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We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an

optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-

probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This

interaction can be phase matched, resulting in exponential enhancement of squeezing as a function of

optical density for times short compared to the decoherence time. In practice the scaling and peak

squeezing depends on decoherence, technical loss, and noise. Including these imperfections, our model

indicates that �10 dB of squeezing should be achievable with laboratory parameters.
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The ability to control a complex quantum system is
increasingly important to studies of quantum many-body
physics, precision measurement, and quantum information
processing. One platform with potential for implementing
such control is the collective spin of an atomic ensemble
coupled to the Stokes vector of a quantized light field [1,2].
Given a sufficiently strong interaction, it is possible to
create entanglement between the atoms and the field, and
also between atoms within the ensemble through their
mutual coupling to a mode that acts as a shared ‘‘quantum
data bus.’’ The quantum correlations created between in-
dividual atomic spins can lead to squeezing of the quantum
fluctuations in a quadrature of the collective spin below
that of a coherent state [3–7]. Such squeezed states
have direct applications in quantum metrology and are
the foundation for quantum information processing with
‘‘continuous variable’’ encoding [8].

In this Letter we show how one can use a series of optical
probe pulses in a double-pass geometry [9] to create spin
squeezing that, for a time short compared to the time scale
for decoherence, improves exponentially with coupling
strength. This represents a significant improvement over
existing schemes for which spin squeezing scales roughly
linearly with coupling strength [1]. The key is to achieve
quantum coherent control of the collective spin. One can
accomplish this starting from a proposal by Takeuchi et al
[9]. In this protocol the polarization of a probe pulse is
correlated with the spin through Faraday rotation during a
first pass, and then reflected back through the ensemble for a
second pass, where it acts as a fictitious magnetic field that
produces a spin-dependent (and thus nonlinear) rotation of
the spin. Residual entanglement between polarization and
spin after the second pass leads to decoherence and excess
noise on the spin when the light pulse is discarded, but even
so it is still possible to achieve a limited degree of squeezing
in one spin quadrature. We propose an improved protocol
wherein the quantum information carried by the probe is

removed by a quantum eraser [10], resulting in a purely
unitary evolution of the collective spin. In this situation,
appropriate control with an applied magnetic field allows
the squeezing to be phasematched in amanner analogous to
squeezing of optical fields. The result is a reduction in
quantum projection noise that scales exponentially with
the coupling constant. Related multipass scenarios have
been considered previously, [11] including one that in prin-
ciple creates an exponential amount of two-mode squeezing
in the entanglement between atoms and light [12], but none
of these lead to exponential growth of the spin squeezing of
atoms alone. The maximum degree of squeezing and its
scaling with coupling strength will ultimately depend on
decoherence and noise. Our preliminary model shows that
�10 dB of squeezing should be possible in the presence of
realistic levels of photon scattering, optical pumping, opti-
cal losses and detector noise, for optimistic but not unrea-
sonable coupling strengths such as might be achieved with
atomic samples in optical dipole traps [13].
The desired control can be achieved based on the inter-

action between the collective atomic spin vector J and the

photonic Stokes vector S, with components S1 ¼ ðayy ay �
ayx axÞ=2, S2 ¼ ðayy ax þ ayx ayÞ=2, S3 ¼ ðayy ax � ayx ayÞ=2i
where axðayÞ are the annihilation operators for photons

polarized along the xðyÞ directions. We restrict our atten-
tion to ensembles of spin-1=2 atoms such as 171Yb [5]. For
this case, the unitary entangling operation is the Faraday
interaction, UF ¼ expf�i�JzS3g. Extensions to ensembles
of atoms with larger spin, such as the alkalis, are possible
but require careful consideration of the effects of additional
rank-2 tensor interactions [14]. The characteristic Faraday
rotation angle per unit spin angular momentum is � ¼
�ð�0=AÞð�=3�Þ, where �0 ¼ 3�2=2� is the resonant
scattering cross section for unit oscillator strength, � is
the transition wavelength, � is the atomic linewidth, � is
the detuning from resonance, and A is the cross sec-
tional area of the light spatial mode. Under the usual
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Holstein-Primakov approximation (HPA) [15], for a large
number of atoms (NA � 1) polarized along the x axis (Jx),
and photons (NL � 1) in the probe light pulse linearly
polarized along the y axis (S1), we define canonical vari-

ables for Gaussian fluctuations about the mean field, XA �
Jy=

ffiffiffiffiffiffiffiffiffiffiffiffi

NA=2
p

, PA � Jz=
ffiffiffiffiffiffiffiffiffiffiffiffi

NA=2
p

, XL � S2=
ffiffiffiffiffiffiffiffiffiffiffiffi

NL=2
p

, PL �
S3=

ffiffiffiffiffiffiffiffiffiffiffiffi

NL=2
p

, so that ½XA; PA� � i and ½XL; PL� � i (units
of @ ). The Faraday interaction can then be expressed as,

UF ¼ e�i
ffiffiffi

�
p

PAPL , where � � NANL�
2=4 ¼ ��=9 is the

coupling strength. Here, � ¼ NAð�0=AÞ is the character-
istic resonant optical density and � ¼ NLð�0=AÞð�2=4�2Þ
is the characteristic photon scattering probability per atom
at detuning�. Note that � and� are defined with respect to
a unit oscillator strength, with the Clebsch-Gordan coef-
ficients appearing explicitly in the coupling strength. In the
HPA, the Faraday interaction displaces the X quadratures
of the spin and polarization subsystems, each by an amount
proportional to the P quadrature of the other,

Xout
A ¼ Xin

A þ ffiffiffi

�
p

Pin
L ; Xout

L ¼ Xin
L þ ffiffiffi

�
p

Pin
A ; (1)

and conserves the P quadratures. Physically, the coupling
strength � quantifies the spin-polarization entanglement
that results from collective scattering of radiation by the
atom ensemble into the probe mode. This makes it a key
parameter determining the performance of our atom-
photon interface.

Consider now the geometry shown in Fig. 1, consisting
of a cigar-shaped ensemble of atoms coupled to a mode-
matched, paraxial probe beam [16]. We take the initial
polarization of the probe to be linear along y, and the initial
state of the collective spin to be a coherent state along x.
As the probe pulse passes through the ensemble along the
z axis, its polarization becomes correlated with quantum
fluctuations in Jz, and a measurement of the Farady rota-
tion corresponds to a quantum nondemolition (QND) mea-
surement of Jz. Quantum backaction occurs and leads to
spin squeezing when the signal from spin projection noise
exceeds shot noise in the polarimeter [17]. In the limit of
Gaussian statistics, one can show that the metrologically
defined squeezing parameter [18] resulting from the

measurement is �QND�NAð�J2z ÞQND=hJxi2¼ð1þ�Þ�1 [1].

For large interactions, QND measurement leads to a scal-
ing of the squeezing with coupling strength, �QND � 1=�.
Spin squeezing without measurement can be achieved

via coherent feedback of the correlations created by the
Faraday interaction, as outlined above [3,9]. The key is to
employ a double-pass (DP) geometry, where the correla-
tions created by Faraday interaction during the first pass
are transformed into a fictitious magnetic field that rotates
the spin by an amount proportional to its Jz component
during the second pass. Quantitatively, the overall unitary
transformation is a composition of a Faraday interaction, a
polarization rotation by a wave plate, and a second Faraday
interaction. In the HPA this can be written as,

UDP ¼UFe
ið�=2ÞS1UF � e�i

ffiffiffiffi

2�
p

PA
�PLe�i�P2

A
=2eið�=2Þaya; (2)

where the Stokes bosonic operator for x polarization in the

HPA is a ¼ ðXL þ iPLÞ=
ffiffiffi

2
p

. Up to an initial overall rota-
tion of the Stokes vector about the S1 axis, the effect of the
DP geometry is thus a nonlinear single-axis twisting of the
collective spin, / J2z � P2

A, which leads to spin squeezing
[19]. In addition, UDP correlates the spin and polarization
through a

ffiffiffiffiffiffi

2�
p

PA translation along the 45� quadrature
�XL ¼ ðXL þ PLÞ=

ffiffiffi

2
p

(generated by the conjugate observ-

able �PL ¼ ð�XL þ PLÞ=
ffiffiffi

2
p

). For this map, one can show
that the spin fluctuations along the optimal quadrature
have a squeezing parameter given by �DPð	minÞ ¼
1þ ð�2=2þ �Þ½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4=ð2þ �Þ2p � ) lim�!12=�.
The DP protocol thus leads to the same 1=� scaling of the
squeezing as the QND protocol, but with excess noise due
to the residual entanglement between spin and light.
The excess noise seen in the DP geometry can in prin-

ciple be eliminated by disentangling the spin and polariza-
tion degrees of freedom via a quantum eraser (QE)
protocol [10]. The key point is to erase ‘‘which-way’’
information carried by the probe by an appropriate projec-
tive measurement of its polarization, followed by a rotation
on the spins that is conditioned on the measurement result.
To see this explicitly, consider the Heisenberg operator
map generated by UDP that entangles the spin and �45�
polarization quadratures,

Xout
A ¼ Xin

A þ �Pin
A þ ffiffiffiffiffiffi

2�
p

�Xin
L ; Pout

A ¼ Pin
A (3a)

�Xout
L ¼ � �Pin

L þ ffiffiffiffiffiffi

2�
p

Pin
A ; �Pout

L ¼ �Xin
L : (3b)

PA is a QND observable, whereas XA is displaced propor-
tionally to PA as in a free particle evolution. The additional
coupling of Xout

A to �Xin
L represents the residual entangle-

ment responsible for excess noise. However, the conjugate
observable �Pout

L contains no information about Xin
A or Pin

A .
Upon measuring this quadrature, we project the system to a
random but known value of �Xin

L , distributed by a Gaussian
according to the shot noise. An additional displacement of
XA (i.e., rotation of the spin around z) proportional to the
measured value, � ffiffiffiffiffiffi

2�
p

�Pout
L , removes the excess noise. For

a perfect quantum eraser, the spin is then mapped by a

FIG. 1 (color online). Double-pass geometry for spin squeez-
ing. The probe beam undergoes Faraday rotation in the first pass
and acts like a fictitious magnetic field during the second pass. A
polarimeter and magnetic feedback controller remove spin-probe
entanglement through quantum erasure, by measuring a com-
plementary polarization observable and rotating the spin condi-
tioned on the result. Short probe pulses and a long optical path
length L avoid standing wave effects.
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unitary transformation UQE ¼ e�i�P2
A
=2 , which geometri-

cally shears the initial coherent state uncertainty distribu-
tion along the XA axis, Xout

A ¼ Xin
A þ �Pin

A , Pout
A ¼ Pin

A .
Under this transformation, squeezing occurs along the
quadrature 	 ¼ tan�1ð2=�Þ=2þ �=2, with a squeezing

parameter, �QEð	minÞ ¼ 1 þ ð�2=2Þð1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4=�2
p Þ )

lim�!11=�2. In contrast to the QND and DP protocols,

the use of the quantum eraser thus allows a quadratic
decrease in spin fluctuations with measurement strength.

While the addition of a quantum eraser significantly
improves the scaling of squeezing with �, further dramatic
improvement results from the capacity for quantum con-
trol. Squeezing arises from parametric instability and is
associated with exponential shrinking of uncertainty with
coupling strength [20]. The unitary transformation in the

QE protocol, UQE ¼ e�i�P2
A=2, corresponds to a combina-

tion of pure squeezing and rotation as is apparent by

writing the spin quadratures in bosonic modes, b ¼ ðXA þ
iPAÞ=

ffiffiffi

2
p

, so that P2
A ¼ �ðb2 þ by2Þ=2þ bybþ 1=2. We

thus see that the shearing evolution does not lead to para-
metric instability because it is not phase matched (PM).
The first term is the generator of a Bogoliubov transforma-
tion, yielding pure squeezing with exponential growth,
while the second term generates a residual rotation and
thus a phase mismatch (the constant term is negligible). We
can achieve phase matching by canceling this spurious
rotation, according to the Trotter approximation,

UPM ¼ ðeið�=2nÞbybe�ið�=2nÞP2
AÞn � ei�ðb2þby2Þ=4: (4)

This corresponds to alternating small shearing interactions
of strength�=n and small rotations of the error ellipse about
the spin-polarization axis by an angle �=2n. The complete
protocol thus breaks into n parts, each consisting of a
shearing pulse followed by two magnetic field pulses that
perform first a measurement-conditioned rotation around
z and then a phase-matching rotation around x. The phase-
matched transformation, UPM, approximates a pure

squeezing unitary map. Spin fluctuations are squeezed
along the �45� quadrature at a rate that shrinks them
exponentially, giving �PM ¼ e��. If achievable, such expo-
nential scaling will greatly enhance our ability to generate
massive entanglement and perform nontrivial collective
spin control. The ideal (decoherence-free) scaling of squeez-
ing with � for the various protocols is shown in Fig. 2(a).
In a real-world implementation the various idealized

protocols will suffer from imperfections. The most funda-
mental of these is decoherence due to diffuse photon
scattering that will accompany the desired collective scat-
tering into the probe mode. We treat here the case of 171Yb
atoms driven with linear polarization on the 1S0ðFg ¼
1=2Þ ! 1P1ðFe ¼ 1=2Þ transition. With the initial spin

coherent state along x, we chose the probe polarization to
be along y because this results in the least decay of the
mean spin, which affects the metrologically relevant
squeezing parameter. In a double pass over time 
, Jy
decays at a rate defined by �k
 ¼ 8�=9 whereas Jx and

Jz decay as �?
 ¼ 4�=9. To model the effect of decoher-
ence, we make a Gaussian approximation for the statistics
of all fluctuations, and employ the covariance matrix for-
malism as discussed in Ref. [15], modified to account for
anisotropic noise. Including noise, we numerically opti-
mize the phase-matching rotation after each shearing pulse
to produce the best squeezing.
A numerical estimate of the achievable spin squeezing is

shown in Fig. 2(a) for a detuning �=� ¼ �103, large
enough to render the atomic sample essentially transparent.
The unit-oscillator-strength optical density is � ¼ 300, an
optimistic but not unreasonable extrapolation of the current
values achieved in optical dipole traps [13]. We model the
time evolution of our system with a series of n ¼ 30 dis-
crete light pulses, each of length �?
 ¼ :01, which for our
choice of system parameters corresponds to 3	 108 pho-
tons. Between each pulse, the spins are rotated to achieve
both the quantum eraser and quasi-phase-matching.
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FIG. 2 (color online). (a) Performance of various spin squeezing protocols versus interaction time in a double pass, where �? is the
rate of decay of Jz, and �?
 ¼ 4�=9: QND (green [triangle]), DP (red [diamond]), QE (blue [square]), PM (black [circle]). Solid lines
correspond to ideal protocols, dashed lines to models including photon scattering. (b) Performance of the PM protocol, in the presence
of photon scattering and technical limitations imposed by optical loss and detector noise (in fractions of the probe shot noise): no loss
and no noise (black [circle]), 2% loss and 1% noise (blue [square]), 6% loss and 3% noise (green [diamond]), 20% loss and 10% noise
(red [triangle]). In both (a) and (b) the optical depth is � ¼ 300. (c) Peak squeezing versus �, including photon scattering but no
additional loss or noise. The line is a fit to the numerical data points for � 
 300.
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Under these conditions themodel predicts a peak squeezing
of 13 dB at �?
 � 0:08.

Technical imperfections will impose limitations on the
protocol beyond those of photon scattering. Transmission
loss between passes will reduce the transfer of quantum
correlations amongst the atoms. Moreover, perfect quan-
tum erasure assumes a projective polarization measure-
ment, which in practice is compromised by optical loss,
finite quantum efficiency and technical noise in the polar-
imeter. We treat the detector noise as additional Gaussian
fluctuations in the measured value of �PL, with variance �

2

relative to the shot noise. Figure 2(b) shows how our
protocol performs for different degrees of imperfection.
Strong squeezing of more than 10 dB is seen for an optical
loss of 6% and a detector noise level at 3% of the probe
shot noise, and a very respectable squeezing of 7 dB still
occurs for 20% loss and 10% noise.

To understand how decoherence affects the exponential
enhancement of squeezing it is useful to consider a simple
model wherein optical pumping adds spin noise propor-
tional to the number of photons scattered. In that case the
squeezing parameter is � � �ideal þ c�, where �ideal is the
squeezing in the absence of scattering, and the constant c
quantifies the noise per scattered photon. For a given
scattering rate this sets a maximum interaction time before
optical pumping degrades the squeezing, and thus deter-
mines how the minimum value of � scales with �. For the
three protocols we have considered, where squeezing var-
iances in the absence of decoherence are, �QND ¼ 1=�,
�QE ¼ 1=�2, �PM ¼ e��, and �� ��, the peak squeezing

scales as �min
QND � ��1=2, �min

QE � ��2=3, and �min
PM � ðaþ

b logð�ÞÞ��1, respectively. The use of the quantum eraser
and phase matching thus fundamentally changes how the
achievable squeezing scales with optical density for a
given noise model. To further quantify the effectiveness
of the phase-matching protocol, we numerically calculate
the peak squeezing at the optimal value of � as a function
of �, as plotted in Fig. 2(c), and fit to the simple formula
above in the limit of large �. In the absence of other
technical noise, the fit of the phase-matched protocol gives
a maximum squeezing that scales as �max

PM ¼ ð12:4þ
0:81 log�Þ=�, yielding �13 dB of squeezing at a unit-
oscillator � of 300.

In summary, we have studied how one can employ the
tools of quantum control to strongly enhance the spin
squeezing of an atomic ensemble resulting from a QND
light-shift interaction. Through coherent feedback and a
quantum eraser protocol, we can implement a unitary
nonlinear interaction on the collective spin and strongly
amplify the squeezing through phase matching. The
achievable squeezing for a given optical density � will
depend on the competition between coherent atom-probe
coupling and noise from photon scattering out of the probe
mode. For the case of spin-1=2 atoms studied here, we have
seen that phase matching leads to a fundamentally new
scaling of the peak squeezing, � � 1=� (plus logarithmic

corrections), in contrast to the � � 1=
ffiffiffiffi

�
p

scaling that has so

far been assumed [1]. The ultimate scaling in an experiment
will depend strongly on the chosen atomic systems and the
details of the noise model. For example, in an idealized
two-color scheme for cesium atoms examined by Saffman
et al. [21] where the spontaneous scattering process re-
spects the QND symmetry, no extra noise is added to the
squeezed quadrature and squeezing degrades only due to
decay of the mean spin vector. In that case, photon scatter-
ing into other modes does not change the scaling of squeez-
ing with� as compared with the decoherence-free case. For
the single-pass QND protocol this would yield a 1=� scal-
ing. For our phase-matched protocol this would preserve
the exponential scaling for much longer times, perhaps
pushing the quantum fluctuations beyond the HPA, where
curvature of the Bloch sphere leads to non-Gaussian states
and more general quantum control [22].
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