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We implement arbitrary maps between pure states in the 16-dimensional Hilbert space associated with
the ground electronic manifold of !33Cs. This is accomplished by driving atoms with phase modulated
radio-frequency and microwave fields, using modulation waveforms found via numerical optimization and
designed to work robustly in the presence of imperfections. We evaluate the performance of a sample
of randomly chosen state maps by randomized benchmarking, obtaining an average fidelity >99%. Our
protocol advances state-of-the-art quantum control and has immediate applications in quantum metrology

and tomography.
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Coherent control of complex quantum systems plays a
role in much of modern physics, and examples are easy to
find in areas that include atomic and molecular physics
[1,2], ultrafast physics [3], low temperature physics [4],
and nanoscience [5,6]. In particular, high-fidelity control is
a cornerstone of quantum information science, where it is
an essential part of quantum-enhanced approaches to com-
putation [7], simulation [8—10], communication [11], and
metrology [12]. Because qubits are often encoded in physi-
cal spins, these tasks generally translate into control and
measurement of individual and coupled spins. Atomic ground
states, comprised of coupled nuclear and electronic spins, are
a particularly attractive platform for quantum information
science due to long coherence times and an existing, powerful
toolbox for control and measurement. Examples include ion-
trap quantum computers [13], neutral-atom quantum simula-
tors [8], quantum memories [14], and spin squeezing for
quantum-limited clocks and magnetometers [15].

One of the most basic tasks of quantum control is to time
evolve a quantum system from a given initial to a desired final
state (state mapping). In this Letter, we explore the limits of
state mapping between arbitrary pure states in a large Hilbert
space, using as our test bed the 16-dimensional hyperfine
manifold associated with the electronic ground state of
133Cs atoms. The atomic evolution is driven by static, radio-
frequency (1f), and microwave (uw) magnetic fields, which
is sufficient for full controllability in the entire ground mani-
fold [16]. In contrast to past work based on the tensor light
shift [17,18], this approach is not affected by decoherence due
to light scattering and associated optical pumping. As a result,
our state map fidelities are limited only by imperfections in
the applied magnetic fields, and we show that these can be
compensated with “robust” control techniques [19] analo-
gous to those used for spin-1/2 systems in nuclear magnetic
resonance [2]. Finally, we implement and test a protocol for
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randomized benchmarking of state maps, inspired by those
developed for Clifford gates in single- and few-qubit systems
[20,21]. Combining these techniques, we have implemented
and benchmarked a large sample of randomly chosen state
maps and measured an average fidelity of 99.11(5)%. The
corresponding infidelity is smaller by a factor of 5 to 10
relative to some recent experiments with similar-sized
Hilbert spaces on other platforms [22-24] and thus represents
a significant advance in state-of-the-art quantum control.
Such high-fidelity state mapping has important applications
in quantum state preparation, e.g., known inputs for process
tomography [25], states that increase the coupling strength
in atom-light interfaces and improve the generation of spin
squeezing [26], and custom initial states for the study of
nonequilibrium dynamics in spinor quantum gases [27-29].

A detailed theoretical study of our scheme for quantum
control of hyperfine-coupled electron and nuclear spins in
alkali atoms can be found in Ref. [16]. The most important
conclusion of that work is that controllability can be
achieved with a static bias magnetic field along z, com-
bined with phase modulated rf magnetic fields along x and
y, and a phase modulated uw field driving a single tran-
sition between the hyperfine manifolds F. = I = 1/2. In
this context, controllability means that the Hamiltonian
dynamics can generate any transformation in SU(d), where
d = 2(2I + 1) is the Hilbert space dimension of the alkali
ground manifold for nuclear spin I. In the case of '*3Cs,
we have I = 7/2, and thus F» = 3, 4 and d = 16. In the
rotating wave approximation, taking into account the finite
nuclear magnetic moment and the second order Zeeman
shift from the bias field, and driving the |F = 3, m = 3) <
|F =4, m = 4) uw transition, the corresponding control
Hamiltonian has the form

HC = HO + HS)(d)x’ ql)v) + Hf?)(d)x’ d)y) + H}LW(¢,U,W)'
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For a derivation and the full form of this Hamiltonian,
see the accompanying Supplemental Material [30] and
Ref. [31]. We note that H, is independent of the control
phases ¢, ¢, and ¢, that HS ) and Hr(?) are independent
SU(2) rotations of the F. = 3, 4 manifolds controlled by
the phases of the rf fields, and that H ,, is an SU(2) rotation
of the |F., m = F.) pseudospin controlled by the phase of
the pw field. Using standard arguments from control
theory [32,33], one can show that this is sufficient to
make the system controllable. The basic idea is to start
from a limited set of control Hamiltonians, generated by
choosing different combinations of control phases
until no additional linearly independent operators can be
obtained. One then checks that these operators and their
repeated commutators generate a basis for the Lie algebra
su(d); if so, the system is controllable. In our case, it is
straightforward to do this numerically; see Ref. [16] for
details.

Besides the control phases, the control Hamiltonian
depends critically on an additional set of parameters
A={Qy Q,, A, Q, Ay, A} Here, Qg =1 MHz is
the Larmor frequency at which the spin F* precesses in
the bias field, , = Qy = 9 kHz are the rf Larmor fre-
quencies in the rotating frame, (1,, = 27.5 kHz is the
microwave Rabi frequency, and Ay = A, = 0 are the
detunings of the rf and puw fields from resonance. As
described below, our control fields are designed under the
assumption that these parameters are very close to the
indicated values; assuring that this is the case in the labo-
ratory is one of the main challenges of the experiment.
Details of how the parameters A are measured and set to
their design values, as well as how their spatial and tem-
poral inhomogeneities are estimated, can be found in
Ref. [31].

Our experimental setup (Fig. 1) consists of a vapor-cell
magneto-optic trap (MOT) and optical molasses, capable
of preparing a few million Cs atoms at temperatures as low
as 3 uK. The bias and rf magnetic fields are applied by
three orthogonal coil pairs, each with a square cross section
but otherwise close to the Helmholtz configuration. The
dc current for the bias field is supplied by a modified,
ultrastable, quasi-cw laser diode driver, while the current
source for the rf fields is a dual-channel arbitrary waveform
generator followed by power amplifiers. The microwave
field is generated by a uw synthesizer running at 9.2 GHz,
mixed with a 30 MHz signal from an arbitrary waveform
generator, and amplified and radiated by two separate
microwave gain horns. The use of two gain horns results
in significant improvement in the homogeneity of the uw
intensity across the atom cloud. Using an all-glass vacuum
cell and avoiding nearby conductive and magnetizable
materials allows us to modulate the 1 MHz rf fields in a
bandwidth of a few hundred kHz. Finally, synchronizing
the experiment at a fixed point in the 60 Hz ac power line
cycle allows us to measure and compensate static and ac
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FIG. 1 (color online). Schematic of the experimental setup.
Laser cooled Cs atoms are prepared in an all-glass vacuum cell
centered within a plexiglas cube supporting the bias and rf coils.
Microwave radiation is provided by two horn antennas. Stern-
Gerlach analysis is performed by letting the atoms fall in a
magnetic field gradient provided by the MOT coils and by
inferring the magnetic populations from the time-dependent
fluorescence excited by a probe beam and detected with a
photodiode (PD).

background magnetic fields, as described in Ref. [34].
As aresult, our combined static bias and background fields
along z are accurate to 20 ppm and stable to about 10 ppm
(30 uG). The bias field along z makes the presence of
background fields along x and y less critical, and only static
compensation at the milligauss level is required here.

An experimental sequence begins by releasing a cold
atom sample into free fall. We use a combination of optical
pumping and Larmor precession to initialize the atoms in a
fiducial state |F = 4, m = 4), at which point the static bias
field is switched on to maintain the orientation of the spin.
The bias field stabilizes to the required 10 ppm level in
~7 ms, at which point we apply rf and puw fields with
predetermined phase modulation waveforms over a time 7'
to evolve the spins until they closely approach the desired
target state. Finally, we measure the populations in the 16
magnetic sublevels |F, m), by performing Stern-Gerlach
analysis as described in Ref. [35] and detecting atoms in
the F. manifolds with separate optical probe beams.

Control fields that accomplish a given state map are
found using numerical techniques common to optimal
control. Starting from some initial state, the goal is to
find a set of time dependent phases {¢ (1), ¢ (1), ¢, (1)}
such that the fidelity relative to the target state F =
[t targee| ¥ (THI? is maximized after a fixed control time
T. Maximization is done with a gradient ascent algorithm,
where in each iteration the time-evolved state |y (T))
is found by numerical integration of the Schrodinger
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equation, starting from | ;) and using the given values
of the phases. To increase the speed of integration, we keep
the phases piecewise constant in time, typically using
30 time steps for the uw phase and 15 time steps for
each rf phase in a ““‘control waveform” of 300 ws duration
[Fig. 2(a)]. The total number of control variables (60) is
thus well above the 2d — 2 = 30 real-valued parameters
required to specify the transformation | ia1) — | target)-

We begin the numerical search for phases {¢§f), qb@, ¢§’L)W
with a random guess and then use a standard routine from
the MATLAB optimization toolbox to iteratively maxi-
mize F. The result is a control waveform corresponding
to a local maximum in the control landscape; it is our
experience that different initial guesses lead to different
control waveforms, but that if T is large enough, nearly
every initial guess will result in a waveform that achieves
>99% fidelity. This is consistent with the expected benign
nature of the search landscape [36].

The optimization procedure can be extended to find
control waveforms that are robust in the presence of
errors and imperfections, at the cost of a slight increase
in the required control time and number of control
variables. In our case, the dominant imperfections are
spatial inhomogeneities and shot-to-shot variations
of the parameters in H.. A robust control waveform can
then be found by maximizing the average fidelity F =
S A POVK arged 9 A (TH?d A, where P(A) is the probabil-
ity that the parameters take on values A, and | 5 (T)) is the
corresponding final state [37]. In practice, we have found it
sufficient to average over three values of the bias field
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FIG. 2 (color online). Implementation of the quantum state
map [4,4) — (|3,3) + |3, —3))/+/2. (a) Phase modulation wave-
form for the rf (top and middle) and puw (bottom) fields.
(b) Numerical simulation of the evolving quantum state, shown
as density matrices for the times indicated. Populations are
shown as dark (red) tones and coherences (absolute values
only) as light (blue) tones. Magnetic sublevels are ordered
{14,4),...,14,—=4),13,3), ..., |3, —3)} along the axes.

{Qp, Qo = 60} and three values of the uw Rabi fre-
quency {Q,, Q,,, = 6Q,,} for a total of nine combina-
tions of parameter values. For simplicity, we assume each
combination is equally probable and use variations 6{), =
100 Hz and 6(,,,, = 140 Hz that are slightly larger than
our estimated standard deviations. This relatively coarse
sampling of the probability distribution speeds optimiza-
tion, and we have found that the resulting, optimized
control waveform performs well when its fidelity is aver-
aged using a finer sampling of the estimated Gaussian
distributions. Again, it is our experience that waveforms
with fidelity in excess of 99% can almost always be found
from a single initial guess. Figure 2(b) illustrates the
performance of a robust control waveform designed in
this fashion. The figure shows intermediate and final den-
sity matrices from a numerical simulation that includes an
average over A, with conservative estimates for the uncer-
tainty of every parameter. The resulting final state is very
slightly mixed, but the state map fidelity remains very high.

The simplest experimental test of our state mapping
protocol is to start from |F = 4, m = 4), map to any one
of the states |F, m), and estimate the fidelity directly by
measuring the population of the target state by Stern-
Gerlach analysis. Figure 3(a) shows Stern-Gerlach signals
for maps to each of the 16 magnetic sublevels in the ground
manifold, while Figs. 3(b) and 3(c) show histograms of the
estimated fidelity for 32 nonrobust and 32 robust control
waveforms (the sets contain two different control wave-
forms for each map |4,4) — |F, m)). The trend in these
data suggests that robust waveforms slightly outperform

93 95 97 99 93 95 97 99

FIG. 3 (color online). (a) Stern-Gerlach analysis of magnetic
sublevel populations, in the form of arrival time distributions at
the probe beam. Each line is a separate measurement after a state
map |4, 4) — |F, m), as indicated. (b) Histogram of the fidelities
for 32 nonrobust state maps of this form. (c) Histogram of the
fidelities for 32 robust state maps of this form.
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nonrobust waveforms. However, the estimated fidelities
include a substantial contribution from errors in initial state
preparation and final state readout, and are therefore not an
accurate measure of the fidelity of the state maps them-
selves. Furthermore, this simple technique cannot be used
to estimate the fidelity of state maps where the final state is
a coherent superposition of two or more magnetic suble-
vels. In Ref. [38], we used the state mapping procedure
discussed here to produce complex input states for tomog-
raphy, and comparisons between a few (relatively low-
fidelity) reconstructions and the corresponding target states
can be seen there.

To obtain an accurate measure of state map fidelity,
we employ a procedure inspired by the randomized bench-
marking protocol developed for single- and multiqubit
Clifford gates [20,21]. The basic idea is to apply state
maps in progressively longer sequences, i.e.,

14,4) = |4ho) — 14, 4),

14,4) = o) = |¢1) — |4, 4),
14,4) = o) — - = ¢ — |4, 4),

and estimate the overall fidelity of each sequence by mea-
suring the population returned to |4, 4). To increase sample
size, we consider a number of such progressions, each
consisting of different sequences with intermediate states
[o), ..., ;) chosen at random according to the Haar
measure [39]. For each progression, we design control
waveforms to perform the corresponding state maps,
implement these in the laboratory, and measure the overall
fidelity as a function of /. Finally, we average together the
fidelities observed for the different progressions, which
improves statistics and smooths out fluctuations from acci-
dental spin-echo effects in the individual progressions. The
resulting data are fit to a function

1 d-1 d d !

F d-i— y <1 d_160)<1 - 16),
where d = 16 is the Hilbert space dimension, € is the
average error per state map, and € is the average combined
error in the preparation (optical pumping into |4, 4)
and mapping |4, 4) — |()) and readout (mapping | ;) —
|4,4) and measuring the |4,4) population) steps. This
generalization of the fit function used for qubits [21]
ensures proper asymptotic behavior for large and small /.
Figure 4(a) shows typical data from this randomized
benchmarking protocol, from which we infer a fidelity
per state map F = 1 — € of 99.11(5)% and 97.7(3)% for

robust and nonrobust control waveforms, respectively.

As a final step, we use numerical modeling to check that
our benchmarking protocol yields average fidelities in
reasonable agreement with other measures. We do this
in two steps, first by generating simulated benchmarking
data analogous to Fig. 4(a) and fitting them to obtain
average state map errors €p, and second, by calculating
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FIG. 4 (color online). (a) Randomized benchmarking data
showing the overall fidelity for sequences of up to four state
maps. Points are experimental data, and lines are fits of the form
F (1), for robust (red circles) and nonrobust (black diamonds)
control waveforms. Error bars are 1 standard deviation for the
average over different state map sequences. The average fidel-
ities per state map inferred from the fits are 99.11(5)% and 97.7
(3)%, respectively. (b) Plot showing the correlation between
benchmarking and standard fidelities. Each data point (eg, €g)
is obtained from a numerical simulation performed with a
distinct set of values for the parameters in H. Solid and dashed
lines correspond to €5 = €p, €5 = 0.5€p, and €5 = 1.15¢p,
respectively.

the standard infidelities 1 — [t el ¢/ (T))|* for the state
maps used in the simulation and averaging those to obtain
an average standard error €g. This process is repeated for
many parameter values A, each time producing a data point
(ep, €g) for the possible correlation between the two mea-
sures. Figure 4(b) shows a large collection of such data
points for parameters A that go well beyond the range
likely to be present in our experiment. If our benchmarking
protocol is reasonable, one would expect all those data
points to lie near the line eg = €p. In practice, they appear
to fall mostly below that line, clustered roughly in the
range 0.5€p < €5 < 1.15€p. This suggests that in some
situations, the benchmarking protocol may overestimate
the standard error by as much as a factor of 2. In the context
of our experiment, this means the average of the standard
fidelity for a set of randomly chosen state maps is likely to
lie between 99% and 99.5%, a result that could not have
been easily established by other means.

In conclusion, we have demonstrated that high-fidelity
quantum state mapping can be implemented in the
16-dimensional hyperfine ground manifold of '33Cs, by
driving the system solely with phase modulated rf and
pmw magnetic fields. Robust controls can be efficiently
designed to compensate for imperfections in the driving
fields, leading to significant improvements in the accuracy
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of the state maps. A randomized benchmarking protocol
was implemented and showed that the average fidelity of
such robust state maps is 99% or greater. Future use of this
platform includes the exploration of control tasks that are
more complex than state maps, e.g., unitary transforma-
tions on the entire ground manifold or subspaces thereof,
and partial isometries that map between subspaces. Such
studies will help address questions related to the feasibility
of a numerical search for control waveforms that imple-
ment those types of transformations [40], as well as the
possibility of inhomogeneous control and whether control
can be robust in the presence of static and time-dependent
perturbations [19].
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