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Ultracold atoms in optical lattices1 are an important platform 
for quantum information science, lending itself naturally to 
quantum simulation of many-body physics2 and providing a 
possible path towards a scalable quantum computer3,4. To 
realize its full potential, atoms at individual lattice sites must be 
accessible to quantum control and measurement. This challenge 
has so far been met with a combination of high-resolution 
microscopes and resonance addressing that have enabled both 
site-resolved imaging5,6,7 and spin-flips8. Here we show that 
methods borrowed from the field of inhomogeneous control9,10 
can greatly increase the performance of resonance addressing 
in optical lattices, allowing us to target arbitrary single-qubit 
gates on desired sites, with minimal crosstalk to neighboring 
sites and greatly improved robustness against uncertainty in the 
lattice position. We further demonstrate the simultaneous 
implementation of different gates at adjacent sites with a single 
global control waveform. Coherence is verified through two-
pulse Ramsey interrogation, and randomized benchmarking11 is 
used to measure an average gate fidelity of ~95%. Our control-
based approach to reduce crosstalk and increase robustness is 
broadly applicable in optical lattices irrespective of geometry, 
and may be useful also on other platforms for quantum 
information processing, such as ion traps12 and nitrogen-
vacancy centers in diamond13.   

Quantum simulations with the atom-lattice system generally 
explore many-body physics of condensed matter systems described 
by simple model Hamiltonians, e. g., the families of Hubbard14 and 
Ising15 models, and similar physics is typically relevant when 
exploring optical-lattice based architectures for universal quantum 
computing16,17. While optical lattices can have spatial periods from 
one-quarter to many times the optical wavelength, the need for site-
to-site tunneling in such experiments tends to limit the workable 
lattice period to <1μm. Atoms in two-dimensional (2D) lattices of 
this type have been imaged using high numerical aperture optics 
with resolution close to the lattice spacing6,7. Other achievements 
include magnetic resonance imaging18, optical microscopy in 
conjunction with numerical deconvolution19, and imaging in a 3D 
lattice with ~5μm period5. Coherent quantum control of atoms at 
targeted sites requires even higher resolution than imaging if 
adjacent atoms are to remain unperturbed. Subwavelength 
resolution can be achieved with a tightly focused optical field that 
shifts the transition frequency of an atomic qubit relative to its 
neighbors, in combination with a frequency selective microwave 
pulse that implements the desired rotation of the targeted qubit20. In 
practice, such a resonance addressing scheme involves a tradeoff – 
for a sharply focused addressing field the frequency shift becomes 
overly sensitive to its alignment relative to the target site, while a 
softer focus leads to unwanted perturbations at adjacent sites. Faced 
with these difficulties, experiments have so far demonstrated only 
adiabatic spin flips8, which are robust to small variations in the 
frequency shift but cannot manipulate coherence between the spin-
up and spin-down states in the manner of universal quantum gates. 
Misalignment between the trapping and addressing fields can be 
avoided by incorporating a spatially varying qubit frequency shift 

into the lattice itself. The approach has been used to target quantum 
gates on subensembles of qubits located on one or the other side of 
the barrier in a lattice consiting of double wells, but does not lend 
itself to more general forms of addressing21. 
In this letter we explore the use of advanced quantum control to 
dramatically improve and extend the capabilities of resonance 
addressing. It is known from the theory of inhomogeneous control 
in Nuclear Magnetic Resonance that composite pulses can be 
designed to achieve any desired qubit response as function of one 
or more parameters9,10,22. Applying this idea to resonance 
addressing, we first map position onto frequency and then design a 
single phase-modulated microwave pulse to implement a unitary 
transformation that is a chosen function of frequency. An example 
might be a pulse that executes a quantum gate across a desired 
frequency and spatial interval, while at the same time doing nothing 
(the identity transformation) outside it.  Such a "top-hat" response 
can greatly improve the robustness against misalignment between 
trapping and addressing fields, while at the same time suppressing 
perturbation of the adjacent sites. 

To test the basic idea in the laboratory, we have implemented 
site-resolved resonance addressing along one dimension of a 3D 
optical lattice with a Λ = 426nm  period, using a superimposed 
optical standing wave – the "addressing lattice" – as illustrated in 
Fig. 1a. The trap lattice is loaded with cesium atoms at a density of 
one atom per ~100 sites, each representing a qubit encoded in two 
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Figure 1 | Trapping and addressing in an optical lattice  a, Atoms are 
trapped in a 3D lattice (blue), in the presence of a 1D addressing lattice 
(green) that can be translated using an electro-optic modulator (EOM) and 
polarization beamsplitter (PBS). b, Variation in the qubit transition 
frequency for sites in the trap lattice (blue dots). A microwave pulse of 
appropriate frequency (red line) addresses atoms at resonant sites (red 
dots). Translation of the addressing lattice (blue circles) targets different 
atoms (red circles). c, Schematic of trap lattice sites in the x-y plane. (i) 
When the trap and addressing lattices are perfectly aligned, the y-z plane 
addressed by the microwave frequency (red line) may not overlap with any 
sites. (ii) A small misalignment ensures there are resonant sites (red dots) 
for any microwave frequency and position of the addressing lattice. (iii) A 
translation of the addressing lattice by one trap lattice period still allows 
addressing of  adjacent sites (red circles) along x. 
 



spin states, ↑  and ↓ . The addressing lattice is formed by two 
laser beams intersecting at a shallow angle, producing a frequency 
shift that varies sinusoidally along the x axis of the trap lattice as 
shown in Fig. 1b. Because the frequency shift is uniform in the y-z 
plane, this geometry addresses planes of ~103 atoms 
simultaneously, rather than single sites in the 3D trap lattice.  

The addressing lattice is translated with nanometer accuracy 
along x by changing the relative optical phases between the 
addressing beams. Passive stability keeps jitter in the relative 
position of the trap and addressing lattices below 15nm on a 
timescale of several seconds, sufficient that it can be regarded as 
constant during a single run of the experiment, while on timescales 
from minutes to hours the lattice positions may drift by several 
microns. Note that if the planes of the trap and addressing lattices 
are parallel, this slow drift implies that many experimental runs will 
have no trap sites within the frequency interval targeted by a given 
microwave pulse. (Fig. 1c-i). While one could in principle stabilize 
and actively control the relative position8, it is more convenient for 
our purpose if each run of the experiment samples the full range of 
relative positions and qubit transition frequencies that our pulse is 
designed to address. This can be achieved by tilting the planes of 
the addressing lattice slightly relative to those of the trap lattice, 
which assures there will always be subsets of trap sites that fall 
within as well as outside the targeted interval, regardless of drift in 
the relative positions of the trap and addressing lattices (Fig. 1c-ii). 
When combined with a suitable preselection protocol as described 
below, this is precisely the situation needed to observe the 
inhomogeneous response of our composite pulses and evaluate the 
performance of the corresponding quantum gates. 

To prepare a well defined starting point, we preselect a subset of 
atoms by flipping their spins from ↑  to ↓  with a resonant 
microwave pulse and removing the remaining atoms in ↑ . The 
result is an ensemble whose distribution of resonance frequencies 
and positions along x reflects the spin-flip probability in a pulse 
with a Gaussian frequency spectrum. We can construct a resonance 
image of this distribution over many repetitions of the experiment, 
by following the "preparation" pulse with a variable translation of 
the addressing lattice, a second "imaging" pulse, and a 
measurement of the number of atoms returned to the ↑  state. 
Figure 2A shows such an image, together with a Gaussian fit with 
standard deviation σ = 80nm. The image width is given by the 
convolution of the (identical) preparation and imaging pulses, and 
indicates a spatial resolution of ~56nm, well below the lattice 
period. It is also possible to prepare atoms at adjacent sites along x 

by applying a sequence of preparation pulses with identical 
frequency and separated by appropriate translations of the 
addressing lattice (Fig. 1c-iii).  For example, a resonance image of 
atoms at three adjacent sites is shown in Fig. 2C-a. 

More advanced quantum control can be performed with phase 
modulated microwave pulses. These composite pulses consist of a 
train of N square pulses with variable phases {ϕ j}  that have been 
computer optimized so the overall transformation accomplishes a 
desired objective9,10. This can be either a spin rotation on a fixed 
input state, ↓ →α(δ)↓ +β(δ)↑ , or a full unitary transformation 
(quantum gate) W (δ)  that varies in a prescribed way with the 
frequency shift δ of the qubit resonance relative to the microwave 
frequency. Figure 2B shows the response to a composite pulse 
designed to flip spins uniformly across a targeted frequency region 
and leave them unaffected elsewhere. We can test the performance 
of a similar top-hat pulse whose three regions have been optimized 
to overlap with the three-site atom distribution in Fig. 2C-a. Figure 
2C-b shows the distribution after the pulse, indicating a complete, 
robust spin flip at the central site, and a complete, robust absence of 
spin flips at the adjacent sites. For comparison, Fig. 2C-c shows the 
result of applying a single Gaussian pulse (identical to the 
preparation pulses) resonant at the center of the distribution.  In this 
case some spins at the central site are unaffected, while some spins 
at adjacent sites have been flipped. Adjusting the width of the pulse 
allows a tradeoff between the two types of error, but performance 
never approaches Fig. 2C-b. 

The performance of unitary quantum gates can be evaluated with 
a two-pulse version of the approach above. We begin by applying a 
composite pulse that implements a π/2 rotation around the i-axis of 
the Bloch sphere in the central frequency region and the identity 
elsewhere. Shifting the overall phase of the pulse by φ  changes the 
axis of rotation to cos(φ)i+ sin(φ)j , and two pulses in sequence 
lead to a spin-flip probability ~ cos2 (φ / 2) , similar to the φ-
dependent interference in a two-path interferometer. Figure 3a-d 
shows a sequence of resonance images and corresponding 
populations remaining in ↓  as  function of the phase φ.  The clear 
interference for atoms in the central region and the lack of φ-
dependence for atoms in the adjacent regions demonstrates that the 
pulse functions as intended and coherence is preserved.   

A second example of a two-pulse experiment is shown in Fig. 3e-
h, in this case for frequency regions that correspond to three 
adjacent sites as in Fig. 2C. Here the first pulse implements a 
Hadamard gate (rotation by π around the (i+k) / 2  axis) on the 
central site and π/2 rotations on the adjacent sites.  The second 
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Figure 2 | Resonance imaging and addressing 
of single planes. A, Resonance image showing 
a distribution of atoms prepared at in a single 
plane as indicated in fig 1c-ii. B, Spin flip 
probability for a composite microwave pulse 
with a "top hat" response as function of 
frequency. The frequency and position axes are 
matched between A) and B). C, Multi-site 
imaging and addressing. a, Preparation of atoms 
in three adjacent planes. b, Selective spin flip of 
atoms at the central site, performed using a 
composite pulse with a top hat response similar 
to, but narrower than B) c, Imperfect spin flip of 
atoms at the central site, performed using a 
Gaussian pulse.  Solid dots represent data and 
lines represent fits. In A) and C) the shaded 
areas show the separate Gaussians fits 
associated with atoms at each site. 
 



pulse implements identical π/2 rotations at all three sites, leading to 
interference patterns similar to Fig. 3c but with a 90° shift at the 
central site. This data set shows explicitly that the gate operations 
are coherent on all three sites, and also demonstrates the freedom to 
perform independent gates simultaneously at adjacent sites with a 
single composite pulse. The contrast of the interference patterns in 
Figs. 3f-h provides information about the fidelity of the various 
transformations.  Assuming that gate errors are uncorrelated and 
independent of f, we can estimate the fidelity of one gate in a pair 
as F = Smax / (Smin + Smax ) , where Smin and Smax  are the minimum 
and maximum values of the interference signal.  For the data in Fig. 
3f-h this yields an average gate fidelity of F = 0.96 . 

A more comprehensive test of gate fidelity is best performed by 
randomized benchmarking11. For the 4ms pulses used in Fig. 3, the 
total duration of the necessarry pulse sequences exceeds the time 
available in our experiment, but useful information can still be 
obtained by benchmarking a set of pulses that have been rescaled 
and shortened to 1ms duration (see Methods).  Figure 4 shows the 

fidelity for sequences of rescaled pulses that were originally 
designed to implement computational gates (CGs) on a target lattice 
site and the identity at neighboring sites. Fits yield an average 
fidelity FCG = 0.98  for the central region, and a fidelity per identity 
of FI = 0.96  for the adjacent regions. In the absence of external 
perturbations, e. g., magnetic fields and light scattering, one would 
expect similar fidelities for the site resolved gates implemented by 
the original pulse. On the other hand, if gate errors were entirely 
due to external factors, one might expect four times the error for the 
original pulses. This implies a fidelity in the range 
FCG = 0.92− 0.98  for the site resolved quantum gates in Fig. 3. 
This is consistent with the F ~ 0.96  obtained from the two-pulse 
interference patterns, especially since the latter estimate includes a 
non-negligible contribution from initialization and readout errors.  

Our laboratory realization of robust, site-resolved quantum gates 
through quantum control points to further experiments aimed at 
control of atoms in optical lattices. In our geometry, increasing the 
gradient of the frequency shift will allow the implementation of 
faster quantum gates with shorter pulses, while increasing the pulse 
amplitude and number of phase steps will allow the simultaneous 
implementation of independent gates across a much larger number 
of lattice sites and reduce the overhead associated with serial 
resonance addressing. Most importantly, the use of a focused 
addressing field8 should make it straightforward to address a single 
site in a 2D or 3D optical lattice.  From a control perspective this 
task is simpler than the one undertaken here, since one only has to 
consider the atomic response in two regions – one covering 
frequency shifts near the focus, and one covering the remaining 
range of frequency shifts down to zero. Further developments might 
use site resolved single atom control to "activate"21 qubits for 
detection, or for the implementation of localized two-qubit gates 
though cold collisions16,17 or dipole-dipole interactions of Rydberg 
atoms23,24. Ultimately the ability to simultaneously execute quantum 
logic gates on different qubits could substantially reduce the 
computational time-complexity of quantum algorithms.  With such 
parallelization, the circuits for the Quantum Fourier Transform and 
encoding/decoding of quantum-error correcting codes with O(n) 
qubits can be compressed to O(log n) operations25,26. Other 
paradigms such as measurement-based quantum computation also 
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Figure 3 | Unitary quantum gates. a, Sequence of color coded resonance images (similar to Fig. 2C), showing the coherent action of a pair of composite 
pulses. Each pulse implements a π/2 rotation on the central atom distribution, with full spin flips occurring at φ = 0º, 360º, and the identity at φ = 180º. Both 
the individual pulses and the pair always implement the identity on the adjacent atom distributions. b-d, Population remaining in the initial ↓  state as 
function of relative pulse phase, for each distribution. The populations (dots) are determined from the areas of Gaussian fits as in Fig. 2C.  Solid lines are fits 
to the interference pattern, and error bars are estimated as one standard deviation of the residuals from the fit. e-h, Sequence of resonance images and 
interference patterns similar to a-d), but with atom distributions chosen to coincide with adjacent sites along x.  The first composite pulse here implements a 
Hadamard pulse at the central site and a π/2 rotation at the adjacent sites, the second pulse implements π/2 rotations at all three sites. 
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Figure 4 | Randomized benchmarking. Overall fidelities achieved by 
sequences of composite pulses that apply computational and randomizing 
gates to the central atom distribution (red), and repeated identities to 
adjacent ones (blue). Dots and squares are experimental data and lines are 
fits. Error bars are one standard deviation, estimated from the spread of 
fidelities seen in different sequences.  



benefit form parallelization; almost all gates can be implemented 
simultaneously in a single control and measurement step27. 
 
METHODS SUMMARY 
Our 3D trap lattice consists of three orthogonal, linearly polarized standing 
waves detuned 140 GHz from resonance.  We load the trap lattice with ~107 
atoms from a magneto-optic trap and optical molasses, and use sideband 
cooling28,29 to prepare them in the ↑  state with mean vibrational excitation 
n ≈ 0.01  along x. A bias magnetic field isolates the qubit transition 
frequency from others in the hyperfine ground state, and the bias and 
background magnetic fields are stabilized so the qubit frequency 
uncertainty is <50Hz30.. Populations of the qubit states are measured via 
Stern-Gerlach analysis. The addressing lattice is formed by two plane 
waves with orthogonal linear polarizations, intersecting at an angle of 1.74° 
to produce a light shift with a period of 28 μm, or 65.9 times that of the trap 
lattice.  Our microwave field is radiated by a pair of horn antennae adjusted 
to minimize field inhomogeneity across the atomic ensemble. The pulses 
used for preparation and imaging are Gaussian in the time and frequency 
domains, with rms widths of 0.5ms and 225Hz. Robust spin-flips and 
quantum gates are implemented with composite pulses. These consist of a 
train of square pulses whose individual phases are computer optimized to 
minimize the distance between the desired and actual transformations 
across a targeted bandwidth. These pulses can be rescaled by increasing the 
amplitude and shortening the duration by a factor κ, thereby changing the 
frequency dependence of the corresponding quantum gate, 
W (δ)→W (δ /κ ) , without otherwise affecting the control fidelity.  
Randomized benchmarking11 is performed by applying sequences of 
alternating π/2 "computational" gates (CG's) and "Pauli randomizing" gates 
(PG's), and measuring the decay in the overall fidelity as a function of the 
number of computational gates 
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METHODS 
 
Atom trapping, preparation, control and measurement. 
Our trap lattice is formed by three pairs of counter propagating laser beams 
with parallel linear polarizations, tuned 140GHz above the 
6S1/2 ( f = 4)→ 6P3/2 ( ′f = 5)  hyperfine transition at 852nm. The depth of the 
optical potential is ~40 μK, corresponding to a trap vibrational frequency of 
20kHz. We load the trap lattice with 107 atoms from a magneto-optic trap 
and optical molasses, with a density of one atom per 100 sites in a volume 
with a diameter of ~35 addressing lattice periods. Qubits are encoded in 
states ↓ = f = 3,mf = −3  and ↑ = f = 4,mf = −4   in the hyperfine 
ground state. We use sideband cooling28,29 to prepare atoms in the ↑  state, 
with mean vibrational excitation n ≈ 0.01  along x (excitation along y and z 
is unimportant). A bias magnetic field separates the qubit transition 
frequency from others in the ground manifold, and the combined bias, DC 
and AC background magnetic fields are stabilized to better than 20μG using 
an approach similar to ref. 30. The resulting frequency variation in the qubit 
transition frequency is ~50Hz. The atomic qubits are driven with 9.2GHz 
microwaves from two horn antennae adjusted to improve the field 
homogeneity across the atom cloud. Selective removal of atoms in the ↑  
state is accomplished with radiation pressure from a resonant laser beam. 
Populations of the ↑   and ↓  states are obtained via Stern-Gerlach 
measurement. 
 
Addressing lattice 
The addressing lattice is formed by two plane waves with orthogonal linear 
polarizations, intersecting at an angle of 1.74°. The light shift in this 
configuration is equivalent to a fictitious magnetic field, with the steepest 
gradient where its value is near zero (Fig. 1), the most favorable situation 
for resonance imaging and addressing. The addressing lattice period is 
28μm, corresponding to 65.9 periods of the trapping lattice. For perfectly 
aligned trap and addressing lattices, such incommensurate periods would 
slightly shift the relative position of the trap sites from period to period of 
the addressing lattice, but this becomes irrelevant for misaligned lattices as 
discussed in the main text. Accurate calibration of the frequency-to-position 
relationship in the addressing lattice is performed by moving atoms in the 
trap lattice an integer number of sites through polarization rotation3,4,16. 
 
Microwave pulse design 
Resonance preparation and imaging is performed with microwave pulses 
having fixed frequency and phase, and a Gaussian envelope with 0.5ms rms 
width in the time domain.  The corresponding power spectrum is also 
Gaussian with an rms width of 225Hz. More advanced control is performed 
with composite microwave pulses consisting of a train of N square pulses 
having common amplitude A, duration T and frequency ωμw , but with 
phases ϕ j  that vary between each pulse in the train. We keep ωμw  fixed 
and use the set of phases {ϕ j} , along with A, T, and the detuning 
δ =ωqubit −ωμw  from qubit resonance, as our control parameters. In that 
case the composite rotation implemented by the pulse train corresponds to 
an overall unitary transformation UN ({ϕ j},A,T,δ) .  We can then use 
standard numerical techniques to search for control parameters that achieve 

a desired objective, e.g., implementing a quantum logic gate W (δ)  that is a 
prescribed function of δ.  This is done by defining a cost function, in our 
case the distance between the target and actual unitary matrices, averaged 
over a frequency band Δ, 
  

C({ϕ j},A,T ) =
1

Δ
dδ W (δ)−UN ({ϕ j},A,T,δ)

−Δ/2

Δ/2

∫ , 

 
where W −U = (W −U)†(W −U)  is the Hilbert-Schmidt distance 
between W and U.  Minimizing C then finds a set of values {ϕ j},A,T  such 
that UN ({ϕ j},A,T,δ) ≈W (δ) . Note that this cost function includes the 
overall phase between U and W; since this phase is not physically 
meaningful the control task could be simplified by instead maximizing the 
frequency average of Tr(U †W ) . Different control objectives can be 
achieved by substituting an appropriate cost function, e. g. for frequency 
dependent spin flips the cost function is the infidelity averaged over the 
relevant frequency interval, C({ϕ j},A,T ) =1− ψ(δ)UN ({ϕ j},A,T,δ)↓

2 , 
where ψ(δ) =α(δ)↓ +β(δ)↑  is the desired final spin state as function of 
δ.  
 
Pulse rescaling 
A square pulse with Rabi frequency Ω0 ∝ A , duration T, detuning δ and 
phase ϕ j  will rotate the qubit Bloch vector by an angle θ =ΩT  around an 
axis q = (Ω0 /Ω)cos(ϕ)i+ (Ω0 /Ω)sin(ϕ)j+ (δ /Ω)k , where Ω = Ω0

2 +δ 2 . 
It follows that replacing Ω0 →κΩ0 , T→T /κ , and δ→κδ  leaves the 
angle and axis of rotation unchanged.  Extending this to an entire pulse 
train, we see that UN ({ϕ j},A,T,δ) = UN ({ϕ j},κA,T /κ,κδ) . This implies 
that if a pulse train implements UN ({ϕ j},A,T,δ) ≈W (δ) , then a rescaled 
pulse train implements UN ({ϕ j},κA,T /κ,δ) ≈W (δ /κ ) , with the same 
value of the cost function when averaged over a bandwidth κΔ . As a 
result, a composite pulse can be rescaled to stretch or compress it in the 
time domain while compressing or stretching it in the frequency domain, 
without otherwise changing the fidelity with which it implements the 
desired objective (the control fidelity). 
 
Randomized benchmarking 
Following ref. 11, we perform randomized benchmarking by initializing 
atoms in the ↓  state, applying l successive pairs of π/2 "computational" 
gates (CG's) and "Pauli randomizing" gates (PG's), and reading out the 
overall fidelity with which the qubit is returned to the ↓  state. The 
sequence is repeated with random choices of CG's and PG's to obtain 
average overall fidelities as function of l. This data is then fitted with a 
function F = [1+ 1−ε0( )(1− 2ε)l ] / 2 , where ε0  is the combined 
initialization and readout error and e  is the average error per computational 
gate. To fit a sufficient number of composite pulses into the available time 
window we shorten them to 1ms (rescaling by κ = 4 ) Provided that errors 
are dominated by imperfections in the control fields, and that the pulses are 
tested on a broadened version of the distribution in Fig. 2C, benchmarking 
will then provide a valid measure of the experimental gate fidelity. 
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SUPPLEMENTARY DISCUSSION 
 
Translations and frequency shifts of the addressing lattice.  Our addressing lattice is translated along the x axis 
by shifting the relative phase between its plane wave components; this phase shift is produced by applying a voltage 
to an Electro-Optic Modulator inserted in the beam path as shown in Fig. 1a. To prepare atoms at adjacent sites in 
the manner illustrated in Fig. 1c, it is essential to have an accurate calibration of translation in units of trap lattice 
periods as function of the EOM control voltage. This can be accomplished by preparing a sample of atoms in a 
single y-z plane at position x0 , displacing them by a known distance Δx along x, constructing a resonance image as 
described in the main text, and noting the EOM voltage at the center of the image where the addressing lattice has 
been translated by the same distance Δx along x. As illustrated in Fig. S1a, we can move our atoms by changing the 
angle θ between the linear polarizations of the beams that form the trap lattice along x, with angles 
θ = {−360 ,−180 ,  0 ,  180 ,  360 }  corresponding to atom displacements Δx = {−Λ,−Λ / 2,  0,  Λ / 2,  Λ}, where 
Λ0=0426nm is the trap lattice period [31]. Figure S1b shows resonance images obtained for various polarization 
angles θ.  From the EOM voltages at the image centers (Fig. S1c) we infer that the addressing lattice is translated by 
one trap lattice period per 164V.  This is consistent with the value expected from independent measurements of the 
EOM phase shift versus voltage and the intersection angle of 1.74˚ between the addressing lattice beams. 

 Once we have calibrated the addressing lattice displacement versus EOM voltage, the spatial gradient of the 
frequency shift produced by the addressing lattice can be determined.  To do so, we first prepare atoms in a single 
plane near the point of steepest gradient, apply a known Zeeman shift Δω of the qubit transition frequency with an 
external magnetic field (Fig. S2A), and construct a resonance image (Fig. S2B). Note that our ensemble will contain 
atoms at points where the gradient is positive as well as negative, and that a frequency shift Δω ≠ 0 will therefore 
result in a double-peaked resonance image (Fig. S2B-b). Recording the separation between these peaks versus the 
Zeeman shift provides an accurate measurement of the spatial gradient of the frequency shift in the addressing lattice 
(Fig. S2C). 
 
Microwave pulses 
We use an inexpensive microwave source as depicted in Fig. S3a, combining an HP8672A Synthesized Signal 
Generator that supplies a carrier at 9.2GHz, and a Tabor WW2572A-2 Direct Digital Synthesis Arbitrary Waveform 
Generator that supplies a signal at 30MHz. The two are mixed in a single-sideband mixer whose output is 
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Figure S1 | Calibrating translations of the addressing lattice.  a, Atoms are displaced by a known distance along 
the x axis by rotating the polarizations (black arrows) of the trap lattice beams (blue arrows). This shifts the 
potentials for the  (red) and  (blue) qubit states in opposite directions.  b, Resonance images obtained for 
atoms displaced by multiples of Λ/2.  c, Measured relationship between the angle θ between the trap lattice 
polarizations, the atom displacement Δx, and the EOM voltage corresponding to the center of the resonance image. 
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preamplified, split in two, passed through a pair of 2W power amplifiers, and radiated by a pair of horn antennae 
with 15dB gain. A low-power microwave switch between the HP8672A and the mixer is used for digital on/off 
control, while amplitude, frequency and phase modulation of the WW2572A-2 under internal arbitrary waveform 
control is used to correspondingly modulate the sideband used to drive the atomic qubits. The overall system 
delivers microwave fields with amplitude sufficient to drive the qubit transition with Rabi frequencies up to 40kHz. 
The amplitude modulation capability is used when we generate preparation and imaging pulses with Gaussian 
envelope in the time domain, while the phase modulation capability is used when we generate composite pulses for 
more advanced inhomogeneous control. An example of the time-dependent qubit Rabi frequency (proportional to 
μw amplitude) and phase of one of these composite pulses is shown in Figs. S3b&c. 
 

[31]  Mandel, O., Greiner, M., Widera, A, Rom, T., Hänsch, T. W. & Bloch, I. Coherent transport of neutral atoms in 
spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003). 
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Figure S2 | Spatial gradient of the addressing lattice.  A, The qubit transition frequencies at the trap lattice sites 
(blue dots) can be Zeeman shifted by an amount Δω with an external magnetic field (blue circles). A microwave 
pulse initializes atoms at the point of steepest gradient (red dots). After the Zeeman shift the imaging pulse is 
resonant at positions to the left and right of the atoms (red circles), and the addressing lattice must be translated to 
the right or left to bring them back into resonance.  B-a, Resonance image of the initial atom distribution (Δω = 0).  
B-b, Double-peaked resonance image of the atom distribution after a Zeeman shift Δω ≠ 0.  C, Separation between 
the resonance peaks in B-b as function of the Zeeman shift Δω.  The orresponding gradient is 4.35kHz/μm. 
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Figure S3 | Microwave pulses.  
a, Our inexpensive microwave 
source consists of a 9.2GHz 
Synthesizer and 30MHz Arbitrary 
Waveform Generator (AWG), 
mixed and amplified and radiated 
by a pair of horn antennae. b, 
Qubit Rabi frequency (propor-
tional to microwave amplitude) 
versus time during our composite 
pulses. c, Example of the micro-
wave phase modulation versus 
time during one of our composite 
pulses. 
 


