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Coherent control of atomic transport in spinor optical lattices
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Coherent transport of atoms trapped in an optical lattice can be controlled by microwave-induced spin flips
that correlate with site-to-site hopping. We study the controllability of homogeneous one-dimensional systems of
noninteracting atoms in the absence of site addressability. Given these restrictions, we construct a deterministic
protocol to map an initially localized Wannier state to a wave packet that is coherently distributed over n sites.
As an example, we consider a one dimensional quantum walk in the presence of both realistic photon scattering
and inhomogeneous broadening of the microwave transition due to the optical lattice. Using composite pulses
to suppress errors, fidelities of over 95% can be achieved for a 25-step walk. We extend the protocol for state
preparation to analytic solutions for arbitrary unitary maps given homogeneous systems and in the presence of
time-dependent uniform forces. Such control is important for applications in quantum information processing,
such as quantum computing and quantum simulations of condensed matter phenomena.
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I. INTRODUCTION

Neutral atoms trapped in optical lattices have emerged as
a rich platform for exploring a wide variety of phenomena
and devices based on coherent quantum dynamics. Examples
include quantum computers [1–4], quantum simulators of
condensed matter [5,6], topological quantum field theory [7,8],
and quantum chaotic dynamics [9–11]. An essential ingredient
in these systems is the coherent control of atomic transport
in the lattice. Such transport is driven by time-dependent
variations in the lattice potential and the application of external
fields. In its most basic form, the atoms’ ballistic tunneling
between sites in a sinusoidal potential can be controlled
through time-dependent modulations of the lattice depth and
phase. The latter can be used to impart a time-dependent
acceleration to the lattice, thereby simulating the effects of an
applied electric field for electrons in a crystal that give rise to
the fundamental paradigms of coherent transport in solid-state
physics. Bloch oscillations [12], Wannier-Stark ladders [13],
Landau-Zener tunneling [14], and dynamical localization [15]
have all been demonstrated in optical lattices and explored as
mechanisms for coherent control.

More complex lattice geometries introduce additional
features. For example, in a lattice of double wells, one can
drive transport between sites in a pairwise manner, assuming
a sufficient barrier to ignore tunneling between different
double wells [16–19]. In this case, the control problem is
substantially simplified, as the relevant Hilbert space in a
given time interval is restricted to a small discrete set of
energy levels, as opposed to the infinite chain of levels in
a sinusoidal lattice. Control across the entire lattice can be
implemented by modifying the geometry so that the wells are
alternatively coupled to all nearest neighbors [left or right in
one dimension (1D)]. Double-well lattices have been explored
as a platform for quantum information processing tasks such as
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quantum computing [20] and simulations of condensed-matter
phenomena [21].

Still richer control is possible for spinor lattices where the
optical potential depends on the atom’s internal spin state
[22]. The lattice’s morphology can now be modified through
variation of the laser polarization, as well as intensity, lattice
phase, etc. The earliest proposals for quantum logic in optical
lattices via controlled collisions involved transport of the atoms
via time-dependent rotation of the direction of a laser beam’s
polarization [1,2,23]. Discrete time quantum walks have also
been studied with atoms in spinor lattices [24] and observed
in the laboratory [25]. An alternative and perhaps more robust
route to coherent control of atomic transport is to use external
fields to drive spin-changing transitions that are correlated
with atomic motion, similar to the scheme proposed by Foot
et al. [26]. Such protocols can make use of the tools for robust
control of spins [27–29], as developed in NMR, to the control
of atomic motion in the lattice.

In this article we explore methods for coherent control
of atomic transport with microwave-induced spin rotations
between hyperfine levels and polarization-gradient lattices.
Our main focus is on controllability—how the Hamiltonian
that governs the dynamics restricts the possible unitary maps
that one can implement, and how to design specific wave forms
to carry out a given task. We will consider here the simplest
problem of noninteracting atoms in one dimension. While
extensions to the interacting case are nontrivial, the current
work is an important stepping stone in that direction.

The remainder of the article is organized as follows. In
Sec. II we establish the formalism necessary to describe spinor
lattices and their interactions with external fields. We apply
this to study the conditions for wave-function control (the
preparation of a desired spinor wave function starting from a
known localized Wannier state) and prescribe a constructive
algorithm for carrying out this task in Sec. III. We then
generalize this in Sec. IV to the case of more general unitary
maps for unknown initial states. Finally, we summarize and
give an outlook toward future research in this area in Sec. V.
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II. MICROWAVE-DRIVEN SPINOR LATTICES

Spinor lattices arise from the tensor nature of atom-photon
interaction. In a monochromatic laser field Re[(E(x)e−iωLt ],
the light-shift potential takes the form

VLS(x) = − 1
4αijE

∗
i (x)Ej (x), (1)

where αij is the atomic dynamic polarizability at frequency
ωL for atoms in a particular ground-state manifold. In a 1D
optical lattice with polarization gradients, the electric field
can be written as E(z) = ε(z)E0e

−iωLt , where ε(z) is the
local polarization vector (not normalized) and E0 is a chosen
characteristic electric field. Restricting our attention to alkali
atoms, when the laser field detuning is large compared to
the excited-state hyperfine splitting but not large compared
to either ground-state hyperfine splitting or the fine-structure
splitting, we must account for both the irreducible rank-0
(scalar) and rank-1 (vector) terms in the lift shift but can ignore
the rank-2 (tensor) contribution [30]. The resulting light-shift
operator for the hyperfine manifold F is

VF (z) = V
(0)
F |ε(z)|2 + V

(1)
F

[
ε∗(z) × ε(z)

i

]
· F (2a)
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where �F1,2 are the detunings of the ground-state hyperfine
manifold F from the D1 and D2 resonances, gF is the
Landé g-factor (without nuclear magneton), I0 = cE2

0/8π is
the characteristic intensity of the field, and Isat and � are,
respectively, the saturation intensity and linewidth for either
the D1 or the D2 transition. Note that the ratio �2/Isat depends
only on the dipole matrix element and is thus same for both
D1 and D2, so we can factor it out in this way. The ellipticity
in the laser field leads to a fictitious magnetic field that varies
in space and results in a spin-dependent light shift due to the
rank-1 contribution [31].

We consider a 1D geometry consisting of counterpropagat-
ing laser beams with linear polarizations forming a relative an-
gle θ (the “lin-θ -lin” geometry). The local polarization vector
can be written ε(z) = e1e

ikLz + e2e
−ikLz, where e1 · e2 = cos θ

and e1 × e2 = sin θ , with I0 chosen to be the intensity of one
of the beams. Taking the atom’s quantization axis along z,
substituting in Eq. (2), the optical lattice for magnetic sublevel
|F,m〉 is

VF,m = 2V
(0)
F + AF,m(θ ) cos[2kLz − δF,m(θ )] (3a)

AF,m(θ ) = 2
√[

V
(0)
F

]2
cos2 θ + m2

[
V

(1)
F

]2
sin2 θ (3b)

δF,m(θ ) = tan−1
[(

mV
(1)
F /V

(0)
F

)
tan θ

]
. (3c)

The addition of a static bias magnetic field breaks the
degeneracy between Zeeman sublevels within a manifold and
allows us to spectrally isolate different microwave transi-
tions between the manifolds. For concreteness, we consider
133Cs and choose a two-state subspace |F = 4,m = 3〉 ≡
|↑〉, |F = 3,m = 3〉 ≡ |↓〉 to define a pseudospin-1/2 particle.
Restricting to this subspace and adding a near-resonant

microwave field with magnetic field Bµw cos(ωµwt + φ) that
couples these spin states, the Hamiltonian in the rotating frame
takes the form H = Hlatt + Hµw, where

Hlatt = p2

2m
− V0 cos(2kLz + δ0)|↑〉〈↑| − V0 cos

(2kLz − δ0)|↓〉〈↓| (4a)

Hµw = −�µw

2
σz − 
µw

2
(cos φµw σx + sin φµw σy). (4b)

Here V0 = A4,3 ≈ A3,3, δ0 = δ4,3 ≈ −δ3,3, 
µw =
〈↑|µ̂|↓〉Bµw/h̄ is the microwave resonant Rabi frequency,
µ̂ is the atom’s magnetic moment, �µw is the microwave
detuning from a hyperfine resonance defined by the untrapped
atoms, φµw is the phase of the microwave oscillator, and the
Pauli-σ operators are defined relative to the pseudospin. Note,
in general AF,m will vary with θ . We ignore this for now and
return to it later when we consider the performance of our
protocol under realistic experimental conditions.

Neglecting the kinetic energy and diagonalizing the
Hamiltonian leads to adiabatic or microwave-dressed
potentials,

V±(z) = −V0 cos δ0 cos(2kz)

± 1

2

√
[2V0 sin δ0 sin(2kz) − �µw]2 + 
2

µw. (5)

At �µw = 0, in the lin ⊥ lin (θ = π/2) geometry, the adiabatic
potentials yield a period λ/4 “subwavelength” lattice [32–35].
In the context of a Hubbard Hamiltonian describing interacting
particles moving on a lattice [36], this configuration gives
us greater freedom to independently control the site-to-site
tunneling rate J and the onsite interaction strength U [37]. By
employing both optical and microwave fields, the lattice depth
dominates the control of U while the the applied microwave
dominates control of J . Moreover, the tunneling matrix
element is complex, set by the microwave phase, allowing
for time-reversible tunneling and further control [38,39].

For θ 	= nπ/2, the adiabatic potentials take the form of a
lattice of double-well potentials arising from the asymmetry
for transport to the left vs the right. The parameters charac-
terizing the double well, including barrier height, tunneling
matrix element, and energy asymmetry (“tilt”), can be con-
trolled through variations of lattice intensity and polarization,
microwave power, and detuning. The richness of this system
should enable us to control wave function coherence for
spinors over multiple sites. Our early work on this subject
demonstrated spinor double-well coherence driven by Larmor
precession in a quasistatic magnetic field [22]. The current
approach, based on applied microwave fields, should be much
more robust and controllable.

While the dressed-lattice adiabatic potentials guide intu-
ition about the transport, quantitative predictions are more
accurately made by considering the band structure of the
Hamiltonian, Hlatt, in Eq. (4). Associated with the spin
s = ↑ and s = ↓ lattices are Bloch states for band n and
quasimomentum q, |ψ (s)

n,q〉, and Wannier states for that band
and lattice site l, |φ(s)

n,l〉, related by the usual Fourier transform
over the first Brillouin zone,

∣∣φ(s)
n,l

〉 =
∫ 1/2

−1/2
ei2πlq

∣∣ψ (s)
n,q

〉
dq. (6)
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Here and throughout, lengths are measured in units of the
lattice period L = λL/2 and wave numbers in units of the
reciprocal lattice vector K = 4π/λL. For sufficiently deep
lattices and atoms in the lowest lying bands, tunneling between
sites is completely negligible over the time scales of interest.
In that case, the lattice Hamiltonian is diagonal in both the
Bloch and the Wannier bases, with no energy variation over
the q or l index.

Transport dynamics are driven by the microwaves tuned to
cause transitions between the ground bands associated with the
spin-up and spin-down lattices. We assume that the detuning
and Rabi frequency are sufficiently small that the single-band
and lattice tight-binding (TB) model is a good approximation.
Henceforth we drop the band index and set n = 0. To simplify
notation, we set |φ(s)

n=0,l〉 = |l, s〉 and |ψ (s)
n=0,q〉 = |q, s〉. In the

Wannier basis, the total Hamiltonian in the TB approximation
is

HTB =
∞∑

l=−∞
− �µw

2
σ l

z − 1

2
[e−iφµw (
Rσ

l,R
+ + 
Lσ

l,L
+ ) + H.c.]

+ H.c.], (7)

where

σ l
z ≡ |l,↑〉〈l,↑| − |l,↓〉〈l,↓|, (8a)

σ
l,R
+ ≡ |l,↑〉〈l,↓|, (8b)

σ
l,L
+ ≡ |l − 1,↑〉〈l,↓| (8c)

are the Pauli operators for two-level transitions that pairwise
couple spin-down Wannier states to their neighbors on the
right, |l,↓〉 → |l,↑〉, and on the left, |l,↓〉 → |l − 1,↑〉. Note
that we have chosen an arbitrary labeling of the Wannier
state indices by convention so that a spin-down state and spin-
up state to its right are both associated with the same lattice
period label, l. Because the microwaves transfer negligible
momentum to the atoms, translation of the atomic wave packet
is possible only when the probability amplitude of an atom
overlaps between neighboring sites. The Rabi frequencies for
transitions to the left or right are thus weighted by Franck-
Condon factors, 
R = 〈φ↑

l |φ↓
l 〉
µw, 
L = 〈φ↑

l−1|φ↓
l 〉
µw.

For the ground bands in the TB approximation, a large
asymmetry in right-left transport and isolation of double wells
arises from small asymmetry in right-left displacement of the
lattice due to the Gaussian overlap of the wave packets (see
Fig. 1).

The combination of spinor optical lattices and microwave-
driven spin dynamics provides a wide variety of parameters
that can be modulated in real time during an experiment to

coherently control atomic transport. In the next section we
study the formal controllability of this system and develop
constructive protocols to implement desired unitary maps.

III. WAVE PACKET CONTROL

Given the time-dependent Hamiltonian at hand, a first
question to address is “controllability”; that is, which class
of unitary transformations can be generated by the arbitrary
design of the wave forms that parametrize that Hamiltonian.
We consider first the problem of preparing an arbitrary
wave packet that is coherently distributed over multiple sites
of the lattice, starting from an initially localized Wannier
state. Unless specially designed to allow for individual site
addressability [4,40], control in a typical lattice is limited by
translational invariance of the operations. Although a linear
gradient breaks the translational symmetry, the controllability
of the system is still limited, as we show later in this article.
We thus restrict our attention to strictly periodic lattices and
allow for an additional constant force F on the atoms, as in the
case of lattices held vertically in gravity, or when the overall
lattice is accelerated through time-dependent changes of the
standing wave pattern.

We consider Hamiltonians that are composed of a trans-
lationally invariant part, H0, with period L, and an applied
force, F ,

H (t) = H0(t) + F (t)x. (9)

A particular example is H0(t) = HTB(t), as given in Eq. (7),
with time-dependent variations in microwave power and/or
phase. The time evolution of such a system may be written in
the form of the time-ordered exponential

U (t) = T exp

{
−i

∫ t

0
[H0(t ′) + F (t ′)x] dt ′

}
. (10)

Such a map has the property that if we translate the entire sys-
tem by j times the period of H0, then U → e−i

∫ t

0 F (t ′) dt ′jLU .
If the initial state |φ〉 is a localized Wannier state, it satisfies

〈φ|Tj |φ〉 = δj,0, (11)

where Tj translates the system by jL. If state |φ〉 maps to |φ′〉
under a unitary evolution of this form, then the evolved state
satisfies this same condition, as follows from the identity

〈φ′|Tj |φ′〉 = 〈φ|U †TjU |φ〉 = ei
∫ t

0 F (t ′) dt ′jL〈φ|Tj |φ〉 = δj,0.

(12)

Thus, any wave packet prepared by these controls must be
orthogonal to itself after a translation by an arbitrary number
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U z( )
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= 90° = 75°

FIG. 1. (Color online) Controlled transport
in lin-θ -lin. Spin-dependent lattices have a rel-
ative phase shift due to polarization gradient.
In the lin ⊥ lin configuration, θ = 90◦, there is
no asymmetry in right-left transport, and atoms
can ballistically tunnel in the dressed potential.
For a change of just 15◦ degrees away from
lin ⊥ lin, in a lattice with an oscillation frequency
of 35 kHz, the ratio of the effective tunelling rates
is 
L/
R ≈ 780. The result is lattice of double
wells with pairwise tunneling couplings.
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of periods. Furthermore, since the force F has dropped out,
the linear gradient does not impact the range of states that may
be reached.

Are all states that satisfy this constraint reachable through
some choice of the control wave forms that parametrize HTB

in Eq. (7)? To show that this is the case, we employ a protocol
for constructing a desired state-to-state mapping as defined by
Eberly and Law in the context of Jaynes-Cummings ladder
[41]. First note that if we can map the state |φ〉 to another state
|φ′〉 and the control Hamiltonian allows the unitary map to be
time-reversible, then we can map |φ′〉 to |φ〉. Thus, in order
to show that we can get from a localized state to any state
satisfying Eq. (12), we consider the time-reversed problem of
mapping such a state to the initial Wannier state.

To construct the desired map, we employ a series of SU(2)
rotations on resolvable subspaces of the total Hilbert space.
Such a collection of disjointed two-level systems can be
addressed in a lin-θ -lin spinor lattice in either an asymmetric
configuration (θ 	= π/2) or a lin ⊥ lin configuration in the
presence a sufficiently strong uniform force so that isolated
pairs of states are spectroscopically addressable (see Fig. 2).
Note that in the latter case, because of the presence of an
external force, if we translate the system by an integer multiple
of λ/2, the state picks up an extra phase due to the linear
gradient. As we will see later in this article, our construction
does not require these phases, and since the construction is
capable of synthesizing all reachable states, the phases are
redundant. We can ignore the phases if we choose the time
over which the two level unitaries operate to be an integer
multiple of 2π/FL, and we will assume this to be the case for
the rest of this section.

We will restrict our attention to states with support strictly
on a finite set of lattice sites and zero probability amplitude
outside some range. Such spinors can be represented as

|ψ〉 =
lmax∑

l=lmin

(cl↓|l↓〉 + cl↑|l ↑〉). (13)

The finite extent of the wave function, together with the
condition expressed in Eq. (12), places a constraint on the two-
level subspaces. If we translate the entire state by lmax − lmin

then,

〈ψ |Tlmin−lmax |ψ〉 = c∗
lmin↑clmax↑ + c∗

lmin↓clmax↓ = 0. (14)

Thus, in order to satisfy Eq. (12), the two outermost two-
level subspaces must be orthogonal. Moreover, because of
translational invariance, the unitary transformations that we
apply are equivalent at each period of the lattice. In particular,
by unitarity, if we apply a rotation operator that maps the
subspace on the left end of the atomic distribution to pure spin
up, the subspace at the right end of the distribution must be
rotated to pure spin down.

These observations are the core of our construction (see
Fig. 3). A sequence of two-level rotations can be used to map
a coherent superposition delocalized across the lattice to one
localized at a single site in a single spin state. In the first step,
a rotation is applied to map all population at the leftmost two-
level system (l = lmin) to spin up according to the microwave-
driven SU(2) transformation,

S = 1√
N

[
c∗
lmin,↑ c∗

lmin,↓
−clmin,↓ clmin,↑

]
, (15)

where N = |clmin,↑|2 + |clmin,↓|2. By the translation symmetry
this simultaneously maps all population at the rightmost two-
level system (l = lmax) to spin down, resulting in the spinor
state

|ψ ′〉 = c′
lmin↑|lmin ↑〉 +

lmax−1∑
l=lmin+1

(c′
l↓|l↓〉 + c′

l↓|l↓〉)

+ c′
lmax↓|lmax ↓〉, (16)

thereby shrinking the extent of the wave function by λ/2. The
lattice is then reconfigured (through polarization rotation, a
change of microwave frequency, or a change in acceleration)
so that the opposite neighbors are coupled (spin down now

FIG. 2. (Color online) Two different methods for isolating unitary maps on two-level subspaces. In (a) and (b), the choice of polarization
angles in a lin-θ -lin lattice isolate different sets of two-level systems with transport either to the right or to the left. In (c) and (d), two-level
systems in a lattice with a linear gradient are spectrally addressed through their distinct microwave transition frequencies, which differ
by ±FL/2h̄.
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FIG. 3. (Color online) An example of state preparation through sequential SU(2) rotations. The polarization of the two counterpropagating
beams is chosen to isolate sets of two-level systems. In step 1, population in the leftmost two-level system is mapped to entirely spin up, forcing
population in the rightmost two level system to be entirely spin down by Eq. (14). In step 2, the polarization is rotated so that a different set
of two-level systems is coupled. In step 3, the population in the leftmost level is then mapped to entirely spin down. In step 4 the polarization
is set to its original configuration and steps 1–4 are repeated until the state is localized. For this particular case, we have chosen to end the
sequence spin down. A different choice for the final pulse would have ended the state spin up.

coupled to spin-up neighbor on left). An appropriate SU(2)
rotation is then applied to map all population on the leftmost
edge to spin down (simultaneously moving all population on
rightmost edge to spin up). Repeating, we form a sequence
of rotations that take the outer edges of the distribution and
map them inward in steps of λ/4 until all the population is
localized at one Wannier state. Reversing the order of the
sequence provides the desired protocol for constructing any
single particle wave function in the given band and with
support on a finite number of lattice sites, subject to the
constraint Eq. (12).

To understand how such a protocol would perform in the
laboratory, it is important to consider a variety of possible
imperfections. Microwave pulse control can be achieved
with extreme precision and will contribute negligibly to any
infidelity in the state preparation. The residual errors thus arise
from the effects of the optical lattice itself. First, to achieve
sufficient localization that a single-band TB approximation is
appropriate and to ensure a good double-well configuration
for small rotations of the polarization away from θ = 90◦,
an intense optical lattice is required, and this will inevitably
lead to photon scattering, optical pumping, and decoherence.
Second, because of inhomogeneity in the laser intensity,
there will generally be variations in the optical potentials
as functions of position. This leads to microwave detuning
variations across the lattice, as the spin-up and spin-down
states see differential light shifts that vary from site to site.

Moreover, the atomic localization will vary over the lattice,
and thus so will the Frank-Condon overlap, leading to errors
in the effective microwave Rabi frequencies 
L,R . Finally, as
the lattice polarization is rotated and the spin-up and spin-down
optical potentials translated relative to each other, the spin-up
and spin-down states will accumulate differential phase shifts
that vary from site to site. This is equivalent to inhomogeneous
microwave phase errors during subsequent pulses.

In principle, tools such as composite pulses and spin
echoes can be employed to mitigate some of these errors. The
NMR community has developed a variety of pulse families
that are designed to be robust under different circumstances.
We consider three examples: CORPSE, SCROFULOUS, and
BB1 [27,28,42]. CORPSE is a composite pulse which is
designed to be robust to detuning errors to fourth order,
while SCROFULOUS and BB1 are composite pulses which
are designed to be robust to errors in the Rabi frequency to
fourth and sixth order, respectively. At the same time, CORPSE
will perform roughly as well as uncompensated (plain) pulses
with respect to errors in the Rabi frequency, while BB1 will
perform roughly as well as plain pulses and SCROFULOUS
will perform worse than plain pulses with respect to errors
in the detuning. One drawback to all composite pulses is
that they require more time to implement than plain pulses.
In the presence of photon scattering, this can degrade the
performance of composite pulses and ultimately make them
perform worse than the shorter plain pulses [29].
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To illustrate the various tradeoffs, we consider a quantum
walk implemented by alternating microwave pulse sequences
with rotations of the lattice polarization to the left- and
right-coupling configurations (Fig. 2). The microwave pulses
are chosen to generate a π/2 rotation of the pseudospin on the
Bloch sphere about the x axis, using either a single plain
pulse or one of the three composite sequences discussed
earlier in this article. We choose the optical lattice to have
a wavelength of 865 nm and a mean intensity of 250 W/cm2,
similar to the parameters used in a recent transport experiment
by Widera et al. [25]. Atoms are transported to the left and
right by toggling the polarization angle between θL = 75◦
and θR = 105◦. For these parameters, and working with a
pseudospin composed of the states |F = 4,mF = 3〉 and
|F = 3,mF = 3〉, the atomic oscillation frequency in the
lattice potential wells is 35 kHz and the photon scattering
time is ts = 1.3 s. Also, the ratio of 
L to 
R , or vice versa, is
equal to 780 when the lattice angle is in left- or right-coupling
configuration, ensuring a lattice of highly isolated double
wells. For the microwave drive we choose the free-space
pseudospin Rabi frequency to be 
µw = 5.9 kHz; this leads to
an effective Rabi frequency in the lattice of 
L,R = 1.0 kHz
due to the Franck-Condon factor. To confirm that the single-
band approximation is valid for these parameters, we studied a
simple four-level model that included the two lowest Wannier
states for each spin. In that case, starting from the spin-down
ground Wannier state and driving microwave transitions to the
spin-up ground Wannier states for a time much longer than
the effective Rabi periods, the populations in the first excited
Wannier states never exceed 0.95%.

To model the lattice inhomogeneity, we assume a Gaussian
spread in laser intensities with a standard deviation of 2.5%
about the mean. This leads to a spread in the effective
microwave Rabi frequencies due to Franck-Condon inhomo-
geneity, δ
R,L = 24 Hz, and a spread of microwave detunings
due to the spread of differential light shifts, δ�µw = 8.8 Hz. In
addition, the relative phase accumulated between spin-up and
spin-down states due to the variation of potential depths during
transport averages 8 × 10−4 ◦, with a spread of δφµw = 0.002◦
due to lattice inhomogeneity. To determine the effect of
these errors, we evolve a pseudospin through a series of
lattice polarization rotations and microwave pulses for a given
lattice intensity and calculate the fidelity of the resulting state
relative to the target state after each rotation-and-pulse step
in the quantum walk. The overall fidelity is then obtained by
averaging a number of such calculations over the distribution of
lattice intensities. To account for the effects of light scattering,
we multiply the fidelity by a factor of e−nT/ts , where T is
the time required for a single step in the quantum walk
and n is the number of such steps. For the different pulse
types we have Tplain = 4 × 10−4ts , TCORPSE = 2.9 × 10−3ts ,
TSCROFULOUS = 1.7 × 10−3ts and TBB1 = 3.3 × 10−3ts , where
ts is the photon scattering time.

The results are shown in Fig. 4. We find that
SCROFULOUS and BB1 outperform CORPSE and plain
pulses, which suggests that the dominant error is the spread
in Rabi frequencies, even though δ
R,L is only about 2.7
times greater than δ�µw. To see why this is the case,
consider the effect of a spread in Rabi frequencies and
a spread in detunings on the generalized Rabi frequency,

FIG. 4. (Color online) Fidelity of a quantum walk as function
of number of steps for four different pulse sequences. CORPSE
corrects detuning errors up to fourth order, SCROFULOUS corrects
errors in the generalized Rabi frequency up to fourth order, and
BB1corrects errors in the generalized Rabi frequency up to sixth order
but takes longer to perform than SCROFULOUS. Because errors in
the generalized Rabi frequency and decoherence by photon scattering
are the dominate errors, SCROFULOUS performs the best.


̃L,R =
√

(
L,R + δ
L,R)2 + δ�2
µw, where 
L,R is the mean

Rabi frequency. If the generalized Rabi frequency is expanded
to lowest nonvanishing order, it is first order in δ
L,R and
second order in δ�µw. As a result, the spread in effective
Rabi frequencies will have greater impact than the spread in
detunings. We also see that SCROFULOUS outperforms BB1
because decoherence by photon scattering is not negligible.
After 25 left-right steps, the fidelity for SCROFULOUS is
95%, nearly 10% greater than the fidelity of plain pulses.
In general, different lattice configurations—lattice intensity,
detuning, rotation angle, etc.—will have different tradeoffs.
Nevertheless, the example considered here demonstrates that
high-fidelity coherent transport can be achieved within the
accessible range of experimental parameters.

IV. IMPLEMENTING GENERAL UNITARY
TRANSFORMATIONS

In the previous section we studied the construction of a
particular unitary transformation—mapping an initially local-
ized Wannier state to a spinor wave function delocalized over a
finite number of lattice sites, under the constraint of Eq. (12). In
this section we consider the most general unitary map that we
can implement under these constraints. We begin with the case
of perfect translational invariance of the lattice. In addition,
since the microwave photons possess negligible momentum,
only Bloch states with the same quasimomentum are coupled.
Because of these symmetries, any unitarity transformation that
we can synthesize will be block diagonal in the Bloch basis,
where each block is a U(2) matrix that connects spin-up and
spin-down states with the same quasimomentum q. In the basis
{|q,↑〉, |q,↓〉}, these blocks take the form

Uq = eiγ (q)

[
α(q) −β∗(q)

β(q) α∗(q)

]
, (17)
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where |α(q)|2 + |β(q)|2 = 1. If the two lattices are sufficiently
deep, tunneling is suppressed so γ is independent of q and can
be factored out of the problem, leading to SU(2) rotations in
each block.

The decomposition of a translationally invariant unitary
transformation into blocks of SU(2) matrices has important
implications for the design of arbitrary maps. Generally, the
design of a time-dependent wave form that generates an
arbitrary unitary map is substantially more complex than
a protocol for state-to-state mapping on an initially known
state [43]. Intuitively, this is because state-to-state maps
only constrain one column of a unitary matrix, whereas the
evolution of the orthogonal complement is not fully specified.
The exception is for a spin-1/2 system. By unitarity, specifying
one column of an SU(2) matrix necessarily constrains the
other. Since our spinor lattice is described by a collection of
noninteracting spin-1/2 subspaces labeled by quasimomentum
q, if we specify a state-to-state mapping of a spinor Bloch state,
we specify the SU(2) matrix on this block. We can achieve
this using the state-mapping protocol defined in Sec. III that
takes an initially localized Wannier state to a state distributed
over a finite number of lattice sites. Such a map specifies a
transformation on each Bloch state according to the Fourier
relationship between the probability amplitudes in the Wannier
and the Bloch bases. Based on this relationship, we can use
our state-to-state map to design a more general class of unitary
maps on the wave function.

To see this explicitly, consider the unitary evolution of
an initial spin-up Wannier state (take l = 0 without loss of
generality):

U |0,↑〉 =
∫ 1/2

−1/2
dq[α(q)|q,↑〉 + β(q)|q,↓〉]

=
∞∑

l=−∞
(cl,↑|l,↑〉 + cl,↓|l,↓〉). (18)

The quasimomentum functions α(q) and β(q) in Eq. (17) are
the Fourier sums of probability amplitudes in Wannier space,

α(q) =
∞∑

l=−∞
cl,↑e−i2πlq , β(q) =

∞∑
l=−∞

cl,↓e−i2πlq . (19)

As long as the Fourier transform of α(q) and β(q) have support
only over a finite extent in l, we can generate these functions by
applying the state-mapping protocol of the previous section to
synthesize the probability amplitudes cl in Eq. (19). For unitary
maps defined by α(q) and β(q) whose Fourier expansion in
Wannier states does not have a strictly finite support, more
general control methods are required.

We can easily generalize our result to include control
through applied spatially uniform (possibly time-dependent)
forces. In the TB approximation, expressed in the Wannier
basis, the Hamiltonian for a linear gradient potential in
dimensionless units takes the form

Hgrad(t) =
∞∑

l=−∞
−F (t)L[l|l↓〉〈l↓| + [l + δl(t)]|l↑〉〈l↑|],

(20)

where δl(t) arises due to the offset between spin-up and
spin-down lattices. We allow for modulations of the overall
force as studied in “shaken lattices” [44–48] and the possibility
of time-dependent variations in the relative positions of the
two spin states, as could be implemented through modulations
in the laser beams’ polarization direction. The combination
of this Hamiltonian, together with microwave-driven control
described by HTB in Eq. (7), gives rise to a general unitary
transformation that can be written using the interaction picture
in the form

U (t) = D(t)UI (t), (21)

where

D(t) = e−i
∫ t

0 Hgrad(t ′)dt ′ = eiχ/2
∫ 1/2

−1/2
dq|q + η〉〈q| ⊗ eiχσz/2,

(22)

where χ = ∫ t

0 δl(t ′)F (t ′)Ldt ′, η = ∫ t

0 F (t ′)dt ′, with q + η is
taken in the first Brillouin zone and

i
d

dt
UI (t) = HI (t)UI (t), (23)

where HI (t) = D†(t)HTB(t)D(t). The exact form of HI is
rather complicated, but all that really matters for our argument
is that it is translationally invariant with the period of the
lattice, T

†
j HI (t)Tj = HI (t). As a result, the solution, UI (t)

will be block diagonal in quasimomentum space, with the
blocks consisting of SU(2) rotations. Thus, by Eq. (21), the
general unitary evolution will have the form

U (t) = eiχ/2
∫ 1/2

−1/2
dq|q + η〉〈q| ⊗ Uq. (24)

A control sequence of microwave-driven rotations in a uniform
lattice followed by a time-dependent linear gradient can reach
any unitary map of this form.

We contrast this control with that achievable in a 1D
sinusoidal optical lattice with time-dependent uniform forces
and modulation of the lattice depth in the TB approxima-
tion, without symmetry breaking for right vs left transport.
Haroutyunyan and Nienhuis derived a general expression for
the propagator in such a situation [49]. In the quasimomentum
basis, the map is

U (t)|q〉 = e−ia(t) cos[2πq−b(t)]|q − η〉, (25)

where

a(t)eib(t) =
∫ t

0
dt ′ 
(t ′)eiη(t ′), (26)


(t) is the hopping rate between sites (symmetric to the left
or to the right), and η(t) is the same as above. The effect of
the propagator is solely to induce a phase that varies as the
first-order Fourier coefficient, in addition to shifting all of the
quasimomentum by an amount η. In contrast, Eq. (24) allows
a broader class of unitaries to be synthesized.

V. SUMMARY AND OUTLOOK

We have described the control of transport of atoms
through a microwave-dressed spinor optical lattice. Asym-
metric lattices and spectral isolation provides a means to
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break the system up into a series of two-level systems,
which aided the design of control routines. We restricted our
attention to translationally invariant systems, with no local
addressing, but the possibility of a uniform applied time-
dependent force. Under these conditions, we can determine
the constraints of reachable states and more general reachable
unitary maps that take a localized atom at one site to a state
coherently extended over n sites. Based on these constraints,
we propose a constructive protocol for carrying out these
control tasks through a sequence of SU(2) rotations acting
in the two-level subspaces. An important consideration for
practical implementation of our protocol is robustness of the
control sequences to imperfections in the system. Because
single-particle transport is driven by a series of SU(2) maps,
certain errors may be fixed by borrowing techniques from
robust control of NMR systems. We have shown how errors
in the lattice intensity can be corrected with such techniques.
Additional errors from spatial variations or miscalibrations
in the microwave field strength and real magnetic fields can
also be corrected. On the other hand, the inevitable spatial
inhomogeneities in the lattice potential can lead to spatial
variations in the energy common to both of the levels, which
causes an overall phase on the two-level systems that varies in
space. Because this phase error is not an SU(2) map, it cannot
be removed with the standard NMR composite pulse protocols
nor their generalizations, and we must develop new methods
to correct this in order to make our protocol robust to lattice
inhomogeneity. This will be a topic of future investigation. In
the current work we restricted our attention to the single-band,
TB approximation, in uniform lattices with two spin levels.
More general protocols that do not restrict the bands can be
used to study the control of coupled spin and spatial degrees of

freedom in a broader context. Moreover, it has recently been
shown [50] that the entire hyperfine manifold of magnetic
sublevels is controllable with applied rf and microwave wave
forms, leaving open the possibility of combining the control
of high dimensional spin and spatial degrees of freedom. In
addition, breaking the translational invariance with quadratic
or higher-order potentials should allow the controllability of
the system to be significantly enhanced. Other modifications of
the spin-dependent potentials, such as the spatial variation in
microwave transition frequency that arises in a strong magnetic
field gradient, can in principle allow spectral addressing of
individual two-level systems and extend the controllability of
the system.

Finally, the techniques proposed here may also be extended
to control the dynamics of many-body systems. For instance,
it might be possible to use the microwave drive to synthesize
more arbitrary interactions between atoms than are dictated
by the static Hamiltonian. Once interactions are included
in the model, many-body unitary maps can by built from
maps acting on restricted subspaces, as we have done here
for single particles. Such tools can play an essential role in
quantum simulations of many-body Hamiltonians, both for
studies of equilibrium properties such as the many-body phase
diagram and nonequilibrium phenomena such as Loschmidt
echoes [38] and the dynamics of phase transitions.
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