-light interface. Mode matching of the scattered light to
the spatial mode of the probe laser, including the effects of
diffraction, has been studied using a semiclassical scattering
model [21]. A rigorous field-theoretic treatment separates the
mean-field classical effects from the quantum fluctuations and
noise, including the spatial inhomogeneities of the atomic
and light modes [22]. Models that include spatial modes have
been developed in a variety of contexts [23–26]. Applications
include remote entanglement via collective Raman scattering
in a DLCZ-type protocol [27,28] and for multimode quantum
memories [29]. From such studies, it is clear that one-
dimensional models not only fail to describe the relevant coher-
ent and incoherent effects, but they also do not take advantage
of the resources associated with spatial modes [30,31].

In this paper we revisit the three-dimensional atom-light
interface with particular emphasis on spin squeezing through
quantum nondemolition (QND) measurement of the collective
spin via the Faraday effect [32–34], shown schematically in
Fig. 1. In this protocol, the key interaction is the off-resonant
scattering of horizontally polarized photons into vertical polar-
ization. Measurement in a balanced polarimeter corresponds
to a homodyne measurement of these scattered photons. The
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FIG. 1. (Color online) Schematic of a linearly polarized laser
probe with a Gaussian spatial mode (solid blue lines entering from
the left of the cloud) interacting dispersively with a cold, trapped
atomic ensemble. The light that is indistinguishably scattered by
the average atomic density distribution defines the radiated paraxial
mode (solid red arrows emanating from the cloud to the right). The
interference of the radiated and probe modes leads to a rotation of the
field polarization according to the Faraday effect. When measured
in a polarimeter, this can be used to generate spin squeezing in
the ensemble. The spatial overlap of the collectively scattered field
and the probe, a measure of the strength of the atom-light coupling,
depends highly on geometry. In addition, diffusely scattered photons
due to density fluctuations in the ensemble lead to local decoherence
in the collective spin variables.

degree of scattering into the local oscillator, defined by the
paraxial laser mode, determines the measurement strength and
the resulting backaction that generates squeezing.

Central to this problem are the spatial modes of the light
and the collective spin waves of the atomic ensemble. In the
one-dimensional model, a single collective parameter defines
the strong-coupling regime of the atom-photon interface, the
optical density on resonance, OD = ησ0L = Nσ0/A, where η

is the atomic density, σ0 is the resonant scattering cross section,
L is the length of the vapor cell, and N is the number of atoms
in the volume V = AL for a uniform beam of area A. In
contrast, in a fully three-dimensional model, where the atomic
density, η(r), and paraxial beam-intensity distribution, β(r),
are not uniform, there is a collection of parameters that dictates
the strong-coupling regime. Different effective atom numbers,
N

(K)
eff = ∫

d3r η(r) [β(r)]K , govern different physical effects.
For example, N

(1)
eff determines the mean Faraday signal in the

polarimeter, while N
(2)
eff determines the size of the measurement

uncertainty from spin projection noise.
The entangling strength of the atom-light interface is

determined by the size of the spin projection uncertainty
compared to the quantum uncertainty in the measured light
quadratures (shot noise). This collective interaction is pro-
portional to an effective optical density, ODeff = N

(2)
eff σ0/A.

In contrast, decoherence acts locally on the atoms in a
noncollective manner, and the noise injected into the system
due to optical pumping and spin flips is governed by other
parameters. A proper accounting of the balance between the
coherent coupling and decoherence is especially challenging
given the tensor nature of the atom-photon interaction of real
alkali-metal atoms. Previous treatments of quantum noise in
a multimode Faraday-based atom-light interface have been
carried out in a one-dimensional model [35,36]. Our goal is to
extend this to the three-dimensional case.

In this work, we derive a stochastic master equation
describing the dynamics of the collective atomic state

conditioned on balanced polarimetry measurements, including
the effects of measurement backaction, collective decoherence
from unmeasured paraxial light, and local decoherence from
diffuse photon scattering that gives rise to optical pumping.
While we apply this to study conditional spin squeezing
generated by a QND measurement, the formalism we develop
is broadly applicable to other protocols where a strong, free-
space, atom-light interface is essential and where measurement
backaction may be a tool for induced atom-atom interactions.

The remainder of the article is organized as follows. We
lay out the physical model for an ensemble of alkali-metal
atoms dispersively interacting with a coherent probe laser in
Sec. II. We begin with a semiclassical model that can be used
to describe the scattered paraxial fields and to identify the
collective spin wave that is coupled to the laser mode. To
understand the entangling Faraday interaction in a multimode
geometry, we then present a fully quantum mechanical model.
This serves as the cornerstone for a complete description of
QND squeezing and allows us to account for the damaging
effects of decoherence. When the output light is measured
continuously, the quantum dynamics, including the combined
effects of measurement backaction and decoherence, are
described by a stochastic master equation. We use this fully
quantum mechanical atom-light description to study effects
of spatial modes on the squeezing of spin waves in Sec. III.
In particular, we use the multimode description to model the
dynamics of spin squeezing and to analyze the dependence
of peak squeezing on cloud and beam geometry. We use
numerical simulations to help build physical intuition about
the three-dimensional atom-light interface and to investigate
how the model can be used to optimize an experimental design.
Finally, we summarize our results and present future directions
for this work in Sec. IV.

II. PARAXIAL ATOM-LIGHT INTERFACE

When driven by an off-resonant laser field such that the
excited-state probability is small, atoms elastically scatter
electromagnetic waves in a manner equivalent to a set of
linearly polarizable particles. Thus, a great deal of qualitative
and quantitative information can be obtained from classical ra-
diation theory. In a rigorous field-theoretic analysis, Sørensen
and Sørensen showed that the mean-field effect of the light
interacting with an atomic ensemble gives rise to an index of
refraction of the gas, while fluctuations are due to the random
positions of the atoms and the vacuum noise of the light
[22]. In particular, the index of refraction is due to the
spatially averaged local density of the atoms, while the diffuse
scattering into 4π arises from the random positions of the point
atomic scatterers and is equivalent to decoherence by local
spontaneous emission. This diffuse scattering, which leads to
attenuation of the incident wave and optical pumping of the
atomic state, is accounted for by an imaginary part of the
polarizability according to the optical theorem.

We can thus break the problem into two pieces. First,
the mean-field effect is described by classical scattering of a
laser beam incident on a linearly polarizable dielectric whose
shape is determined by the atomic density distribution. For
a paraxial probe beam and an extended cloud, the scattered
field is also paraxial, and the solution is easily found by
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Fraunhofer scattering theory [37]. Indeed, such a model was
used in Ref. [21] to study the efficiency of forward scattering
for various atomic and beam geometries. As we are interested
in spin squeezing, within this semiclassical model we identify
the mode-matched collective atomic spin wave arising from
the Faraday effect, the scattering of an incident horizontal
polarization to an orthogonal vertical polarization induced by
the atoms’ polarizability tensor. This is the entangling inter-
action of interest. Second, to properly account for quantum
backaction on the atoms resulting from measurement and to
describe the decoherence from diffuse scattering and optical
pumping, we turn to the fully quantum theory. It is the trade-off
between the effects of decoherence and the coherent coupling
between the atomic ensemble and the probe that ultimately
determines the strength of the atom-light interface.

A. Semiclassical theory

Consider the scattering of an incident paraxial laser beam
with frequency ω0 and complex amplitude, EL(r⊥,z) =
�EL(r⊥,z)eik0z, by a particle located at a position r′ with

dynamical tensor electric-dipole polarizability
↔
α . The field

envelope has the standard form, �EL(r⊥,z) = �εL E0u00(r⊥,z),
where �εL is the laser polarization and u00(r⊥,z) is chosen to
be the Gaussian TEM00 mode given by

u00(r⊥,z) = w0

w(z)
e
− |r⊥|2

[w(z)]2 e
ik0|r⊥|2

2R(z) e−i	(z). (1)

The z-dependent beam waist, the radius of curvature of the
phase fronts, and the Guoy phase are given by

w(z) = w0

√
1 + (z/zR)2, (2a)

R(z) = z[1 + (zR/z)2], (2b)

	(z) = tan−1(z/zR), (2c)

respectively, with beam waist w0 and Rayleigh range zR ≡
k0w

2
0/2. In the first Born approximation, the scattered field

amplitude is that radiated by the induced dipole,

Escat(r) = k2
0[

↔
α · �EL(r′)]⊥

eik0|r−r′|

|r − r′|

≈ k2
0[

↔
α · �EL(r′)]⊥eik0(z−z′) e

ik0 |r⊥−r′⊥|2
2(z−z′ )

z − z′ , (3)

where the subscript ⊥ denotes the component of the dipole
transverse to the direction of observation. The last approxi-
mation is valid for paraxial points of observation, z � |r⊥|.
Gaussian-cgs units for the electromagnetic field equations are
used throughout.

Because the dipole radiation is not mode matched with the
Gaussian laser beam, the light is scattered into all paraxial
modes as well as off-axis nonparaxial modes. In the far field,
z � z′, the total field takes the form

Eout(r) = EL(r) + Escat(r)

= [�εL + �ϒ]E0e
ik0zu00(r⊥,z) + E′

scat(r). (4)

Here we have separated Escat(r) into a portion forward-
scattered into the spatial mode of the probe with amplitude

�ϒE0e
ik0z, and a portion scattered into all other spatial modes,

E′
scat(r). As shown in Appendix A [Eq. (A10)],

�ϒE0e
ik0z ≡

∫
d2r⊥
A

u∗
00(r⊥,z)Escat(r)

= i
2πk0

A
(
↔
α · �εL)⊥|u00(r′

⊥,z′)|2E0e
ik0(z−z′), (5)

where A = ∫
d2r⊥|u00(r⊥,z)|2 = πw2

0/2 is the effective beam
area.

The key physical effects are seen in these equations. The
component of �ϒ along the laser polarization �εL gives rise to the
scalar index of refraction and attenuation. The component of
�ϒ orthogonal to �εL gives rise to a rotation of the polarization
on the Poincaré sphere: Faraday rotation and birefringence.
For example, suppose the laser is linearly polarized along x

(�εL = ex). The total field thus can be written

Eout(r) = E′
scat(r) +

[(
1 + iδφ − a

2

)
ex +

(
χ + iβ

2

)
ey

]

× E0e
ik0zu00(r⊥,z), (6)

where

δφ = (2πk0/A)|u00(r′
⊥,z′)|2Re {αxx} ,

a = (4πk0/A)|u00(r′
⊥,z′)|2Im{αxx},

χ = −(4πk0/A)|u00(r′
⊥,z′)|2Im{αyx},

β = (4πk0/A)|u00(r′
⊥,z′)|2Re{αyx},

where φ is the index of refraction phase shift, a is the Beer’s
law attenuation coefficient, χ is the rotation angle of the
Stokes vector corresponding to the Faraday effect, and β is the
corresponding angle for birefringence, with the polarizability

matrix elements denoted as αij = ei · ↔
α · ej in the x-y basis.

The above description of the atom-field coupling is most
easily generalized using the theory of scattering of paraxial
waves [21]; details can be found in Appendix A. The mean
field is described by the electric field envelope �EL(r⊥,z,t) =
A(t − z/c) �U(r⊥,z), whereA(t) is the temporal pulse envelope
and �U (r⊥,z) is the spatial envelope satisfying the paraxial wave
equation

∂

∂z
�U(r⊥,z) = i

2k0
∇2

⊥ �U(r⊥,z) + i2πk0
↔
χ (r⊥,z) · �U(r⊥,z),

(7)

with spatially averaged dielectric susceptibility
↔
χ (r⊥,z). The

scattering solution to this equation is well known [37]. In
the first Born approximation, i.e., for dilute samples where
multiple scattering is negligible, given an incident field
�Uin(r⊥,z), the total field is

�U(r⊥,z)

= �Uin(r⊥,z) + i2πk0

∫ z

−∞
dz′

∫
d2r′

⊥K(r⊥ − r′
⊥,z − z′)

× ↔
χ (r′

⊥,z′) · �Uin(r′
⊥,z′), (8)
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where K(r⊥ − r′
⊥,z − z′) is the paraxial propagator. This

solution is the superposition of incident and radiated dipole
fields. The solution for a paraxial field scattered from a
point dipole at position r′ [Eq. (3)] is recovered by setting
↔
χ (r) = ↔

α δ(3)(r − r′).
The diagonal matrix elements of the susceptibility give

rise to the index of refraction and a slight distortion of the
wave front of the beam. We can neglect this effect for dilute
gases, though it is easily accounted for. The Faraday effect
arises from the scattering of initially x-polarized light into
orthogonal y polarization as discussed above, governed by the
off-diagonal element of the dielectric susceptibility matrix,
χyx . To measure Faraday rotation, one employs a balanced
polarimeter at ±45◦, so that the signal M is proportional
to U∗

xUy + U∗
yUx , integrated across the detector surface at

position zD in the far field,

M ∝
∫

d2r⊥Re{U∗
x (r⊥,zD)Uy(r⊥,zD)}. (9)

The result is an effective homodyne detector for Uy , with
Ux playing the role of the local oscillator. Using the solution
for Uy(r⊥,zD) [Eq. (8)] and the properties of the propagator
[Eq. (A6)],

M ∝
∫ zD

−∞
dz′

∫
d2r′

⊥Re{iχyx(r′
⊥,z′)}Ux(r′

⊥,z′)

×
[∫

d2r⊥ U∗
x (r⊥,zD)K(r⊥ − r′

⊥,zD − z′)
]

= −
∫

d3r′ Im{χyx(r′
⊥,z′)}|Ux(r′

⊥,z′)|2. (10)

The measured signal is thus proportional to the local value
of the susceptibility component Im{χyx(r⊥,z)} integrated over
the dielectric, weighted by the local field intensity |Ux(r⊥,z)|2.

For a dilute ensemble of cold atoms at fixed positions ri ,
the dielectric susceptibility of the gas is

↔
χ (r) =

∑
i

〈↔̂
α (i)〉 δ(3)(r − ri), (11)

where
↔̂
α (i) is the the dynamic polarizability tensor operator for

the ith atom. We consider here atoms restricted to a subspace
defined by a total (hyperfine) angular momentum f . In terms
of the hyperfine spin operator f̂, the polarizability operator can
be decomposed into irreducible tensor components [38],

α̂ij = α0

[
C(0) + iC(1)εijkf̂k + C(2)

(
f̂i f̂j + f̂j f̂i

2
− δij

f̂2

3

)]
,

(12)

where α0 is the characteristic polarizability and C(K) is
the coefficient of the irreducible rank-K tensor component.
The rank-0 component is a scalar, which influences neither
the atomic spin state nor the field’s polarization dynamics. The
vector (rank 1) component describes a fictitious magnetic field
interaction that drives Larmor precession of the spin depending
on the ellipticity of the field, as well as the Faraday effect
that rotates the field polarization depending on the atomic
magnetization. The irreducible tensor (rank 2) component
generally induces nonlinear dynamics of the atomic spins [39],

as well as birefringence on the polarization of the probe. For
alkali-metal atoms driven on a fine-structure multiplet, α0 and
the C(K) coefficients are given in Ref. [38].

The effect of the tensor component complicates both the
collective coupling of the atoms to the probe as well as the
internal spin dynamics. In special cases, the deleterious effects
of the rank-2 component of the tensor polarizability on the
QND measurement can be removed via dynamical decoupling
[19]. More generally, by applying a strong bias magnetic
field in the direction of the probe’s propagation along z, the
birefringent effect on the probe arising from the coupling to
the atoms via the rank-2 tensor term averages to zero [40].
The residual effect of the rank-2 component is nonlinear
dynamics on the internal spin state of the atom [39], which
does not effect the the QND measurement under consideration
here. These nonlinear dynamics can affect the metrologically
relevant spin squeezing by dephasing the collective mean
spin, but this can be compensated through additional control
techniques [41].

We thus retain only the vector component of the
off-diagonal element of the dielectric susceptibility, χyx ,
which describes a pure Faraday interaction. Substituting
Im{χyx(r⊥,z)} ∝ ∑

i〈f̂ (i)
z 〉δ(3)(r − ri) into Eq. (10) yields

M ∝
∑

i

|Ux(r⊥i ,zi)|2
〈
f̂ (i)

z

〉
. (13)

Equation (13) is the central result of the semiclassical model. In
a plane-wave, homogeneous, one-dimensional description, the
measured observable is M ∝ ∑

i〈f̂ (i)
z 〉 = 〈F̂z〉, the symmetric

collective spin of the ensemble. For paraxial beams, the
polarimeter measures an effective spin wave determined by
the inhomogeneous weighting of the atomic spin operators
by the local intensity of the beam. The spin wave is
stationary because it is coupled to the forward-scattered
light, where the absorbed and emitted modes are the same.
Physically, this spin wave is the collective observable that
radiates indistinguishably into the probe mode and is ef-
fectively selected by the homodyne measurement of the
polarimeter.

Further intuition can be gained from the semiclassical
model. We recover symmetric atom-light coupling when
the field intensity |Ux(r⊥,z)|2 is constant over the atomic
ensemble. Geometrically, this is achieved when the beam
waist, w0, is much larger than the transverse extent of the
cloud and the length of the cloud is short compared to twice
the Rayleigh range, zR = k0w

2
0/2. The mean-field radiation

pattern of such a cloud described by Eq. (8), however, has poor
overlap with the probe as depicted in Fig. 2(a). The end result
is that the polarimeter detects only a small fraction of the signal
photons. On the other hand, perfect mode matching is achieved
for atoms confined as a uniform dielectric sheet at a fixed z

plane, similar to the geometry shown in Fig. 2(b). However,
for a finite number of atoms, the realizable OD is low in this
configuration. Indeed, a uniform dielectric slab of extent much
larger than the beam waist achieves perfect mode matching,
but one cannot achieve such an dielectric distribution with high
OD using cold atomic gases. An intermediate pencil-shaped
geometry is more realistic, allowing for reasonable mode
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(a) (b)

(c) (d)

FIG. 2. (Color online) Diagrams of the scattered modes for var-
ious atomic cloud and beam geometries. The spatial profile of the
probe mode is indicated with solid blue lines and that of the field
scattered by a given dielectric distribution is indicated by solid red
lines with arrows. (a) A pointlike atomic ensemble scatters light
isotropically. (b) A pancake-shaped cloud at a fixed z plane radiates
nearly perfectly into the probe mode. Extended pencil-shaped clouds
can radiate into the probe mode well, as in (c), or poorly, as in (d),
depending on the geometry of the probe.

matching while maintaining a high OD, as in Figs. 2(c)
and 2(d).

In addition to maximizing the signal by mode matching
the pattern of scattered light with that of the probe mode (a
calculation the follows from the semiclassical theory), we must
also minimize the sources of noise. There are two fundamental
quantum effects: (i) the polarimeter has a finite shot-noise res-
olution; (ii) atoms scatter photons diffusely into all directions
(spontaneous emission). The latter is accompanied by optical
pumping that can both depolarize the spins and inject noise
into the measured spin wave. To address these effects, we turn
to the fully quantum theory.

B. Quantum theory

Following Refs. [36,42], we partition the quantized electric
field into paraxial modes and nonparaxial, diffuse modes,

Ê(+)(r,t) = Ê(+)
para(r,t) + Ê(+)

diff (r,t). (14)

This decomposition is motivated by the geometry we consider:
photon scattering of a paraxial laser beam by an extended
atomic ensemble. The mean-field, spatially averaged atomic
density, which plays the role of the index of refraction in the
classical theory, appears as coherent radiation by a collective
atomic observable in the quantum theory. The coupling of
collective atomic observables to paraxial modes thus describes
the coherent atom-photon light-shift interaction, mediated by
the Hermitian part of the atomic polarizability operator.

The diffuse modes, in contrast, couple to the density
fluctuations in the ensemble due to the discrete atomic
positions and thus act locally on each atom [22]. In the usual
Born-Markov approximation, tracing over these modes leads
to decoherence and is described by the anti-Hermitian part of
the atomic polarizability [38].

In this section we first derive a multimode generalization
of the Faraday interaction that coherently entangles the atomic
ensemble and the paraxial quantum field. Then we employ a

master equation to account for the effects of local decoherence
(optical pumping) driven by diffuse scattering. Finally, we
present the stochastic master equation describing the condi-
tional collective atomic state given polarimetry measurements
of the paraxial field, which we use to analyze spin squeezing
in Sec. III.

1. Paraxial multimode Faraday interaction

Quantization of paraxial electromagnetic fields was dis-
cussed in Ref. [43]; relevant extensions to the current problem
are summarized in Appendix B. We decompose the paraxial
field operator into an orthogonal set of transverse spatial
modes, here the Laguerre-Gauss modes upl(r⊥,z) given in
Eq. (B8), which are convenient for cylindrical symmetry. The
positive-frequency component of the electric field restricted to
the paraxial subspace is

Ê(+)
para(r,t)

=
∑
p,l,α

√
2π�ω0

cA
eα âpl,α(z,t) upl(r⊥,z)ei(k0z−ω0t), (15)

where α = x,y labels transverse polarization, and the quanti-
zation area is chosen as the natural scale of the Gaussian beam,
A = πw2

0/2. The traveling wave creation and annihilation
operators for each transverse mode freely propagate according
the Hamiltonian

Ĥfree =
∑
p,l,α

∫
dz â

†
pl,α(z,t)

(
−i�c

∂

∂z

)
âpl,α(z,t), (16)

with solution âpl,α(z,t) = âpl,α(z − ct,0) = âpl,α(0,t − z/c)
and free-field commutation relations,

[âpl,α(z,t),â†
p′l′,β(z′,t ′)] = δp,p′δl,l′δα,β δ(t − t ′ − (z − z′)/c).

(17)

We have normalized so that â
†
pl,α(z,t)âpl,α(z,t) is the local

photon flux in transverse mode pl with polarization α.
For weak excitation (linear atomic response), the interaction

Hamiltonian governing the coupling of the quantized paraxial
modes is

Ĥint = −
∑

i

Ê(−)
para(ri ,t) · ↔̂

α (i) · Ê(+)
para(ri ,t). (18)

As before, the index i is summed over atoms in the ensemble at
respective positions ri . Upon substituting the decomposition
of α̂ij into its irreducible components given in Eq. (12), we
find scalar (rank 0), vector (rank 1), and tensor (rank 2)
contributions to the interaction. We retain only the vector
contribution that leads to the Faraday effect, as discussed in
the semiclassical case. The Faraday interaction is then

Ĥint = −iα0C
(1)

∑
i

Ê(+)
para(ri ,t) × Ê(−)

para(ri ,t) · f̂(i)

= −�χ

2

∑
i,p,l,p′,l′

[iu∗
p′l′(r⊥i ,zi)upl(r⊥i ,zi)

× â
†
p′l′,y(zi,t) âpl,x(zi,t) + H.c.]f̂ (i)

z , (19)
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where

χ = C(1) 4πω0

Ac
α0 = C(1)

(
σ0

A

)(
�

2�

)
(20)

is the Faraday rotation angle, σ0 = 3λ2/(2π ) is the resonant
cross-section for unit oscillator strength, � is the atomic
linewidth, and � is the detuning from resonance. For an
S1/2 → PJ transition with � much larger than the excited-state
hyperfine splitting, |C(1)| = gf /3, where gf is the Landé
g-factor. We can interpret Eq. (19) as a scattering process,
whereby an x-polarized photon in a given transverse mode,
pl, is absorbed and a y-polarized photon in the mode p′l′ is
emitted, and vice versa, as mediated by the collective atomic
spin wave.

We consider an initial macroscopic occupation in the laser
probe, again taken to be the fundamental Gaussian TEM00

mode with x polarization. In that case the interaction can
be linearized by substituting âpl,x(z,t) →

√
ṄLδp,0δl,0, where

ṄL = AI0/(�ω0) is the photon flux of the laser with peak
intensity I0. The quantum fluctuations in the field of interest
are then represented by the y-polarized mode, âpl,y(z,t), and
the Faraday interaction takes the form

Ĥint = −i
�
√

κ

2

∑
i,p,l

[β∗
pl(r⊥i ,zi)âpl,y(zi,t) − H.c.]f̂ (i)

z , (21)

where the local amplitude for scattering from the fundamental
(laser) mode 00 into mode pl is given by

βpl(r⊥,z) ≡ u∗
pl(r⊥,z)u00(r⊥,z). (22)

The interaction has been written in terms of the “measurement
strength” per atom,

κ = χ2ṄL = g2
f

9

(
σ0

A

)
γ0, (23)

which characterizes the rate at which photons are scattered
into the paraxial modes, where γ0 = (σ0I0/�ω0)(�2/4�2) is
the unit-oscillator-strength photon scattering rate at the peak
intensity.

The Heisenberg equation of motion for a y-polarized
traveling wave mode interacting with the atomic media in the
presence of the probe field is(

∂

∂t
+ c

∂

∂z

)
âpl,y(z,t)

=
√

κ

2

∑
i

βpl(r⊥i ,zi)f̂
(i)
z (t)δ(z − zi), (24)

whose solution is

âpl,y(z,t) = âpl,y(0,t − z/c) +
√

κ

2

∑
i

βpl(r⊥i ,zi)

× f̂ (i)
z (t − (z − zi)/c)�(z − zi), (25)

where �(z) is the Heaviside step function. Neglecting the
time it takes light to propagate across the sample, the mode
amplitude at the detector plane, zD , in the far field is

âpl,y(zD,t) = âpl,y(0,t − zD/c) +
√

κ

2
F̂ pl

z , (26)

a form familiar from input-output theory [44]. The collective
atomic spin wave that couples to paraxial mode pl is

F̂ pl
z ≡

∑
i

βpl(r⊥i ,zi)f̂
(i)
z . (27)

In the balanced polarimeter, the probe mode acts as a local
oscillator so that one measures the Stokes vector component
associated with the fundamental spatial mode defined by the
laser beam, (â†

00,x â00,y + â
†
00,y â00,x)/2 ≈

√
ṄL/2X̂00, where

X̂00 = (â00,y + â
†
00,y)/

√
2 is the mode quadrature. The mea-

sured quadrature at the detector plane zD ,

X̂00(zD,t) = X̂00(0,t − zD/c) +
√

κ

2
F̂ 00

z , (28)

is proportional to the fundamental spin wave, F̂ 00
z . Note

that this is exactly the spin wave found in the semiclassical
calculation, Eq. (13). The total polarimeter signal, integrated
over a time T , is determined by the output operator

M̂ =
∫ T

0
dt X̂00(0,t − zD/c) + T

√
κ

2
F̂ 00

z . (29)

The fully quantum theory explicitly includes the
additional vacuum noise entering the polarimeter,
〈�X̂00(0,t)�X̂00(0,t ′)〉 = δ(t − t ′)/2, that leads to a
shot-noise (SN) variance of the polarimeter signal, in Eq. (29),
�M2

SN = T/2.
Of particular interest here is the application to spin squeez-

ing via QND measurement. In this case, the signal we seek
to measure arises from different spin projections associated
with the eigenstates of F̂ 00

z . Whereas in magnetometry these
shot-to-shot variations are known as “projection noise” (PN),
in the context of creating a spin-squeezed state, these variations
from the mean value represent the “signal” one seeks to resolve
over the laser shot noise. For the fundamental spin wave
measured in the polarimeter, the projection noise variance is(

�F 00
z

)2

PN =
∑

i

β2
00(ri)

〈(
�f̂ (i)

z

)2〉

+
∑
i �=j

β00(ri)β00(rj )
〈
�f̂ (i)

z �f̂ (j )
z

〉
. (30)

Given an initial spin coherent state polarized orthogonal to z,
〈�f̂ (i)

z �f̂
(j )
z 〉 = (f/2)δij , and thus,

(
�F 00

z

)2

PN = N
(2)
eff f

2
. (31)

Here we define a set of effective atom numbers,

N
(K)
eff =

∑
i

[β00(ri)]
K =

∑
i

|u00(ri)|2K (32)

→
∫

d3r η(r)|u00(ri)|2K, (33)

where the sum becomes an integral in the continuum limit.
The atomic density distribution η(r) is normalized so that∫

d3r η(r) = N , the total atom number. The effective atom
number N

(2)
eff determines the projection-noise contribution to

Eq. (29), �M2
PN = κT 2(�F 00

z )2
PN/2 = κT 2N

(2)
eff f/4.
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The coupling strength ξ that sets the degree of entanglement
one can attain between the atoms and photons is the ratio of
the projection-noise variance to the shot-noise resolution [38].
Using Eqs. (23) and (31) we find

ξ = �M2
PN

�M2
SN

= (
�F 00

z

)2
κT = ODeff

g2
f f

18f
γ0T , (34)

where we have defined the effective optical density for the
laser mode probing the spin wave on a unit-oscillator-strength
transition,

ODeff ≡ N
(2)
eff

σ0

A
. (35)

The key to achieving a large ODeff is choosing an atomic
and beam geometry that addresses a large number of atoms
and maximizes N

(2)
eff while keeping the mode area A small.

It should be noted that whereas in the one-dimensional
case the optical density is associated with both the coupling
strength and the Beer’s law attenuation of the probe, in the
three-dimensional case different parameters are associated
with each of these effects. Because the attenuation coefficient
in Eq. (6) is proportional to the local intensity of the field,
the total attenuation depends upon the effective atom number
N

(1)
eff .
While Eq. (34) implies an ever increasing coupling strength

with integration time T , we have neglected so far the
decoherence that limits the total useful integration time and the
strength of the atom-light interface. In the following section
we treat these effects from a first-principles master equation,
including spatial variations in the scattering rate which drives
local decoherence.

2. Local decoherence and optical pumping

The discrete random atomic positions are associated with
the density fluctuations that give rise to diffuse scattering into
4π sr [22]. We consider light far detuned from any atomic
resonance in a highly transparent regime, and thus we can
safely neglect the small attenuation of the laser probe associ-
ated with this absorption. The scattering processes, however,
cause decoherence of the spin wave due to optical pumping.
This local decoherence breaks the collective symmetry of the
problem and adds additional noise, which is detected in the
polarimeter and competes with squeezing.

To treat the decoherence due to diffuse scattering, we
employ a master equation,

dρ̂

dt
= − i

�
[Ĥint,ρ̂] + dρ̂

dt

∣∣∣∣
diff

, (36)

where Ĥint is the multimode Faraday interaction given in
Eq. (21). The key feature of this equation is that the paraxial
modes couple to collective spin waves, while the diffuse
scattering couples to localized atoms and induces optical
pumping according to

dρ̂

dt

∣∣∣∣
diff

=
∑

i

γs(ri)Di[ρ̂]. (37)

The map Di acts on the ith atom, proportional to the local
scattering rate,

γs(ri) = I (ri)
σ0

�ω

�2

4�2
= γ0β00(ri). (38)

Here I (ri) = I0β00(ri) is the local intensity at the position
of the atom and γ0 is the peak scattering rate. We consider
here a probe driving an S1/2 → PJ transition in an alkali-
metal atom, with a detuning that is small compared to the
ground-state hyperfine splitting but large compared to any
hyperfine splitting in the excited state. In this case, the light
coherently couples substantially only to atoms in a given
ground-electronic hyperfine manifold f and the master equa-
tion is restricted to this subspace. As shown in Appendix C,
with an x-polarized probe and applying a large bias magnetic
field along the z direction, the local decoherence in the
master equation due to optical pumping is given by the
map

Di[ρ̂] = −2

9
ρ̂ + g2

f

9

[
f̂ (i)

z ρ̂f̂ (i)
z + 1

2

(
f̂ (i)

x ρ̂f̂ (i)
x + f̂ (i)

y ρ̂f̂ (i)
y

)]
.

(39)

The first term on the right-hand side of Eq. (39) describes
the decay of correlations due to optical pumping, while the
second term (in brackets) represents a feeding due to “transfer
of coherences” that can reduce this decay rate [45]. Note that
for f > 1/2, this master equation is not trace preserving, since
atoms can be optically pumped to the other ground hyperfine
manifold, where they are lost to any further measurement.

Given the master equation, we can find the effect of diffuse
scattering on atomic correlations. Consider an inhomogeneous
collective operator of the form X̂ = ∑

i β00(ri)x̂(i). Because X̂

is a weighted sum over single atom operators, the equation of
motion for its expectation value depends upon the evolution
of the single atom density operator, ρ̂(i). By summing over a
single index i in Eq. (37), we obtain

dρ̂(i)

dt

∣∣∣∣
diff

= γs(ri)Di[ρ̂
(i)], (40)

from which the evolution of 〈X̂〉 is given by

d

dt
〈X̂〉

∣∣∣∣
diff

=
∑

i

β00(ri)Tr

[
x̂(i) dρ̂(i)

dt

∣∣∣∣
diff

]

=
∑

i

γs(ri)β00(ri)〈Di[x̂
(i)]〉. (41)

For inhomogeneous collective operators that depend on pairs
of atoms,

Ô =
∑
i �=j

β00(ri)β00(rj )x̂(i)ŷ(j ), (42)

we require the joint density operator of the ith and j th atoms,
ρ̂(i,j ), with equation of motion

d

dt
ρ̂(i,j )

∣∣∣∣
diff

= γs(ri)Di[ρ̂
(i,j )] + γs(rj )Dj [ρ̂(i,j )]. (43)
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The evolution of 〈Ô〉 due to diffuse scattering is then

d

dt
〈Ô〉

∣∣∣∣
diff

=
∑
i �=j

{γs(ri)β00(ri)β00(rj )〈Di[x̂
(i)]ŷ(j )〉

+ γs(rj )β00(ri)β00(rj )〈x̂(i)Dj [ŷ(j )]〉}. (44)

The degree of squeezing that one can ultimately produce
is determined by a balance between QND measurement
backaction on the spin wave mediated by the collective
radiation and the damage to that observable caused by diffuse
scattering. To properly treat this, we must include the effects
of measurement on the atoms, as discussed in the next section.

3. The conditional stochastic master equation

The Faraday Hamiltonian [Eq. (21)] is an entangling inter-
action between the atomic spin waves and the paraxial modes
of the field. When the light is measured in the polarimeter,
quantum backaction leads to stochastic evolution of the atomic
state, conditioned on the random measurement results. A
complete description of the dynamics is then described by
a stochastic master equation (SME), with decoherence from
unmeasured light and squeezing due to information gained
from the continuous measurement record. In a balanced
polarimeter, the measurement signal is proportional to the
interference of the probe and scattered fields integrated over
the detector faces, as in Eq. (9). Due to the orthogonality of
the spatial modes [Eq. (B9)], such a measurement selects only
paraxial light that is scattered into the mode of the probe, u00.
The result is a continuous measurement of the quadrature X̂00.

We derive the SME for the atoms following [46,47],
with details presented in Appendix D. Measurement of the
quadrature X̂00 by the homodyne polarimeter generates a
differential stochastic measurement record,

dy00 = 〈
F̂ 00

z

〉
dt + 1√

κ
dW, (45)

where dW is a Weiner interval in the Itō calculus and κ

is the measurement strength given in Eq. (23). Assuming
unit measurement efficiency, the evolution of the ensemble
conditioned upon the measurement record y00 is given by

dρ̂ =
√

κ

4
H00[ρ̂] dW + κ

4

∑
p,l

Lpl[ρ̂] dt. (46)

The effects of measurement backaction on the ensemble are
taken into account by the superoperator H00[ρ̂], where

Hpl[ρ̂] ≡ F̂ pl
z ρ̂ + ρ̂F̂ pl†

z − Tr
[(

F̂ pl
z + F̂ pl†

z

)
ρ̂
]
ρ̂. (47)

The Lindblad dissipator,

Lpl[ρ̂] ≡ F̂ pl
z ρ̂F̂ pl†

z − 1
2 F̂ pl†

z F̂ pl
z ρ̂ − 1

2 ρ̂F̂ pl†
z F̂ pl

z , (48)

describes the effect on the atomic ensemble arising from
indistinguishable radiation into paraxial modes of the field.

Including local decoherence from diffuse scattering
[Eq. (39)], the full SME for homodyne polarimetry measure-

ments of the 00 mode is

dρ̂ = − i

�
[Ĥ ,ρ̂]dt +

√
κ

4
H00[ρ̂] dW

+ κ

4

∑
p,l

Lpl[ρ̂] dt +
∑

i

γs(ri)Di[ρ̂] dt. (49)

This SME is a complete description of the evolution of the
collective atomic state, accounting for the three-dimensional
nature of the atom-photon modes, decoherence, and measure-
ment backaction. We see that through its interaction with the
probe, the atomic ensemble undergoes an additional form
of collective decoherence [Eq. (48)] corresponding to light
radiated into paraxial modes pl �= 00 that ultimately goes
unmeasured. Thus, we have arrived at the same conclusion as
in Ref. [27]. That is, decoherence arises through two distinct
processes: first, the inherent mode mismatch that gives rise
to collectively scattered light in spatial modes other than the
probe mode, and, second, the diffuse scattering of photons that
acts locally on atoms in the ensemble.

III. QND SQUEEZING OF SPIN WAVES

A. Quantifying squeezing of the spin waves

One typically quantifies the amount of squeezing created
in a QND measurement according to the Wineland squeezing
parameter [48],

ζ =
(

�φ

�φSCS

)2

, (50)

where �φ is the projection-noise limited resolution when
measuring an angle of rotation for a generic spin J of the given
input state, and �φSCS is the corresponding resolution when
the input is a spin coherent state (SCS). For a mean value J‖ ≡
|〈Ĵ〉| and variance �J 2

⊥ orthogonal to the mean, the projection-
noise resolution is �φ = �J⊥/J‖. With �φSCS = 1/

√
2J ,

the Wineland squeezing parameter is then

ζ = 2J
�J 2

⊥
J 2

‖
. (51)

For the spin waves of the inhomogeneous ensemble under
consideration here, we must tie the squeezing parameter
directly to the measured quantities. For an initial mean spin
polarization along x and a small rotation around y, the
polarimeter signal will be determined by the mean spin wave
component 〈F̂ 00

x 〉 = ∑
i β00(ri)〈f̂ (i)

x 〉, and the projection noise
contribution to the resolution of the measurement will be given
by �F 00

z , defined in Eq. (30). The projection-noise limited
resolution of this rotation is therefore �φ00 = �F 00

z /〈F̂ 00
x 〉.

Furthermore, given a SCS initially polarized along x, the mean
spin of interest is 〈F̂ 00

x 〉SCS = N
(1)
eff f , where the effective atom

number contributing to this signal is given in Eq. (32), while
the projection noise in the SCS is (�F 00

z )2
SCS = N

(2)
eff f/2. The

projection-noise limited resolution for a SCS preparation is
thus (�φ00

SCS)2 = N
(2)
eff /[2f (N (1)

eff )2] and will depend on the
shape of the atomic cloud and beam geometry. Putting this
together, we define the squeezing parameter for the measured
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spin wave to be

ζ ≡
(

�φ00

�φ00
SCS

)2

= 2f

(
N

(1)
eff

)2

N
(2)
eff

(
�F 00

z

)2〈
F̂ 00

x

〉2 . (52)

This parameter quantifies the degree of “quantum backaction”
on a SCS, accounting for the change in projection noise due
to QND measurement as well as the damage done to both the
mean spin polarization and variance due to optical pumping.

In a real-world metrological application such as an
optically probed atomic magnetometer [49,50], spin rotations
are measured by passing the probe through the atom sample
and measuring the resulting Faraday rotation in a polarimeter.
In addition to spin projection noise, the measurement
resolution is then subject also to “technical noise,” including
probe shot noise, detector electronic noise, and atom number
fluctuations. Under those circumstances, optimizing the
squeezing parameter as defined in Eq. (52) is distinct from
optimizing the magnetometer sensitivity.

B. The dynamical evolution of squeezing

To determine the squeezing as function of time, we employ
the SME in Eq. (49) to track (�F 00

z )2 and 〈F̂ 00
x 〉. For ensembles

with large numbers of atoms, we can work in the central-
limit approximation where fluctuations in the spin waves are
treated as Gaussian random variables [36,51]. Following [46],
the SME then couples solely means and covariances. The
moments of the fundamental spin wave that characterize the
spin-squeezing parameter then evolve according to

d
(
�F 00

z

)2 = −κ
[(

�F 00
z

)2]2
dt + d

(
�F 00

z

)2∣∣
diff, (53a)

d
〈
F̂ 00

x

〉 =
√

κ

4

〈
H00

[
F̂ 00

x

]〉
dW

+
∑
p,l

κ

4

〈
Lpl

[
F̂ 00

x

]〉
dt + d

〈
F̂ 00

x

〉∣∣
diff . (53b)

Because we assume the fundamental mode is measured
with unit efficiency, diffuse scattering by local spontaneous
emission is the only process contributing to the decoherence of
the variance (�F 00

z )2. Collective radiation into other transverse
modes commutes with F̂ 00

z and does not contribute to any
decay or noise injection into the fundamental variance. In
contrast, the mean spin 〈F̂ 00

x 〉 decoheres due to both diffuse
scattering and collective scattering into other unmeasured
paraxial modes. It also evolves stochastically due to the
continuous measurement of F̂ 00

z . However, the contributions
to the dynamics from both collective scattering and continuous
measurement are small in comparison to diffuse scattering and
can be neglected when the radiation pattern of the cloud is well
matched to that of the probe.

We consider the moment evolution [Eq. (53)] with the initial
condition that the ensemble is in a SCS polarized along x.
The initial mean spin and variance are 〈F̂ 00

x (t0)〉 = N
(1)
eff f and

[�F 00
z (t0)]2 = N

(2)
eff f/2, respectively. Along with the cross-

sectional area of the probe laser, N
(2)
eff specifies the effective

optical density, ODeff defined in Eq. (35). The ODeff is the
critical geometric parameter for determining how the atomic
density distribution influences collective scattering into the

probe mode and ultimately leads to spin squeezing. Both of
these effective atom numbers are determined solely by the
cloud shape and beam geometry and can be found from the
semiclassical model in Sec. II A.

For times short compared to the photon scattering rate,
where decoherence is negligible, the mean spin is essentially
constant and the spin variance is affected only by measurement
backaction. The solution to Eq. (53) takes the familiar form
[51],

[
�F 00

z (t)
]2 =

[
�F 00

z (t0)
]2

1 + [
�F 00

z (t0)
]2

κt
=

[
�F 00

z (t0)
]2

1 + ξ
(54)

⇒ ζ = 1

1 + ξ
, (55)

where ξ is the integrated coupling strength in Eq. (34). In
Eq. (55), the squeezing parameter decreases as OD−1

eff for
ξ � 1.

For longer times, decoherence due to diffuse photon
scattering must be included. The mean spin will depolarize
according to Eq. (41),

d

dt

〈
F̂ 00

x

〉 =
∑

i

γs(ri)β00(ri)
〈
Di

[
f̂ (i)

x

]〉
. (56)

The variance involves both single-atom and pairwise atomic
correlations,

d

dt

(
�F 00

z

)2 =
∑

i

[β00(ri)]
2 d

dt

〈(
�f̂ (i)

z

)2〉

+
∑
i �=j

β00(ri)β00(rj )
d

dt

〈
�f̂ (i)

z �f̂ (j )
z

〉
, (57)

where the first term is the spin projection noise of the uncorre-
lated spins and the second term contains the correlations that
generate spin squeezing. Following Eqs. (41) and (44), these
correlation functions decay due to diffuse scattering according
to

d

dt

∑
i

〈
(�f̂ (i)

z )2
〉∣∣

diff

=
∑

i

γs(ri)
{〈
Di

[
f̂ (i)2

z

]〉 − 2
〈
Di

[
f̂ (i)

z

]〉〈
f̂ (i)

z

〉}
, (58a)

d

dt

∑
i �=j

〈
�f̂ (i)

z �f̂ (j )
z

〉∣∣
diff

=
∑
i �=j

{
γs(ri)

〈
�Di

[
f̂ (i)

z

]
�f̂ (j )

z

〉 + γs(rj )
〈
�f̂ (i)

z �Dj

[
f̂ (j )

z

]〉}
.

(58b)

The local decoherence acts via the map Di in Eq. (39).

1. Spin- 1
2 ensembles

We first restrict our attention to ensembles of spin f =
1/2 atoms (gf = 2) to focus on spatial effects without the
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complications that arise for ensembles with larger spin. Using
the fact that the local scattering rate is proportional to the
probe intensity, γs(r) = γ0β00(r), the mean spin evolution of
Eq. (53b) is

d

dt

〈
F̂ 00

x

〉 = −γ0

3

∑
i

[β00(ri)]
2
〈
f̂ (i)

x

〉
. (59)

The local decoherence does not respect the orthogonality of
the transverse paraxial modes and we will see that the diffuse
scattering acts to couple the fundamental spin wave to higher-
order spin waves.

Because the transverse modes are orthogonal in a plane
at a fixed z, we can derive a set of coupled equations by
decomposing products of the spatial weighting coefficients
[Eq. (22)] in the basis of mode functions as

[β00(r⊥,z)]2 = |u00(r⊥,z)|4 =
∑
p,l

c00
pl (z)βpl(r⊥,z), (60)

with z-dependent projection coefficients,

c00
pl (z) ≡ 1

A

∫
d2r⊥[u00(r⊥,z)]2u∗

00(r⊥,z)upl(r⊥,z). (61)

It follows that Eq. (59) can be expressed as

d

dt

〈
F̂ 00

x

〉 = −γ0

3

∑
k,p,l

c00
pl (zk)

〈
F̂ pl

x (zk)
〉
, (62)

where we have defined spin waves in coarse-grained slices of
thickness δz around zk ,

F̂ pl
z (zk) ≡

∑
ik

βpl

(
r⊥ik ,zik

)
f̂ (ik)

z , (63)

with the index ik labeling atoms in the slice zk . The total spin
wave for a given transverse mode is F̂

pl
z = ∑

k F̂
pl
z (zk). The

mean spin in the fundamental mode 〈F̂ 00
x 〉 is thus coupled to

other spin waves 〈F̂ pl
x (zk)〉 within each slice zk . Generally,

the expected value of the pl-spin wave in the slice zk evolves
according to

d

dt

〈
F̂ pl

x (zk)
〉 = −γ0

3

∑
p′,l′

c
pl

p′l′(zk)
〈
F̂ p′l′

x (zk)
〉
, (64)

with projection coefficients c
pl

p′l′(zk) given in Eq. (E3). Details
of this derivation are found in Appendix E. The initial
conditions [Eq. (E5)] account for the matching between the
probe mode and cloud geometry. By projecting onto the
spin waves, we obtain a hierarchy of coupled equations.
Numerically, we truncate once the desired convergence is
achieved.

The effect of diffuse scattering on the evolution of the
collective spin variance follows in an analogous manner.
For spin- 1

2 , 〈�f̂ 2
z 〉 = 1/4 for all atoms. The map for local

decoherence, �Di[f̂ (i)
z ] = −2�f̂ (i)

z /9, corresponds to decay
of spin-spin correlations with no feeding of coherences. The
evolution of the fundamental spin wave variance [Eq. (53a)]

simplifies to

d

dt

(
�F 00

z

)2

= −κ
[(

�F 00
z

)2]2 − 2γ0

9

∑
i,j

[β00(ri) + β00(rj )]

× β00(ri)β00(rj )
〈
�f̂ (i)

z �f̂ (j )
z

〉 + γ0

9

∑
i

[β00(ri)]
3,

(65)

where again we have used Eq. (38). The first term describes
squeezing of the variance due to measurement backaction, the
second represents decay of correlations due to diffuse scatter-
ing, and the third is the noise injected into the variance from
spin flips (optical pumping). Following the same procedure as
above, the decay terms are projected onto higher-order spin
waves,

d

dt

(
�F 00

z

)2 = −κ
[(

�F 00
z

)2]2 − 4γ0

9

∑
p,l

∑
k,k′

c00
pl (zk)

× 〈
�F̂ 00

z (zk)�F̂pl
z (zk′)

〉 + γ0

9
N

(3)
eff . (66)

Here N
(3)
eff is the effective atom number governing the injection

of noise through optical pumping, defined in Eq. (32).
Equation (66) is a covariance description of the dynamics,
similar to that commonly employed for spin squeezing [52],
but which also accounts for local decoherence from first prin-
ciples. To solve for the fundamental variance, we must track
the evolution of the covariances between coarse-grained slices
and between transverse modes, 〈�F̂

pl
z (zk)�F̂

p′l′
z (zk′)〉 =

〈F̂ pl
z (zk) F̂

p′l′
z (zk′)〉 − 〈F̂ pl

z (zk)〉〈F̂ p′l′
z (zk′)〉. Equations of mo-

tion for these covariances follow readily from the SME. A
detailed derivation is given in Appendix E.

2. Spin-f alkali-metal atom ensembles

The constituent atoms in many spin-squeezing experiments
are alkali-metal atoms whose ground-state structure is more
complex than spin- 1

2 . For example, in 133Cs, the ground-
electronic subspace is defined by two hyperfine manifolds with
total spin angular momentum f = {3,4}. Owing to the large
ground-state hyperfine splitting (9.2 GHz in 133Cs), a single
hyperfine manifold f is addressed by the coherent interaction
with the probe laser.

Though ensembles of higher spin atoms can be squeezed
by the same QND measurement process, spin size affects both
the coherent squeezing dynamics and decoherence. Recall
that the strength of the Faraday interaction is quantified by
the coupling strength ξ [Eq. (34)]. Because ξ ∝ 1/f 2, the
atom-light coupling decreases with increasing spin size. This
decreased coupling strength is partially offset by an increased
robustness to the effects of optical pumping. When f > 1/2,
optical pumping events can be broadly divided into two
categories: (i) “loss” that occurs when an atom is pumped
from the f manifold into the other ground hyperfine manifold
and (ii) “spin flips” that leave the atom in the f manifold.
Because atoms lost to the other ground manifold are no longer
resonant with the probe, loss events decrease the mean spin
〈F̂ 00

x 〉, though they contribute no excess noise to (�F 00
z )2.
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Spin flips are responsible for both a decrease in 〈F̂ 00
x 〉 and

a noise injection into (�F 00
z )2. For the SCS preparation, the

deleterious effects of spin flips are mitigated by “transfers of
coherence” between pairs of magnetic sublevels that reduce
the rate of decay of correlations [45]. While the interplay
between these effects is complex, the rate of spin flips remains
a good indicator of an ensemble’s robustness to optical
pumping. For an ensemble of spin-f alkali metals prepared

in a SCS, the spin flip rate is γs(r)/(12f ), thus decreasing for
larger spin size.

Due to these decoherence processes, the dynamics of the
squeezing parameter is substantially more complicated for
larger spin atoms. For spin-f , we obtain the evolution of
the mean value of a spin wave in slice zk by projecting
onto the different spin waves in a manner analogous to
Eq. (64),

d

dt

〈
F̂ pl

x (zk)
〉 = −2γ0

9

∑
p′,l′

c
pl

p′l′(zk)
〈
F̂ p′l′

x (zk)
〉 + g2

f γ0

9

∑
p′,l′

∑
ik

c
pl

p′l′(zk)βp′l′
(
r⊥ik ,zk

)
Cik

[
f̂ (ik)

x

]
. (67)

Here we have defined a local superoperator that arises solely from the “feeding” terms in the master equation:

Ci[X̂] ≡ f̂ (i)
z X̂f̂ (i)

z + 1
2

(
f̂ (i)

x X̂f̂ (i)
x + f̂ (i)

y X̂f̂ (i)
y

)
. (68)

Similarly, we find equations of motion for the fundamental spin wave variance,

d

dt

(
�F 00

z

)2 = −κ
[(

�F 00
z

)2]2 − 4γ0

9

∑
p,l

∑
k′,k

c00
pl (zk)

〈
�F̂ 00

z (zk′)�F̂pl
z (zk)

〉

+ g2
f γ0

9

∑
p,l

∑
k′,k,ik

c00
pl (zk)βpl

(
rik

){〈
�F̂ 00

z (zk′)�Cik

[
f̂ (ik)

z

]〉 + 〈
�Cik

[
f̂ (ik)

z

]
�F̂ 00

z (zk′)
〉}

+ γ0

∑
k,ik

[
β00

(
rik

)]3
{

2

9

〈(
f̂ (ik)

z

)2〉 + g2
f

9

(〈
Cik

[
f̂ (ik)2

z

]〉 − 〈{
f̂ (ik)

z , Cik

[
f̂ (ik)

z

]}
+
〉)}

, (69)

where {X̂,Ŷ }+ denotes the anticommutator. As for the case of
spin- 1

2 , we have an infinite hierarchy of equations that couple
spin wave operators in the different zk slices. In general, the
feeding terms in Eq. (69) couple to covariances outside the set
〈�F̂

pl
z (zk)�F̂

p′l′
z (zk′)〉. This expands considerably the number

of equations that must be solved to reach convergence. Solving
these equations, furthermore, requires different methods than
the spin- 1

2 case. A detailed treatment of the spin-f case will
be provided in future work.

C. Results

Using our formalism we can calculate the dynamics of
QND measurement and the peak achievable squeezing in the
presence of decoherence. We now consider the fundamental
effects of geometry and the optimization of experimentally
relevant quantities to maximize spin squeezing. Most of our
results are shown for the simplest case of spin- 1

2 atoms in order
to focus on the effects of spatial modes and spin waves. We
also consider some preliminary calculations for spin-f > 1/2;
more complete studies will be presented elsewhere.

1. Geometric effects of local decoherence for a fixed
rate of squeezing

The geometry of the atom-laser system plays two distinct
roles in determining the amount of achievable squeezing.
First, ODeff ∝ N

(2)
eff [Eq. (35)] is a purely geometrical quantity,

derivable from the semiclassical model (see also [21]). The

ODeff sets the measurement strength, ξ , that characterizes the
amount of light that is collectively scattered into the spatial
mode of the probe. Second, because of the inhomogeneous
intensity profile of the laser mode, the rate of diffuse photon
scattering that causes local decoherence and ultimately caps
the amount of generated squeezing varies across the cloud.
Further complications arise from the fact that optical pumping
both injects noise into the spin wave variance and causes a
decay of the mean spin.

To gain physical insight, in this section we fix the ODeff

as we vary the geometry in order to isolate the effects of
local decoherence as they relate specifically to the squeezing
parameter [Eq. (52)]. For simulations, we choose the ensemble
to be a cylindrically symmetric Gaussian cloud with average
density

η(r) = η0 exp

(
−2

ρ2

σ 2
⊥

− 2
z2

σ 2
z

)
, (70)

where σ 2
⊥ and σ 2

z are the transverse and longitudinal 1/e2 vari-
ances, respectively, η0 is the peak density, and the total atom
number is found by integrating over the cloud, N = ∫

d3r η(r).
To characterize the geometry of the atomic distribution we use
the aspect ratio, defined as AR ≡ σz/σ⊥. A longitudinally
extended, pencil-shaped cloud commonly employed in cold,
dipole-trapped atomic ensemble experiments has an AR � 1;
a pancake-shaped cloud that is much wider than it is long
has an AR � 1. Here we vary η0 as a function of the cloud
geometry such that ODeff ∝ N

(2)
eff /A remains constant.
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FIG. 3. (Color online) Squeezing dynamics for a fixed ODeff =
50 and different atomic cloud geometries. The laser probe is a TEM00

mode with beam waist w0 = 20 μm. (a) Peak squeezing denoted as
the inverse of the squeezing parameter, ζ−1 in dB, as a function of
aspect ratio of the cloud. The inset shows effective atom numbers as
a function of aspect ratio; N

(2)
eff is constant by design. (b) Comparison

of squeezing dynamics for clouds with AR = 0.1 (solid green line)
and AR = 316 (dashed red line). The behavior in the absence of
decoherence [Eq. (55)] (dotted black line) is plotted at the same
ODeff , showing agreement for short times. (c) Dynamics of the spin
wave variance for the two clouds, normalized by dividing each by its
initial variance, N

(2)
eff /4. (d) Dynamics of the mean spin for the two

clouds, normalized by dividing each by its initial mean spin, N
(1)
eff /2.

For fixed ODeff , the superior squeezing of the pencil-shaped cloud
over the pancake-shaped cloud is attributed to slower decay of the
mean spin.

To find the peak squeezing, we perform numerical simula-
tions by integrating the evolution of the collective mean spin
and variance [Eqs. (59) and (65)] and then calculating the spin
squeezing as a function of time. Figure 3 shows the resulting
spin squeezing for different cloud geometries for a fixed beam
waist, w0 = 20 μm. The effective optical density is held
constant, ODeff = 50, which guarantees identical squeezing
in the absence of decoherence for any geometry. Figure 3(a)
shows the peak squeezing as a function of the AR. An
increase in peak squeezing accompanies an increasing aspect
ratio, indicating that decoherence is less detrimental to lon-
gitudinally extended clouds. The dynamics of the squeezing
parameter are plotted in Fig. 3(b) for the opposing cases of
a pancake-shaped cloud with AR = 0.1 and a pencil-shaped
cloud with AR = 316. For comparison, the short-time solution
Eq. (55) is shown, which describes the squeezing for either
cloud in absence of decoherence.

To understand these results we separately examine the
dynamical evolution of the projection-noise variance and the
mean spin in Figs. 3(c) and 3(d), both of which contribute to
the squeezing parameter. The effects of decoherence lead to

different steady-state values of the fundamental spin wave
variance in Fig. 3(c) because the noise injection due to
optical-pumping-induced spin flips, set by N

(3)
eff , is slightly

smaller for the pencil than for the pancake [see subplot in
Fig. 3(a)]. More importantly, the decay rate of the mean
spin is a strong function of the AR, as seen in Fig. 3(d).
For a fixed ODeff , under consideration here, different cloud
geometries correspond to different N

(1)
eff , which determines

the mean spin of the ensemble addressed by the beam. The
pencil geometry addresses a larger N

(1)
eff when compared to

the pancake geometry, as seen in the subplot of Fig. 3(a).
In addition, for the pencil geometry N

(1)
eff also decays more

favorably. This occurs because for a fixed ODeff , in the pencil
geometry a large fraction of the atoms are spread far from
the beam waist where rates of optical pumping are lower. For
the pancake geometry, to achieve the same ODeff , more of the
atoms the we address are concentrated in the high-intensity
region and more quickly depolarize.

2. Optimizing geometry for fixed atom number

We gain further insight into the nature of the atom-light
interface by keeping the atom number N fixed and optimizing
the cloud dimensions for peak squeezing. We fix the peak den-
sity at η0 = 5 × 1011 cm−3, typical of dipole-trapped atoms,
and keep the total atom number constant, N = 9.8 × 106,
for a fixed cloud volume. In Fig. 4(a), we plot contours of
peak squeezing as a function of aspect ratio and beam waist.
The optimal peak squeezing, ζ−1

opt = 10.0 dB, is found for

AR = 256 at a beam waist of w
opt
0 = 31 μm. At the optimal

geometry, the cloud length extends over several Rayleigh
ranges, σz/z

opt
R = 2.42, and the transverse width of the cloud

is slightly larger than the beam waist, σ⊥/w
opt
0 = 1.09.

To further understand the region of peak squeezing, in
Fig. 4(b), we plot contours of ODeff . Comparison of Figs. 4(a)
and 4(b) shows that the optimal peak squeezing occurs in a
parameter region where ODeff is high, as expected. However,
the optimal peak squeezing arises from a balance between high
ODeff with low noise injection into the spin wave variance and
low decay of the mean spin. Figure 4(c) shows the fraction
of total atoms contributing to the mean spin, N

(1)
eff /N , to the

effective optical density, N
(2)
eff /N , and to the noise injection

N
(3)
eff /N . As the cloud becomes too long and narrow, there does

not exist a beam waist that can address a sufficiently large
number of atoms while keeping a high ODeff . Said another
way, when the cloud becomes too long, the diffraction of
scattered light is too large to effectively mode match with
the probe field, as seen in Fig. 2(c). Similarly, too small a
waist leaves many atoms outside the Rayleigh range and too
large a waist increases the beam area, thus decreasing ODeff ,
both manifestations of poor mode matching of the probe and
the scattered field from the atom cloud.

3. Optimizing the beam waist for a fixed atomic cloud geometry

With a better understanding of how cloud geometry influ-
ences decoherence, we study the optimization of squeezing
in a situation typical of experiments with dipole-trapped cold
atoms, where both the trap dimensions and beam waist can
be tuned while the peak atomic density η0 remains fixed. In
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FIG. 4. (Color online) Squeezing for different cloud geometries with Gaussian atomic density distribution [Eq. (70)] and a fixed total
atom number N = 9.84 × 106. (a) Contours of peak squeezing, ζ−1 in dB, as a function of cloud aspect ratio and laser probe beam waist.
(b) Contours of the coupling strength, ODeff . The difference between the optimal coupling strength and the resulting squeezing depends on the
balance between coherent interactions and decoherence, characterized by different effective atom numbers, N

(1)
eff , N

(2)
eff , and N

(3)
eff , shown in (c).

this situation, the total atom number N depends on the trap
volume.

For each cloud geometry there exists a beam waist that max-
imizes ODeff . This is seen in Fig. 5(b) where contours of ODeff

are shown for a cloud with a fixed transverse width of σ⊥ =
100 μm as the cloud length σz and beam waist w0 are varied.
Contours for peak squeezing are shown in Fig. 5(a). Compari-
son with Fig. 5(b) demonstrates that for a given cloud geome-
try, the peak squeezing is achieved with a smaller beam waist
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FIG. 5. (Color online) Squeezing for a fixed peak density η0 =
5 × 1011 cm−3 and variable atom number that fills a dipole trap for
cold atoms. In (a)–(c) the transverse cloud width is fixed at σ⊥ = 100
μm and cloud length is taken to be variable. (a) Contours of peak
squeezing, ζ−1 in dB. (b) Contours of ODeff . (c) Optimal beam waist
for maximizing ODeff (upper, red dots) and for maximizing peak
squeezing (lower, blue dots). For a given atomic geometry, the beam
waist that optimizes the ODeff is not the same as that which optimizes
peak squeezing. (d) Peak squeezing as a function of cloud size for the
optimal beam waist at each point.

than that which optimizes ODeff . This is seen most clearly in
Fig. 5(c), where we compare the optimal beam waist for max-
imizing ODeff to the beam waist that maximizes peak squeez-
ing. Optimal squeezing occurs at smaller beam waists, where
the region of the beam with greatest intensity, the Rayleigh
range, is smaller. Because the scattering rate γs(r) is propor-
tional to the local intensity, atoms outside the Rayleigh range
experience a decreased rate of optical pumping. Although a
smaller Rayleigh range implies a decreased ODeff and N

(1)
eff as

well, the reduction of the decoherence rate dominates in this
regime. This is a direct analogy to Sec. III C 1, in which pencil-
shaped clouds with higher mean spins were more robust to de-
cay due to a large number of atoms farther away from the beam
waist. Finally, in Fig. 5(d) we plot contours of peak squeezing
for different geometries at the optimal beam waist for each
point. Since larger clouds contain more atoms and, in general,
for properly chosen probe geometry ODeff and peak squeezing
increase with more atoms, there is no local maximum in
Figs. 5(a), 5(b), and 5(d).

4. Relation to the symmetric one-dimensional model

Spin squeezing by QND measurement is traditionally
modeled using a one-dimensional description of the atom-light
interface where the ensemble is symmetrically coupled to
plane waves with no spatial variations [51]. When accounting
only for squeezing due to collective scattering and QND mea-
surement, the full three-dimensional system can be effectively
described by such a model, with the symmetric OD replaced
with ODeff . When decoherence from local diffuse scattering
is included, however, such models become insufficient. In
addition, a symmetric description does not account for the
difference between the effective atom number contributing to
the spin wave variance, N

(2)
eff , that contributing to the mean

spin, N
(1)
eff , and that contributing to noise injection by spin

flips, N
(3)
eff .

To better understand the limit in which we recover the
simple symmetric description, consider a symmetric one-
dimensional model where an ensemble of spin- 1

2 atoms is
coupled to a uniform plane wave and scatters collectively into
this mode and locally into diffuse modes. In this case a single
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atom number suffices; every atom contributes equally to the
optical density, to the mean spin, and to the injection of noise,
N

(1)
eff = N

(2)
eff = N

(3)
eff = N . The equation of motion for the spin

wave variance Eq. (65) becomes [38,40,52,53]

d

dt
�F 2

z = −κ
(
�F 2

z

)2 − 4γ0

9
�F 2

z + γ0

9
N, (71)

where γ0 is the scattering rate and κ = (σ0/A)(4γ0/9) is the
measurement strength corresponding to the rate of scattering
into the probe mode per atom [Eq. (23)]. This equation can be
solved analytically, yielding

�F 2
z (t) = N

4

√
OD + 1 + tanh

[√
OD + 1 2

9γ0t
]

√
OD + 1 + (

OD
2 + 1

)
tanh

[√
OD + 1 2

9γ0t
] .

(72)

In the limit of short times, γ0t � 1, we recover the expression
for QND squeezing in the absence of decoherence [Eq. (55)],
�F 2

z (t) ≈ (N/4)[1 + ξ (t)]−1, where ξ (t) = OD γ0t/9. In the
opposite limit of long times, γ0t → ∞, and large optical
density, OD � 1, we find the expected scaling �F 2

z (t →
∞) ∝ OD−1/2[51].

We can compare the symmetric one-dimensional model to
a limiting case of the full three-dimensional model developed
here. When the transverse extent of the cloud is much smaller
than the beam waist and the longitudinal extent is well within
the Rayleigh range, then spatial variations of the field across
the cloud are minimal and β00(ri) → 1. Although this limiting
case replicates the squeezing expected from the symmetric
one-dimensional model, it is in fact far from a single-mode
description. As discussed in Sec. II B, this geometry radiates
paraxial light into many of transverse modes defined relative
to the beam, and the associated spin waves couple together
through diffuse scattering [Eq. (66)]. After numerically solving
these coupled equations according to the procedure outlined
above, we recover the same results Eq. (71), as is manifest
from Eq. (65) in the limit that β00(ri) → 1 over the extent of
the atom cloud.

We investigate this limit numerically in Fig. 6 for a spherical
cloud (σ⊥,σz = 100 μm) probed by beams of increasing waist
w0. In each case ODeff = 50, such that in the absence of
decoherence the different geometries would achieve identical
squeezing. In Fig. 6(a) we see that as the beam waist is
increased, the peak squeezing approaches that of the symmet-
ric one-dimensional model. The inset shows the convergence
of the effective atom numbers as the beam waist increases.
Figure 6(b) shows the dynamics of the squeezing parameter
ζ−1(t) for the spherical cloud at both extremes in Fig. 6(a).
For comparison, the squeezing parameter for the symmetric
one-dimensional model is plotted both with and without
decoherence. The difference between the models is substantial;
the optimal peak squeezing for the symmetric one-dimensional
model and full model are ζ−1

peak = {3.52 dB,4.99 dB}, respec-
tively. This difference can be understood in terms of the
effective atom numbers. The advantage for spin squeezing
in the three-dimensional model comes from the fact that
N

(1)
eff � N

(2)
eff � N

(3)
eff due to different dependence on the spatial

weightings β00(r), while for the symmetric one-dimensional
case they are equal. For the three-dimensional model, not only
can the effective number of atoms contributing to the noise
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FIG. 6. (Color online) Comparison between the symmetric one-
dimensional model and the three-dimensional spin wave model.
(a) Peak squeezing, ζ−1 in dB, for a spherical cloud with ODeff = 50
as the beam waist is increased. The inset shows the convergence of
N

(1)
eff (upper, blue line), N (2)

eff (middle, green line), and N
(3)
eff (lower, red

line) as w0 increases. (b) Comparison of squeezing dynamics for the
extremal waists from (a): the smallest, w0 = 10 μm, and the largest,
w0 = 104 μm. For comparison, the symmetric one-dimensional case
using Eq. (71) is plotted with decoherence (dotted black line) and
without (dashed black line).

injection be smaller than that contributing to the ODeff , but the
effective number of atoms contributing to the mean spin, and
thus the signal, is larger than both. Inspecting Fig. 3(d) we see
an additional advantage for the three-dimensional model; when
geometry is properly chosen, the mean spin decays at a much
reduced rate.

5. Spin f > 1/2 atoms

We present here some initial results that illustrate the
differences between spin- 1

2 and larger spin ensembles. Con-
sider an ensemble of 133Cs atoms prepared in the f = 4
ground hyperfine manifold. Figure 7(a) shows contours of
peak squeezing as a function of aspect ratio using the atomic
density given by Eq. (70). Note that the peak squeezing
is substantially smaller than the peak squeezing for spin- 1

2
[compare to Fig. 4(a)] and the optimal aspect ratio and beam
waist are different for spin-4 alkali-metal atoms than for spin- 1

2
atoms. This can be attributed to a reduction of the coupling
strength ξ that is not compensated by an equal reduction in the
decoherence rate. In principle, the coupling strength can be
increased by internal spin control of the f = 4 hyperfine spin
[40]. Figure 7(b) compares the squeezing dynamics for spin-4
and spin- 1

2 ensembles at the same geometry and illustrates not
only the disparity in peak squeezing but also in the time at
which it occurs. These effects arise from the subtle interplay
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FIG. 7. (Color online) Squeezing of a spin-4 ensemble. (a) Con-
tours of peak squeezing for an ensemble of spin-4 atoms for the same
fixed atom number as in Fig. 4 as function of beam waist and cloud
aspect ratio. The largest peak squeezing, ζ−1 = 7.8 dB, is achieved
for the optimal geometry (indicated by a white “x”): AR = 300, w0 =
28 μm. (b) Dynamics of ζ−1 in dB for the optimal geometry, for spin-4
and for spin- 1

2 .

between the rates of depolarization and injected noise due to
spin flips when applied to the spatial modes of larger spin
ensembles.

IV. SUMMARY AND OUTLOOK

The entangling power of the quantum interface between
photons and an ensemble of cold atoms is at the heart of
a variety of quantum information processing tasks. When
considering extended atomic clouds in dipole traps, one
must consider a full three-dimensional description of the
electromagnetic modes and atomic density distribution in
order to optimize this entangling power. Inhomogeneous
coupling between atoms and photons is essential to maximize
the strength of the quantum interface, but this comes with
substantial complexity in the theoretical description. The
model presented in this work addressed these issues and
examined regimes of optimal performance.

We have studied the strength of the atom-photon interface
in a traveling wave configuration in the context of spin
squeezing via QND measurement. We developed a description
in terms of quantized paraxial modes of the field in order
to model the inhomogeneous atom-light coupling across the
atomic ensemble, which leads to two distinct effects. First, the
collective coupling describes a generalization of the Faraday
interaction that entangles the quantized Stokes vector of the
laser field with a spin wave defined by the weighted ensemble
of atoms that indistinguishably radiates into the mode of

the probe. The spin wave that is squeezed is defined by the
probe mode we measure in a balanced polarimeter. Second,
diffusely scattered photons lead to optical pumping and
decoherence across the ensemble at a rate proportional to the
local probe intensity. The delicate balance of these two effects
favors certain geometries for spin squeezing.

We have numerically investigated the ultimate limits to
spin squeezing based on a SME, including the effects of
QND measurement backaction and decoherence by photon
scattering into unmeasured modes. Unlike the usual one-
dimensional description in which the amount of squeezing is
set by a single parameter, the optical density, we find that due
to inhomogeneous coupling, multiple parameters are required.
Of particular importance in a metrological context are the mean
collective spin and the projection-noise variance, determined
by effective atom numbers N

(1)
eff and N

(2)
eff , respectively. Optimal

geometries maximize the effective optical density, ODeff ,
proportional to N

(2)
eff , while minimizing the depolarization of

N
(1)
eff and injected noise into the spin wave by optical pumping.

We found that optimal mode matching occurs for geometries
where a large number of atoms are addressed by a beam with
a small transverse area, yielding a high ODeff , but also where
the depolarization rate due to optical pumping is relatively
small. This geometry corresponds to a longitudinally extended,
pencil-shaped cloud, with a probe beam chosen to optimize the
trade-offs between ODeff and decoherence. Such a geometry
is far from the regime describing squeezing of a symmetric
atomic spin ensemble, as is typically assumed. One recovers
the symmetric description only for ensembles confined with
extents much smaller than the beam waist and Rayleigh range,
which yield much smaller ODeff .

We have studied here the case of interactions in a highly
transparent regime where the optical density is very small at
the detuning of the probe. All collective effects studied here
arise solely from the fact that the each of the atoms that scatter
photons into the same paraxial mode are indistinguishable.
For much higher densities, and/or lower detunings, multiple
scattering effects are non-negligible. Under these conditions,
superradiant scattering [54,55] and stimulated Raman scat-
tering [28,56] become important and can lead to addition
collective effects. Additionally, at high atomic densities, one
must also consider the effects of atomic collisions [20].
Finally, we consider ultracold ensembles where the atoms are
well approximated as fixed, point scatterers. Effects of finite
temperature can be included by averaging over the positions
of the atoms [27].

While the three-dimensional model developed in this
work was specifically tailored to study the problem of spin
squeezing by QND measurement, it can be extended to other
protocols involving the quantum interface between photons
and free-space atomic ensembles. Mode-matching and spatial
effects are important for other spin squeezing protocols
including the double-pass countertwisting interaction [53,57]
or the recently proposed planar squeezing protocol [58].
Understanding spatial effects in order to identify regimes of
strong coupling is also essential for quantum memories and
repeaters in free-space atomic ensembles. In addition, recent
work has considered ensembles of higher-spin alkali-metal
atoms, in which control over the rich internal hyperfine
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structure can enhance the entangling strength of the atom-
light interface [40]. Quantifying the gains achievable though
such control techniques requires a realistic description of the
inhomogeneous interaction between light and atoms. Finally,
a multimode description of the entangling Hamiltonian offers
the possibility to exploit spatial modes and their associated
spin waves as a resource. The creation of entanglement
between spin waves could lead to novel states with potential
application in continuous variable quantum computation and
communication [59].
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APPENDIX A: PARAXIAL SCATTERING—CLASSICAL
THEORY

The complex electric field is paraxial and quasimonochro-
matic, �E(r⊥,z,t)ei(k0z−ω0t). Thus, the slowly varying envelope
is governed by the time-dependent paraxial wave equation
[60],

i

(
∂

∂z
+ 1

c

∂

∂t

)
�E(r⊥,z,t)

= − 1

2k0
∇2

⊥ �E(r⊥,z,t) − 2πk0
↔
χ (r⊥,z) · �E(r⊥,z,t), (A1)

where
↔
χ (r⊥,z) is the spatially averaged dielectric susceptibil-

ity. Defining �E(r⊥,z,t) = A(t − z/c) �U(r⊥,z),

i
∂

∂z
�U(r⊥,z) = − 1

2k0
∇2

⊥ �U(r⊥,z)

− 2πk0
↔
χ (r⊥,z) · �U(r⊥,z). (A2)

This equation is isomorphic to the time-dependent Schrödinger
equation with the propagation distance z playing the role of
time and the susceptibility playing the role of the potential.

We can define a Hilbert space of square-integrable functions
on the transverse plane, and use Dirac notation to express
the evolution of the transverse mode as a function of z,
U(r⊥,z) = 〈r⊥|U(z)〉. The free-space propagator (z-evolution
operator), satisfies the free-particle Schrödinger equation in
two dimensions,

i
∂

∂z
K̂ = p̂2

⊥
2k0

K̂, (A3)

where p̂⊥ = −i∇⊥ in the position representation. The

solution, K̂(z − z′) = exp[−i
p̂2

⊥
2k0

(z − z′)], has the familiar
position-space representation for the spreading of a wave
packet and Fraunhofer diffraction [37],

K(r⊥ − r′
⊥,z − z′) = 〈r⊥|K̂(z − z′)|r′

⊥〉

= −ik0

2π (z − z′)
exp

[
ik0|r⊥ − r′

⊥|2
2(z − z′)

]
.

(A4)

The z evolution of a freely propagating beam is given by

U(r⊥,z) = 〈r⊥|U(z)〉 = 〈r⊥|K̂(z − z′)|U(z′)〉
=

∫
d2r′

⊥ K(r⊥ − r′
⊥,z − z′)U(r′

⊥,z′). (A5)

Other properties of the propagator follow from unitarity,
K̂†(z − z′) = K̂(z′ − z), and thus

U∗(r′
⊥,z′) = 〈r′

⊥|K̂(z′ − z)|U(z)〉∗ = 〈U(z)|K̂(z − z′)|r′
⊥〉

=
∫

d2r⊥U∗(r⊥,z) K(r⊥ − r′
⊥,z − z′). (A6)

We define a complete orthogonal basis {|upl(z)〉}, normalized
to a fixed transverse area A,

〈up′l′(z)|upl(z)〉 =
∫

d2r⊥u∗
p′l′ (z)upl(z) = Aδp,p′δl,l′ . (A7)

The propagator can then be written as

K̂(z − z′) =
∑
p,l

|upl(z)〉〈upl(z
′)| ⇒ K(r⊥ − r′

⊥,z − z′)

= 1

A

∑
p,l

u∗
pl(r

′
⊥,z′)upl(r⊥,z), (A8)

with the boundary condition K(r⊥ − r′
⊥,0) = δ(2)(r′

⊥ − r⊥)
that follows from completeness [Eq. (B11)].

The scattering of paraxial fields thus follows in complete
analogy to the scattering of nonrealistic Schrödinger waves
[37], where the time-dependent formulation of scattering
translates into the z dependence. The retarded Green’s function
for free propagation is defined as

G+(r⊥ − r′
⊥,z − z′) = −i�(z − z′)K(r⊥ − r′

⊥,z − z′),(
i

∂

∂z
+ 1

2k0
∇2

⊥

)
G+(r⊥ − r′

⊥,z − z′) (A9)

= δ(z − z′)δ(2)(r⊥ − r′
⊥),

where �(z) is the Heaviside step function. In the first Born
approximation, i.e., for dilute samples where multiple scat-
tering is negligible, given an incident field (free propagating
solution) �Uin(r⊥,z), the total scattering solution is

�U(r⊥,z) = �Uin(r⊥,z) +
∫ ∞

−∞
dz′

∫
d2r′

⊥G+(r⊥ − r′
⊥,z − z′)

× (−2πk0)
↔
χ (r⊥,z) · �Uin(r′

⊥,z′)

= �Uin(r⊥,z) + i2πk0

∫ z

−∞
dz′

∫
d2r′

⊥

×K(r⊥ − r′
⊥,z − z′)

↔
χ (r⊥,z′) · �Uin(r′

⊥,z′),
(A10)

corresponding to the superposition of incident and scattered
fields.

APPENDIX B: QUANTIZATION OF THE PARAXIAL FIELD

Paraxial quantization follows from the slowly varying
envelope approximation [43]. For these modes, we define the
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positive-frequency component of the electric field analogous
to a classical beam,

Ê(+)(r,t) =
√

2π�ω0

∑
α

eα�̂α(r⊥,z,t)ei(k0z−ω0t), (B1)

where α labels transverse polarization, and the slowly varying
envelope satisfies the equal-time commutation relations of a
nonrelativistic bosonic field,

[�̂α(r⊥,z,t),�̂†
β(r′

⊥,z′,t)] = δα,βδ(2)(r⊥ − r′
⊥)δ(z − z′).

(B2)

The free field satisfies the paraxial wave equation

i
∂

∂t
�̂α = −ic

∂

∂z
�̂α − 1

2k0
∇2

⊥�̂α, (B3)

which is the Heisenberg equation of motion for an envelope
governed by the free paraxial Hamiltonian,

Ĥfree = �

∑
α

∫
d3r �̂†

α

(
−ic

∂

∂z
− 1

2k0
∇2

⊥

)
�̂α. (B4)

The free-field solution is thus determined by the classical
propagator,

�̂α(r⊥,z,t) =
∫

d2r′
⊥K(r⊥ − r′

⊥,ct)�̂α(r′
⊥,z − ct,0). (B5)

It then follows that the free field satisfies the general commu-
tation relations,

[�̂α(r⊥,z,t),�̂†
β(r′

⊥,z′,t ′)]

= K(r⊥ − r′
⊥,z − z′)δα,βδ(z − z′ − c(t − t ′)), (B6)

and thus equal-z, unequal-t commutation relations,

[�̂α(r⊥,z,t),�̂†
β(r′

⊥,z,t ′)] = 1

c
δα,βδ(2)(r⊥ − r′

⊥)δ(t − t ′).

(B7)

The paraxial field is naturally decomposed into an orthonor-
mal set of dimensionless transverse mode functions. Here
we use the Laguerre-Gauss modes {upl(r⊥,z)} in cylindrical
coordinates,

upl(r⊥,z) = Npl

w0

w(z)

[√
2ρ

w(z)

]|l|
L|l|

p

{
2ρ2

[w(z)]2

}

× exp

{
− ρ2

[w(z)]2

}
exp

[
ik0ρ

2

2R(z)

]
× exp[−i(2p + l + 1)	(z) − ilφ], (B8)

where Npl = √
p!/(|l| + p)! is the normalization constant,

L
|l|
p (x) indicates an associated Laguerre polynomial, and

parameters w(z), R(z), and 	(z) are given in Eq. (2). These

modes satisfy∫
d2r⊥u∗

pl(r⊥,z)up′l′(r⊥,z) = Aδp,p′δl,l′ , (B9)

∑
p,l

upl(r⊥,z)u∗
pl(r

′
⊥,z) = Aδ(2)(r⊥ − r′

⊥), (B10)

∑
p,l

upl(r⊥,z)u∗
pl(r

′
⊥,z′) = AK(r⊥ − r′

⊥,z − z′), (B11)

where we have defined a quantization area, A = πw2
0/2, as the

natural scale for Gaussian beams of waist w0. Using Eq. (B5)
and the completeness relation [Eq. (B10)], we define local
mode creation and annihilation operators,

âpl,α(z,t) =
∫

d2r⊥

√
c

A
�̂α(r⊥,z,t)u∗

pl(r⊥,z), (B12)

that evolve under the free-field Hamiltonian according
to âpl,α(z,t) = âpl,α(0,t − z/c) = âpl,α(z − ct,0), and satisfy
free-field commutation relations

[âpl,α(z,t),â†
p′l′,β(z′,t ′)] = δp,p′δl,l′δα,β δ(t − t ′ − (z − z′)/c).

(B13)

The positive-frequency component of the electric field ex-
panded in these modes is

Ê(+)(r,t) =
∑
p,l,α

√
2π�ω0

cA
eα âpl,α(z,t) upl(r⊥,z) ei(k0z−ω0t).

(B14)

APPENDIX C: MULTIMODE MASTER EQUATION

The joint dynamics of the collective atomic system and
the paraxial field can be expressed using a master equation
formalism [44],

dρ̂

dt
= − i

�

[
Ĥeff ρ̂ − ρ̂Ĥ

†
eff

] + �
∑
i,q

Ŵ (i)
q ρ̂Ŵ (i)†

q , (C1)

where the index q runs over all spherical basis elements.
The effective Hamiltonian has a real part that drives coherent
dynamics and an imaginary part describing loss,

Ĥeff = Ĥint + Ĥloss. (C2)

For a probe laser with polarization �εL, the jump operators are
[38]

Ŵ (i)
q =

∑
f ′

�(ri)/2

�f ′ + i�/2
e∗
q · d̂(i)

f ′ d̂
(i)†
f ′ · �εL, (C3)

with local Rabi frequency is �(ri) = 〈J ′||d||J 〉2EL(ri)/�.
For our spin-squeezing protocol, the probe is prepared

with linear polarization along x and photon flux ṄL. The
Hermitian part of the effective Hamiltonian, Ĥint, is given by
the multimode Faraday Hamiltonian [Eq. (21)]. For detuning
large compared to the excited-state hyperfine splitting and
neglecting terms that describe vacuum-vacuum scattering, the
anti-Hermitian part is

Ĥloss = −i�
C(0)

2

∑
i

γs(ri)1̂
(i)

. (C4)
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Using Eqs. (C4), (12), and (38) we can write the part of master
equation from diffuse scattering,

dρ̂

dt

∣∣∣∣
diff

=
∑

i

γs(ri)
[
(|C(0)|2 − C(0))ρ̂

+ |C(1)|2(f̂ (i)
z ρ̂f̂ (i)

z + f̂ (i)
y ρ̂f̂ (i)

y

)]
. (C5)

For the case of an atom driven on an S1/2 → PJ transi-
tion, |C(0)|2 − C(0) = −2/9 and |C(1)|2 = g2

f /9. To define
the quantization axis, a large bias magnetic field B0 is
applied along the z axis, causing rapid Larmor precession
at frequency �0 = gf μBB0. Transforming to the rotating
frame, f̂ (i)

z → f̂ (i)
z and f̂ (i)

y → cos(�0t)f̂ (i)
y − sin(�0t)f̂ (i)

x .
Substituting these relations into Eq. (C5) and time averaging
according to the rotating wave approximation yields the map
for local decoherence in Eq. (39).

APPENDIX D: DERIVATION OF THE MULTIMODE
HOMODYNE POLARIMETRY STOCHASTIC

MASTER EQUATION

The SME describes the evolution of the atomic ensemble
as continuous homodyne polarimetry measurements are per-
formed on the output light. Although we showed in Sec. II A
that only light in the probe mode is measured, we present
here the SME that results from independent measurements of
the position quadratures X̂pl in each mode pl, following the
standard prescription given in Refs. [46,47]. A more general
SME arises from such a continuous polarimetry measurement
than the case where solely the X̂00 quadrature is measured and
measurement records on all modes pl �= 00 are discarded.

Prior to measurement, the time evolution operator Û (�t) =
exp(−i�tĤ/�) describing the interaction of the light and spin
waves over a time interval �t is

Û (�t) =
∏
p,l

Ûpl(�t). (D1)

The interaction in each spatial mode is generated by the
multimode Faraday Hamiltonian in (21). Written in terms of
the traveling-wave quadratures that arrive at the detector plane,
X̂pl(zD,t) ≡ (âpl,y(zD,t) + â

†
pl,y(zD,t))/

√
2 and P̂pl(zD,t) ≡

−i(âpl,y(zD,t) − â
†
pl,y(zD,t))/

√
2, the unitary interaction in

each mode is

Ûpl(�t) = exp

[
−i�t

√
κ

2

(
Re

{
F̂ pl

z

}
P̂pl(zD,t)

− Im
{
F̂ pl

z

}
X̂pl(zD,t)

)]
. (D2)

After this interaction the light and spin waves are entangled
so that a polarimetry measurement of X̂pl is correlated with
quantum backaction on the atomic ensemble. The evolution of
the system conditioned on independent measurements of each
mode is determined by the Kraus operator,

Â(�t) =
∏
p,l

Âpl(�t). (D3)

Here, Âpl(�t) is the Kraus component for measurement
outcome xpl in the spatial mode pl:

Âpl(�t) ≡ 〈X̂pl(zD,t) = xpl |Ûpl(�t)|0〉

= exp

[
�t

√
κ

2
F̂ pl

z xpl − κ�t

4

(
Re

{
F̂ pl

z

}2

+ iIm
{
F̂ pl

z

}
Re

{
F̂ pl

z

})]
. (D4)

The measurement photocurrent is a Gaussian stochastic pro-
cess with mean 〈Re{F̂ pl

z }〉�t and variance proportional to 1/κ
[46],

�ypl = 〈
Re{F̂ pl

z }〉�t + �Wpl√
κ

, (D5)

where �Wpl is a Wiener increment with zero mean and
variance �t . In the infinitesimal limit, �t → dt and �Wpl →
dWpl , and we expand the Kraus component to first order in dt ,

Âpl(dt) = 1̂ + κ

4
F̂ pl

z

〈
F̂ pl

z + F̂ pl†
z

〉
dt − κ

8
F̂ pl†

z F̂ pl
z dt

+
√

κ

4
F̂ pl

z dWpl. (D6)

We have used the statistical independence of the stochastic
Wiener processes, dWpldWp′l′ = δp,p′δl,l′dt .

After the measurements are performed, the conditional
collective atomic state is updated via the map

ρ̂(t + dt) = Â(dt)ρ̂(t)Â†(dt)

Tr[Â†(dt)Â(dt)ρ̂(t)]
. (D7)

Using Eqs. (D3) and (D6) with Eq. (D7), we derive the
conditional atomic state. In differential form, the SME is

dρ̂ =
∑
p,l

(√
κ

4
Hpl[ρ̂] dWpl + κ

4
Lpl[ρ̂] dt

)
, (D8)

where the measurement-update superoperator Hpl[ρ̂] is de-
fined in Eq. (47) and the Lindblad superoperator Lpl[ρ̂] in
Eq. (48).

For measurements of the fundamental mode only, we ignore
the measurement records for pl �= 00, which is equivalent
to averaging over measurement records or tracing over these
modes. The result is the SME

dρ̂ =
√

κ

4
H00[ρ̂] dW + κ

4

∑
p,l

Lpl[ρ̂] dt, (D9)

where dW = dW00. Since the modes pl �= 00 are unmeasured,
information about the ensemble is lost and Eq. (D9) does not
preserve purity.

APPENDIX E: DERIVATION OF THE MEAN SPIN AND
COVARIANCE EQUATIONS OF MOTION

While the squeezing parameter [Eq. (52)] depends solely
upon the mean and variance of the fundamental spin wave
defined by the spatial mode of the laser probe, the diffuse
scattering by individual atoms is not collective in nature and
acts to couple the different spin waves to one another. In order
to model the dynamical evolution of the squeezing, including
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decoherence, we must track the evolution of a hierarchy of
differential equations coupling the means and covariances
of spin waves in all spatial modes. This appendix provides
a detailed derivation of these equations and the numerical
methods used in their solution for the case of an ensemble of
spin- 1

2 atoms.

We first consider the evolution of 〈F̂ pl
x 〉, the mean of a spin

wave in spatial mode pl, where F̂
pl
x = ∑

i βpl(ri)f̂ (i)
x . Because

collective scattering and measurement backaction negligibly
affect the dynamics of the mean spin, to good approximation
the evolution of 〈F̂ pl

x 〉 is dominated by diffuse scattering and
is described by Eq. (41). For spin- 1

2 , the local map [Eq. (39)]
simplifies to Di[f̂ (i)

x ] = −f̂ (i)
x /3. Using Eq. (38), we get an

equation of motion,

d

dt

〈
F̂ pl

x

〉 = −γ0

3

∑
i

β00(ri)βpl(ri)
〈
f̂ (i)

x

〉
. (E1)

By decomposing β00(r)βpl(r) in terms of orthogonal mode
functions, the right-hand side of Eq. (E1) can be expressed in
terms of spin wave operators. In terms of the mode functions,

β00(r⊥,z)βpl(r⊥,z) = |u00(r⊥,z)|2u∗
pl(r⊥,z)u00(r⊥,z)

=
∑
p′,l′

c
pl

p′l′(z)βp′l′(r⊥,z), (E2)

where we have made use of orthogonality and completeness
in Eqs. (B9) and (B10) to define projection coefficients,

c
pl

p′l′ (z) ≡ 1

A

∫
d2r⊥ [u00(r⊥,z)]2 u∗

pl(r⊥,z)up′l′(r⊥,z). (E3)

By restricting Eq. (E1) to a coarse-grained slice of thickness
δz at longitudinal coordinate zk and performing the projection
in Eq. (E2), we obtain an infinite hierarchy of differential
equations that couple mean spin waves in a given slice to one
another,

d

dt

〈
F̂ pl

x (zk)
〉 = −γ0

3

∑
p′,l′

c
pl

p′l′(zk)
〈
F̂ p′l′

x (zk)
〉
. (E4)

Solving the resulting system of coupled differential equa-
tions requires initial conditions of the mean spin waves in
each slice. Using 〈f̂x(t0)〉 = 1/2 for the initial SCS state of the
ensemble,〈

F̂ pl
x (zk,t0)

〉 =
∑
ik

βpl

(
rik

)〈
f̂ (ik)

x (t0)
〉 = 1

2

∑
ik

βpl

(
rik

)
, (E5)

where ik is an index over all atoms in slice zk . For a average
atomic density, η(r), the sum becomes an integral,〈

F̂ pl
x (zk,t0)

〉 → δz

2

∫
d2r⊥η(r⊥,zk)βpl(r⊥,zk). (E6)

An approximate solution to Eq. (E4) is found for each slice
by choosing δz and truncating the number of spin waves at
some index pmax, lmax. Summing over the solutions at each
slice gives the mean of the fundamental spin wave,〈

F̂ 00
x (t)

〉 =
∑

k

〈
F̂ 00

x (zk,t)
〉
. (E7)

Equation (E7) is the mean spin in the definition of the
squeezing parameter.

To solve for the variance of the fundamental spin wave,
we follow a similar procedure. As shown in Eq. (65), the
fundamental variance couples through diffuse scattering to
covariances between spin waves in slices zk and zk′ :〈

�F̂pl
z (zk)�F̂p′l′

z (zk′)
〉

= 〈
F̂ pl

z (zk)F̂ p′l′
z (zk′)

〉 − 〈
F̂ pl

z (zk)
〉〈
F̂ p′l′

z (zk′)
〉
. (E8)

From the SME in Eq. (49), we find the equations of motion
for these covariances. Unlike the mean spin, the effects of
continuous measurement must be included along with diffuse
scattering. However, decoherence from collective scattering,
described by the map Lpl in Eq. (48), does not affect these
covariances since the F̂

pl
z commute with one another.

First, we examine the contribution of continuous measure-
ment. From the SME in Eq. (46) and the rule of Itō calculus
that differentials must be taken to second order [46], i.e.,
d(XY ) = (dX)Y + X(dY ) + (dX)(dY ), we find

d
〈
�F̂pl

z (zk)�F̂p′l′
z (zk′)

〉∣∣
meas

=
√

κ

4

{〈
H00

[
F̂ pl

z (zk)F̂ p′l′
z (zk′)

]〉 − 〈
H00

[
F̂ pl

z (zk)
]〉〈

F̂ p′l′
z (zk′)

〉
− 〈

F̂ pl
z (zk)

〉〈
H00

[
F̂ p′l′

z (zk′)
]〉}

dW

− κ

4

〈
H00

[
F̂ pl

z (zk)
]〉〈
H00

[
F̂ p′l′

z (zk′)
]〉
dt. (E9)

The mapH00, Eq. (47), couples the first- and second-order mo-
ments of the spin waves to higher-order moments. For the ini-
tial SCS along x and during its subsequent evolution, the spin
waves F̂

pl
z are Gaussian distributed, both over the entire cloud

and within each coarse-grained slice zk . Thus, third-order
moments of commuting observables can be expressed in terms
of first- and second-order moments with the relation 〈XYZ〉 =
〈XY 〉〈Z〉 + 〈XZ〉〈Y 〉 + 〈YZ〉〈X〉 − 2〈X〉〈Y 〉〈Z〉 [46]. In this
regime, all stochastic terms in Eq. (E9) cancel, leaving the
deterministic equation:

d

dt

〈
�F̂pl

z (zk)�F̂p′l′
z (zk′)

〉∣∣∣∣
meas

= −κ
〈
�F̂pl

z (zk)�F̂ 00
z

〉〈
�F̂p′l′

z (zk′)�F̂ 00
z

〉
= −κ

∑
k′′,k′′′

〈
�F̂pl

z (zk)�F̂ 00
z (zk′′)

〉〈
�F̂p′l′

z (zk′)�F̂ 00
z (zk′′′)

〉
.

(E10)

These dynamics, which arise from continuous polarimetry
measurements, serve to generate the correlations that produce
spin squeezing. Note that if we take l, l′, p, p′ = 0 and sum
over all k and k′, we recover the familiar case derived in
Ref. [46].

We now turn our attention to diffuse scattering. The
evolution of the first-order terms in the covariance [Eq. (E8)]
is

d

dt

〈
F̂ pl

z (zk)
〉∣∣∣∣

diff

= −2γ0

9

∑
p′,l′

c
pl

p′l′ (zk)
〈
F̂ p′l′

z (zk′)
〉
, (E11)

where we have used the fact that Di[f̂ (i)
z ] = −2f̂ (i)

z /9. The
evolution of the second-order term in Eq. (E8) is governed
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entirely by atomic pairwise correlations,

d

dt

〈
F̂ pl

z (zk)F̂ p′l′
z (zk′)

〉∣∣∣∣
diff

=
∑
ik �=jk′

βpl

(
rik

)
βp′l′

(
rjk′

) d

dt

〈
f̂ (ik)

z f̂ (jk′ )
z

〉∣∣∣∣
diff

, (E12)

where ik and jk′ label atoms in coarse-grained slices at zk

and zk′ , respectively. Using Eq. (44), the pairwise correlations
evolve according to

d

dt

〈
f̂ (ik)

z f̂ (jk′ )
z

〉∣∣∣∣
diff

= −2γ0

9

[
β00

(
rik

) + β00
(
rjk′

)]〈
f̂ (ik)

z f̂ (jk′ )
z

〉
.

(E13)

Substituting this into Eq. (E12) yields

d

dt

〈
F̂ pl

z (zk)F̂ p′l′
z (zk′)

〉∣∣∣∣
diff

= −2γ0

9

∑
ik �=jk′

βpl

(
rik

)
βp′l′

(
rjk′

)[
β00

(
rik

) + β00
(
rjk′

)]〈
f̂ (ik)

z f̂ (jk′ )
z

〉

= −2γ0

9

⎡
⎣∑

ik

β00
(
rik

)
βpl

(
rik

)〈
f̂ (ik)

z F̂ p′l′
z (zk′)

〉 + ∑
ik′

β00
(
rik′

)
βpl

(
rik′

)〈
F̂ pl

z (zk)f̂ (ik′ )
z

〉⎤⎦
+ δk,k′

γ0

9

∑
ik

β00
(
rik

)
βpl

(
rik

)
βp′l′

(
rik

)
, (E14)

where the term in the last line comes from adding and subtracting the ik = jk terms, which allowed us to perform the sum over
one of the atom indices in the previous line. The sum in the final term can be expressed as an integral over the density of the
atomic cloud,

N
pl

p′l′(zk) = δz

∫
d2r⊥η(r⊥,zk)β00(r⊥,zk)βpl(r⊥,zk)βp′l′(r⊥,zk). (E15)

Note that for the fundamental mode, p,p′,l,l′ = 0, N
pl

p′l′(zk) is N
(3)
eff at slice zk .

Combining Eqs. (E11) and (E14) and projecting the covariances into the spin waves using Eq. (E3), we arrive at a differential
equation that couples spin wave covariances. Including the dynamics due to continuous measurement Eq. (E10), the full equation
of motion for the covariances is
d

dt

〈
�F̂pl

z (zk)�F̂p′l′
z (zk′)

〉 = −κ
∑
k′′,k′′′

〈
�F̂pl

z (zk)�F̂ 00
z (zk′′)

〉〈
�F̂p′l′

z (zk′)�F̂ 00
z (zk′′′)

〉

− 2γ0

9

∑
p′′l′′

[
c
pl

p′′l′′(zk)
〈
�F̂p′′l′′

z (zk)�F̂p′l′
z (zk′)

〉 + c
p′l′
p′′l′′ (zk′)

〈
�F̂pl

z (zk)�F̂p′′l′′
z (zk′)

〉] + γ0

9
N

pl

p′l′(zk)δk,k′ .

(E16)

As in the case of the mean spin waves, this set of equations is solved by truncating Eq. (E16) at some pmax and lmax. Following
Eq. (E12), using 〈f̂ (ik)

z f̂
(jk′ )
z 〉ik �=jk′ = 0 for the initial SCS, the initial spin wave covariances are

〈
�F̂pl

z (zk)�F̂p′l′
z (zk′)

〉
(t0) = δk,k′

δz

4

∫
d2r⊥ η(r⊥,zk)βpl(r⊥,zk)βp′l′(r⊥,zk). (E17)

With these initial conditions and the equations of motion, we
can solve for the evolution of all covariances in the presence
of both QND measurement backaction and decoherence by
optical pumping. Summing the covariances in the fundamental
spin wave over all slices yields the variance in the fundamental
spin wave:

[
�F 00

z (t)
]2 =

∑
k,k′

〈
�F̂ 00

z (zk)�F̂ 00
z (zk′)

〉
(t). (E18)

From [�F 00
z (t)]2 and 〈F̂ 00

x (t)〉, we calculate the dynamics of
the squeezing parameter [Eq. (52)].

For spin-f alkali-metal atoms, the derivation of the mean
spin equations [Eq. (67)] and fundamental spin wave variance
equation [Eq. (69)] follows a similar prescription as for spin- 1

2 ,
but with more general processes that include transfer of coher-
ences, spontaneous emission, and hyperfine optical pumping.
This makes the dynamics substantially more complex and will
be treated in detail in a future publication.
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[11] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and
A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).

[12] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks,
Phys. Rev. Lett. 108, 227402 (2012).

[13] C.-L. Hung, S. Meenehan, D. Chang, O. Painter, and H. Kimble,
New J. Phys. 15, 083026 (2013).

[14] H. Tanji-Suzuki, I. D. Leroux, M. H. Schleier-Smith, M. Cetina,
A. T. Grier, J. Simon, and V. Vuletić, in Advances in Atomic,
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