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We present an efficient algorithm for generating unitary maps on a d-dimensional Hilbert space from a
time-dependent Hamiltonian through a combination of stochastic searches and geometric construction. The
protocol is based on the eigendecomposition of the map. A unitary matrix can be implemented by sequentially
mapping each eigenvector to a fiducial state, imprinting the eigenphase on that state, and mapping it back to the
eigenvector. This requires the design of only d state-to-state maps generated by control wave forms that are
efficiently found by a gradient search with computational resources that scale polynomially in d. In contrast,
the complexity of a stochastic search for a single wave form that simultaneously acts as desired on all
eigenvectors scales exponentially in d. We extend this construction to design maps on an n-dimensional
subspace of the Hilbert space using only n stochastic searches. Additionally, we show how these techniques can
be used to control atomic spins in the ground-electronic hyperfine manifold of alkali metal atoms in order to
implement general qudit logic gates as well to perform a simple form of error correction on an embedded qubit.
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I. INTRODUCTION

The goal of quantum control is to implement a nontrivial
dynamical map on a quantum system as a means to achieve
a desired task. Historically, the major developments in quan-
tum control protocols have been motivated by applications in
physical chemistry whereby shaped laser pulses excite mo-
lecular vibrations and rotations �1,2�, and in nuclear mag-
netic resonance whereby shaped rf pulses cause desired spin
rotations in magnetic-resonance imaging �3–5�. More re-
cently, the quantum control theory has been considered in the
development of quantum information processors in order to
tackle the challenges of extreme precision and robustness to
noise and environmental perturbations �5–9�. Such quantum
processors are being explored on a wide variety of platforms
ranging from optics and atomic systems, to semiconductors,
and superconductors. The design of new protocols for quan-
tum control can thus impact wide spectrum applications.

The simplest approach to quantum control is the open-
loop unitary evolution. In this protocol, the system of interest
is governed by a Hamiltonian that is a functional of a set of
time-dependent classical “control wave forms” H�B�t��.
Through an appropriate choice of B�t�, the goal to reach a
desired solution to the time-dependent Schrödinger equation
at time T, formally expressed as a time-ordered exponential,
U�T�=T�exp�−i�0

TH�B�t���dt���. The system is said to be
“operator controllable” if for any W in the space of unitary
maps on the Hilbert space of interest, there exists a set of
control wave forms such that U�T�=W for some time T �10�.
Control theorists have long known the conditions on H�B�t��
such that the system is operator controllable, in principle, but
a construction for specifying the desired wave forms is gen-
erally unknown. The goal of this paper is to provide such a
construction for a wide class of quantum systems. We restrict
our attention to Hilbert spaces of finite dimension d.

Two classes of quantum control problems have been pri-
marily considered: state-preparation and full unitary maps. In

the state preparation, the goal is to map a known fiducial
initial quantum state ��i	 to an arbitrary final state �� f	. This
requires specification of only one column of the unitary ma-
trix, i.e., the vector U�T���i	, as compared with the full uni-
tary map, which requires specification of all d orthonormal
column vectors. The contrast between these tasks is reflected
in the complexity of numerical searches for the desired wave
forms. Optimal control theory provides a framework for car-
rying out such searches �11�. An objective function J is de-
fined for the task at hand, e.g., J�B�t��= �
� f�U�T���i	�2 for
state preparation or J�B�t��=Re Tr�W†U�T�� for full unitary
mapping. The optimal controls are the maxima of these ob-
jective functions.

In series of papers, Rabitz and co-workers introduced the
concept of the “control landscape” �12–15�. By discretizing
the control functions �e.g., by sampling at discrete times�,
one can treat the objective as a smooth function whose do-
main is a finite set of control variables. The topology of this
resulting hypersurface governs the complexity with which
numerical search algorithms can find optimal solutions. In
the case of state preparation, Rabitz et al. showed that for
open-loop unitary control, the control landscape has an ex-
tremely favorable topology �12�. Given a closed-system
open-loop Hamiltonian evolution for sufficient time T, all
critical points �i.e., those values of the control parameters
where �J=0� correspond to points on the control landscape
with either unit fidelity or zero fidelity; there are neither local
optima nor saddle points. Furthermore, the surface has a
gradual slope as one moves toward the optimal points, and
there are an infinite number of optimal solutions connected
on a submanifold with large dimension Nc−2d+2, where
Nc�d2−1 is the number of control variables defining the
dimension of the overall objective-function hypersurface
�13�. The lack of false suboptimal critical points, the gentle
slope, and the flat region near a maximum all enable efficient
search algorithms that yield fairly robust optimal control
wave forms based on a simple gradient ascent algorithm
from a random seed. A collection of random seeds yield a
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collection of possible solutions that can then be further tested
for robustness to decoherence and noise.

In contrast, the control landscape for full unitary control is
less favorable �14�. For SU�d� matrices, there are d critical
values of the objective function. Of these, there is one opti-
mal solution with unit fidelity: an isolated point in the con-
trol landscape. The remaining d−1 suboptimal points are
saddles. While the lack of local maxima may suggest nu-
merical optimization might still be an efficient search strat-
egy, empirical studies show otherwise �15�. Whereas state-
preparation search routines converge in a number of
iterations that is essentially independent of d, and the length
of the control pulses scale polynomially with d, the resources
necessary for optimization algorithms to converge on the full
unitary control landscape grow exponentially with d. Brute
force search is thus a very poor strategy for full unitary con-
trol on all but the smallest dimensional Hilbert spaces.

Explicit constructions for full unitary control have been
established in special cases where the form of the Hamil-
tonian allows. For example, Khaneja et al. showed that the
problem of generating unitary matrices on a system of
weakly coupled qubits can be reduced to the solution of a
geodesic equation �3�. Brennen et al. showed that by consid-
ering controls on overlapping 2-d subspaces, it is possible to
create arbitrary controls through Givens rotations �16�. Such
constructive procedures are less computationally intensive
than their random search counterparts and, moreover, yield
control fields that are more physically intuitive. They are,
however, restricted to control systems with particular struc-
tures and are not applicable in more generic cases.

In this paper, we develop a hybrid protocol for full unitary
control that combines efficient numerical search procedures
with constructive algorithms, applicable for any finite-
dimensional Hilbert space with minor restrictions, thereby
extending the work of Luy et al. �17�. We leverage off of the
efficiency of numerical searches for wave forms that gener-
ate a desired state mapping. Our procedure requires only d
stochastic searches and the length of the resulting control
sequence is approximately 2d times the time of a single state
preparation. Our work is analogous to that of �15�, where
state preparation provides a good starting point for iterative
searches. Our procedure, however, is fully constructive and
deterministic once appropriate state mappings are found.

The remainder of this paper is structured as follows. In
Sec. II we present our hybrid protocol for constructing gen-
eral unitary maps by combining efficient numerical searches
with a deterministic algorithm. In addition to unitary maps
on the full Hilbert space, this scheme allows us to construct
maps on a subspace with a complexity that scales as the
dimension of that space. Finally, in Sec. III, we apply our
unitary matrix construction to control the large manifold of
magnetic sublevels in the ground electric states of an alkali
metal atom �e.g., 133Cs� �18�. We show how to construct a set
of unitary matrices on SU�d� that are often considered as
qudit logic gates in a fault-tolerant protocol. In addition, we
apply our construction for subspace mapping to encode logi-
cal qubits in our qudit and simulate an error-correcting code
that protects against magnetic field fluctuations.

II. UNITARY CONSTRUCTION

In this section, we define an efficient protocol for con-
structing arbitrary unitary maps based on state preparation.
Any unitary matrix has an eigendecomposition,

U = �
j

e−i�j�� j	
� j� = �
j

e−i�j��j	
�j�, �1�

where in the second form we expressed U as a product of
commuting unitary evolutions by moving the projectors into
the exponential. A general unitary map can thus be con-
structed from d propagators of the form exp�−i� j�� j	
� j��,
one for each eigenvalue/eigenvector pair. These unitary
propagators can now be constructed using state mappings.
We begin by noting that there exists some Vj �SU�d� that
satisfies

e−i�j��j	
�j� = e−i�jVj
†�0	
0�Vj = Vj

†e−i�j�0	
0�Vj , �2�

where �0	 is a fixed “fiducial state.” The sole requirement on
Vj is that �
0�Vj�� j	�2=1, i.e., it must be a mapping from �� j	
to �0	. Therefore, we can create the unitary propagator
exp�−i� j�� j	
� j�� by using a state preparation to map the
eigenvector of U, �� j	, onto the fiducial state �0	, applying
the correct phase shift, and finally mapping the fiducial state
back to the eigenvector with the time-reversed state prepara-
tion. A general unitary map is thus constructed via the se-
quence,

U = Vd
†e−i�d�0	
0�Vd . . . V2

†e−i�2�0	
0�V2V1
†e−i�1�0	
0�V1. �3�

Each of the propagators Vj is specified by a control wave
form that generates a desired state mapping. One can effi-
ciently find such control fields based on a numerical search
that employs a simple gradient search algorithm, as de-
scribed above. To generate an arbitrary element of SU�d�, we
require at most d such searches. Moreover, the full construc-
tion consists of 2d state preparations interleaved with d ap-
plications of the phase Hamiltonian, leading to an evolution
that is only on the order of d times longer than a state-
mapping evolution.

This construction places certain requirements on the form
of the control Hamiltonian. First, the system must be
“equivalent-state controllable” �10�, meaning that we can
generate any vector in the Hilbert space starting from a fidu-
cial vector, up to an arbitrary phase �the state-preparation
protocol�. In principle, this control requirement is less de-
manding than the full operator controllability; but we will
assume that the latter is true since the Hamiltonians we will
consider generate the full Lie algebra su�d�.

Second, the dynamics must be reversible such that if we
can generate the unitary evolution Vj, we can trivially gen-
erate the unitary Vj

† by time reversing the control fields. This
will be true if the control Hamiltonian is unitarily equivalent
�through a possible “rotating-frame” transformation� to one
of the form H�t�=� jcj�t�Hj, where cj�t� are control fields and
Hj are static Hamiltonians that generate the Lie group. The
wave forms cj�t�, 0� t�T, generate Vj and the wave forms
−cj�T− t� generate Vj

† over the same interval. Note that there
is negligible probability to find Vj

† through stochastic search
for control fields that generate the state preparation �0	
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→ �� j	. There is an infinite set of unitary matrices that
achieve this map and Vj

† is a single point in a continuous
manifold.

Finally, we require access to a control Hamiltonian that
applies an arbitrary phase to one particular fiducial state �0	
relative to all of the remaining states in the Hilbert space,
exp�−i� j�0	
0��. This requirement is the most restrictive. It
will be possible to imprint such a phase if we have access to
an orthogonal complement to the Hilbert space in question
and a Hamiltonian that couples between the fiducial state and
a state �or states� in this additional subspace. An example for
an atomic spin control is discussed in Sec. III.

Subspace maps

We have so far considered two kinds of maps on our
d-dimensional Hilbert-space H :d�d unitary matrices and
state-to-state maps. The former corresponds to a map U :H
→H, while the latter specifies a map on a one-dimensional
space. Intermediate cases are also important. In particular,
we are often interested in unitary maps that take subspace A
of arbitrary dimension n to subspace B, according to T :A
→B. Examples include the encoding of a logical qubit into a
large dimensional Hilbert space �A�B� and a logical gate
on encoded quantum information �A=B�. Above we showed
that the design of a fully specified unitary matrix required
search for d wave forms that define d state preparations
�trivially, a state mapping requires one such search�. We
show here how unitary maps on subspaces of dimension n
can be constructed from exactly n such numerical solutions.

Formally, a unitary map between two subspaces A and B
of dimension n is defined as a map between their orthonor-
mal bases ��ai	� and ��bi	�,

Tn�A → B� = �
i=1

n

�bi	
ai� � U�, �4�

where U� is an arbitrary unitary map on the orthogonal
complement A� whose dimension is d−n. State preparation
is the case n=1; a full unitary matrix is specified when n
=d. Clearly for n�d the map is not unique, with implica-
tions for the control landscape and the simplicity of numeri-
cal searches described above. As a first naïve construction of
T�A→B�, one might consider a sequence of one-
dimensional state mappings,

Tn�A → B�=
?

�
i=1

n

T1��ai	 → �bi	� . �5�

This does not, however, yield the desired subspace map be-
cause each state mapping acts also on the orthogonal
complement, so, e.g., �b1	 is affected by T1��a2	→ �b2	� and
subsequent maps will move formerly correct basis vectors to
arbitrary vectors in the orthogonal component. We can re-
solve this problem by instead constructing subspace maps as
a series of well-chosen rotations that maintain proper or-
thogonality conditions.

To construct the necessary unitary operators, we make use
of the tools described above: arbitrary state mapping based
on an efficient wave form optimization and phase imprinting

on a fiducial state. With these, we define the unitary map
between unit vectors �a	 and �b	,

S��a	, �b	� 
 e−i	��	
�� = Î − 2��	
�� . �6�

Here ��	=N��a	− �b	�, where we have chosen the phases
such that 
b �a	 is real and positive, and 1 /N2
2�1− 
b �a	�
is the normalization. This unitary operator has the following
interpretation. In the two-dimensional �2D� subspace
spanned by �a	 and �b	, S is a 	 rotation that maps S�a	
= �b	. In contrast to the state-preparation map, Eq. �4� with
n=1, this map acts as the identity on the orthogonal comple-
ment to the space. This property is critical for the desired
application. Note that during the evolution, the support of the
wave function lies outside this 2D subspace since the state-
preparation protocol will generally lead to probability ampli-
tude over the entire d-dimensional Hilbert space.

With these 2D primitives in hand, we can construct the
subspace map according to the prescription,

Tn�A → B� = sn . . . s2s1, �7�

where sk
S��ãk	 , �bk	� and

�ãj	 
 sj−1 . . . s2s1�aj	 . �8�

This sequence does the job because each successive rotation
leaves previously mapped basis vectors unchanged. To see
this, we must show that at step j, the basis vectors
��b1	 , �b2	 , . . . , �bj−1	� are unchanged by sj. This will be true
when this set is orthogonal to the vectors �ãj	 and �bj	. Or-
thogonality to �bj	 is trivial since the basis vectors of B are
orthonormal. We must thus prove, 
ãj �bk	=0, ∀j
k. We can
do this by induction. For an arbitrary k, assume the conjec-
ture is true for all j such that j0� j
k and, thus, sj�bk	
= �bk	 up to j= j0. This implies that 
ãj0+1 �bk	=0 since,


ãj0+1�bk	 = 
aj0+1�s1
† . . . sk

†sk+1
† . . . sj0

† �bk	 = 
aj0+1�s1
† . . . sk

†�bk	

= 
aj0+1�ak	 = 0. �9�

To complete our proof by induction, we must show that for
any k, the conjecture is true for j=k+1. This follows since


ãk+1�bk	 = 
ak + 1�s1
†s2

† . . . sk
†�bk	 = 
ak+1�ak	 = 0. �10�

With this protocol, we can construct unitary maps on a sub-
space of dimension n with optimized wave forms that corre-
sponded to exactly n-prescribed state preparations. In the fol-
lowing section, we apply these tools to qudit manipulations
in atomic systems.

III. APPLICATIONS TO ATOMIC SPIN CONTROL

In this section, we apply our results to the control of the
ground-electronic manifold of magnetic sublevels in alkali
metal atoms. Atomic spins are natural carriers of quantum
coherence for the use in various quantum information pro-
cessing applications �19–22�. In previous work, we showed
that the full ground-electronic subspace of coupled electron
and nuclear spin can be rapidly controlled through combina-
tions of static, radio, and microwave-frequency ac-magnetic
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fields, with negligible decoherence �18�. A schematic for the
specific case of 133Cs, with nuclear spin I=7 /2 and two
ground-electronic hyperfine manifolds with total angular mo-
menta F=3 and F=4, is shown in Fig. 1. A static bias mag-
netic field breaks the degeneracy and specifies an rf-
resonance frequency by the Zeeman splitting in a given
manifold. Control of the amplitude and phase of the rf-
magnetic fields oscillating in two spatial directions allows
one to independently rotate these two manifolds. Resonant
microwaves can be used to excite transitions between F=3
and F=4, driving coherent SU�2� rotations between two
magnetic sublevels, as specified by a given �nondegenerate�
transition frequency. The control Hamiltonian including the
hyperfine interaction, static, rf, and microwave magnetic
couplings to the electron-spin spins is

H�t� = H0 + H1�t� , �11a�

H0 = AI · S + 2�BB0 · S , �11b�

H1�t� = 2�B�Brf cos��rft − �rf�t��

+ B�w cos���wt − ��w�t��� · S . �11c�

Control of the rf and microwave amplitude and phase can be
used to generate an arbitrary unitary transformation on the
d=2�2I+1�=16-dimensional Hilbert space. In our previous
work, we showed how we could design state-preparation
mappings through simple gradient searches �18�.

In the present work, we show how one can employ these
tools to design more general unitary maps based on the pro-
tocol of Sec. II. An important ingredient is the ability to time
reverse the state mapping. To see that this is possible, we
assume rf and microwave fields with constant amplitude and
time-varying phase and frequencies that are resonant with the

transitions shown. Using the Landé projection theorem and
making the rotating wave approximation, the Hamiltonian
becomes

H̃1�t� = �rf
�4��t� · F�4� + �rf

�3��t� · F�3� + ��w�t� · 
̂�3,4�,

�12�

where F�f� is the total spin angular momentum operator pro-
jected into the manifold with total angular quantum number
f , and 
̂�3,4� are the Pauli matrices for the two-level pseu-
dospin resonant with the microwave fields. This Hamiltonian
generates three SU�2� rotations for different irreducible
spaces, with axes and angles determined by the rf and mi-
crowave amplitudes and phases. This Hamiltonian is time
reversible through phase control by setting ��t�→��T− t�
+	 for both rf and microwave wave forms. Analogous to a
standard spin echo, this will generate the time-reversed evo-
lution.

In addition, we require the ability to imprint an arbitrary
phase on a single fiducial state. While this cannot be accom-
plished using solely microwave and rf control, by introduc-
ing an excited electronic manifold, an off-resonant laser-
induced light-shift can achieve this goal. We restrict our
system to one spin manifold �here, the F=3, but in principle
either will do� and a single state from F=4 manifold, e.g.,
�F=4,m=4	, which acts as the fiducial state. By detuning far
compared to the excited-state linewidth of 5 MHz, but close
compared to the ground-state hyperfine splitting of 10 GHz,
we imprint a light shift solely on the �F=4,m=4	 state with
negligible decoherence. Using rf-magnetic fields to perform
rotations in the F=3 manifold and microwaves to couple to
the fiducial state, we obtain controllable and reversible dy-
namics. Note that we may include the fiducial state in our
Hilbert space, for a total of eight sublevels, or treat it solely
as an auxiliary state and restrict the Hilbert space to the
seven-dimensional F=3 manifold.

A. Constructing qudit unitary gates

The standard paradigm for quantum information employs
two-level systems—qubits—in order to implement binary
quantum logic based on SU�2� transformations. Extensions
beyond binary encodings in d
2 systems—qudits—based
on SU�d� transformations have also been studied and may
yield advantages in some circumstances �16,23,24�. Of par-
ticular importance for the fault-tolerant operation is the
implementation of these transformations through a finite set
of “universal gates.” Our goal here is to show how important
members of the universal gate set can be implemented using
our protocol.

In choosing a universal gate set appropriate for error cor-
rection, it is natural to consider generalizations of the Pauli
matrices X and Z which generate SU�2�. The generalized
discrete Pauli operators for SU�d� are defined as

X�j	 = �j � 1	 ,

Z�j	 = � j�j	 . �13�

rf

F=4

F=3

S
1/2

P
1/2

∆∆

m
F
= -4 -3 -2 -1 0 1 2 3 4

rf

FIG. 1. �Color online� The hyperfine structure of 133Cs in the
6S1/2 ground state. Microwaves and rf magnetic fields provide con-
trollable dynamics on the 16-dimensional Hilbert space. A detuned
laser light shift can be used to create a relative phase between the
F=4 and F=3 manifolds. By considering controls on the high-
lighted subspace of states, we recover a system that satisfies the
criteria proposed in Sec. II.
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Here � refers to addition modulo d and � is the primitive
dth root of unity �=exp�i2	 /d�. By considering the commu-
tation relation of X and Z, the remaining generalized Pauli
operators have the form �lXjZk, defining the elements of the
Pauli group for one qudit �up to a phase�. This group is a
discrete �finite dimensional� generalization of the Weyl-
Heisenberg group of displacements on phase space.

Another important group of unitary matrices in the theory
of quantum error correction is the Clifford group given its
relationship to stabilizer codes �23�. These group elements
map the Pauli group back to itself under conjugation. Ex-
pressed in terms of their conjugacy action on X and Z, the
generators of the Clifford group for single qudits are

HXH† = Z, HZH† = X−1, �14�

SXS† = XZ, SZS† = Z , �15�

GaXGa
† = Xa, GaZGa

† = Za−1
,

when gcd�a,d� = 1. �16�

H and S are direct generalization of the Haddamard and
phase gates familiar for qubits �25�. The d-dimensional H is
the discrete Fourier transform

H�j	 =
1
�d

�
k

� jk�k	 , �17�

and S is a nonlinear phase gate

S�j	 = � j�j−1�/2�j	 j odd, �18�

S�j	 = � j2/2�j	 j even. �19�

The operator Ga is a scalar multiplication operator with no
analog in the standard Clifford group on qubits defined by

Ga�j	 = �aj	 , �20�

where the multiplication is modulo d. The only such multi-
plication operator for two-level systems is the identity opera-
tor.

While both the generalized Pauli and Clifford groups have
utility in quantum computing, it is clear from their descrip-
tions that unlike their qubit SU�2� counterparts, these unitary
matrices do not arise naturally as the time evolution opera-
tors governed by typical Hamiltonians. This fact is not rel-
evant to our unitary construction, which requires only the
knowledge of the operators’ eigenvectors and eigenvalues.
Using the time-dependent Hamiltonian dynamics with cou-
plings illustrated in Fig. 1, we have engineered control fields
to create the generators of both the Pauli and Clifford groups
acting on the seven-dimensional F=3 hyperfine manifold.
The duration of wave forms is approximately 1.5 ms, which
is significantly shorter than the decoherence time of the sys-
tem. In principle, the durations of these wave forms could be
decreased by an order of magnitude or more by using more
powerful control fields. Our objective function for creating a
desired unitary W is the trace distance J�W�=Re Tr�W†U�,
where U is the unitary matrix generated by our control wave
forms. Based on our protocol, employing state mappings that
have fidelities of 0.99, our construction yields unitary maps
that reach their targets with fidelities of J�Z�=0.986 6, J�X�
=0.987 2, J�H�=0.985 4, J�S�=0.989 2, and J�G3�=0.980 1.

As an example, in Fig. 2 we show the control sequence
for the discrete Fourier transform. The unitary map generated
by this sequence should act to transform eigenstates of Z into

U U U U

|3,mz = 3� |3,mz = 2� |3,mz = 1� |3,mz = 0�

(a) (b)

FIG. 2. �Color online� Optimized control fields for implementing the seven-dimensional Fourier transform on the F=3 hyperfine
manifold in 133Cs. The duration of the pulse is less than 1.2 ms and yields a unitary map that has an overlap of 0.9854 with the desired target.
As an example, we show the action of the resulting unitary on the Z eigenstates of angular momentum. The conjugate variable of Fz is the
azimuthal angle �. If we Fourier transform a Z eigenstate, a state with a well-defined value of Fz, we obtain a state that has a well-defined
value of �: a squeezed state.
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eigenstates of X and vice versa. We illustrate this through a
Wigner function representation on sphere �26�. The Z eigen-
states are the standard basis of magnetic sublevels, whose
Wigner functions are concentrated at discrete latitudes on the
sphere �Fig. 2�a��. Applying the control fields to each of
these states yields the conjugate states, with Wigner func-
tions shown in Fig. 2�b�. These have the expected form. They
are spin-squeezed states concentrated at discrete longitudes
conjugate to the Z eigenstates. The Z and X eigenstates are
analogous to the number and phase eigenstates of the har-
monic oscillator in infinite dimensions.

B. Error correcting a qubit embedded in a qudit

The ability to generate unitary transformations on two-
dimensional subspaces allows us to encode and manipulate a
qubit in a higher-dimensional Hilbert space in order to pro-
tect it from errors. Such protection can take a passive form
through the choice of a decoherence-free subspace �27,28� or
an active error correction through an encoding in a logical
subspace chosen to allow for syndrome diagnosis and rever-
sal �29,30�. Typically, error protection schemes involve mul-
tiple subsystems �e.g., multiple physical qubits� to provide
the logical subspace. While tensor product Hilbert spaces are
generally necessary to correct for all errors under reasonable
noise models, for a limited error model, one can protect a
qubit by encoding it at a higher-dimensional qudit �31�. We
consider such a protocol as an illustration of our subspace-
mapping procedure.

As an example, we consider encoding a qubit in the
ground-electronic hyperfine manifold of 133Cs and protecting
it from dephasing due to fluctuations in external magnetic
fields. In the presence of a strong bias in the z direction, the
spins are most sensitive to fluctuations along that axis. For
hyperfine qubits, one solution is to choose the bias such that
two magnetic sublevels see no Zeeman shift to first order in
the field strength �a “clock transition”�. An alternative is to
employ an active error correction protocol analogous to the
familiar phase-flip code �25�.

We take our “physical qubit” computational basis to be
the stretched states �0	= �3,3z	 and �1	= �4,4z	, states easily
prepared via optical pumping and controlled via microwave-
drive rotations on the Bloch sphere. Here we have used the
shorthand labeling the two quantum numbers �F ,mz	 and
have denoted the relevant quantization axis by the subscript
on the magnetic sublevel. Such states, however, are very sen-
sitive to dephasing by fluctuations along the bias magnetic
field. We choose as our encoded qubit basis stretched states
along a quantization axis perpendicular to the bias �x axis�
��0̄	= �3,3x	 , �1̄	= �3,−3x	�. Choosing this basis, a dephasing
error in the z direction acts to transfer probability amplitude
into an orthogonal subspace: such errors that can be detected
and reversed without loss of coherence.

Our error correction protocol works as follows �see Fig.

3�. Consider an encoded qubit ��̄	=��0̄	+��1̄	. The error op-
erator due to B-field fluctuations is the generator of rotations
Fz. Assuming a small rotation angle 2�, when such an error
occurs, the state of our encoded qubit is mapped to

FIG. 3. �Color online� �a� A schematic of the error correction
protocol we have designed using subspace maps. We track the basis
elements of our encoded subspace; here �0	 is red �aligned right�
and �1	 is blue �aligned left�, via their populations in the x and z
bases. �i� The initial embedded qubit we wish to protect is in a
superposition of the �4,4z	 and �3,3z	 states. �ii� We use subspace
maps to encode the state in the basis �3,3x	, �3,−3x	. �iii� In this
basis, a small z rotation shifts population into the states �3,2x	 and
�3,−2x	. �iv� Using subspace maps, we can transfer the small popu-
lation that has left the encoded space in the two states �4,4z	 and
�4,−4z	. Now we can perform a nondemolition measurement of the
total angular momentum F. If F=3, we can be certain our state lies
in the encoded subspace �ii�. If we measure F=4, the system is in
configuration �v�, which we then conditionally transform back to
the encoded state. In �b�, we examine the performance of the error
correction. On the x axis, we have the angle of rotation in the z
direction due to the magnetic field error. On the y axis is the fidelity
between the initial and post-error states, as average over pure states
drawn from the Haar measure. The blue line �broad plateau� shows
the fidelity of the error-corrected states and the green �oscillating
function� shows the fidelity if the state had simply stayed in the
subspace �4,4z	, �3,3z	.
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e−2i�Fz��̄	 � ��̄	 + ����3,2x	 + ��3,− 2x	� . �21�

The error acts to spread our qubit between two orthogonal
subspaces �mx�=3 and �mx�=2. To diagnose the syndrome, we
must measure the subspace without measuring qubit. We can
achieve this by coherently mapping the error subspace to the
upper hyperfine manifold followed by a measurement that
distinguishes the two hyperfine manifolds F=3 and F=4.
Such a coherent mapping cannot be achieved through simple
microwave-driven transitions since the bias field is along the
z direction, while the encoded states are magnetic sublevels
along the x direction. We can instead use the construction of
unitary operators on a subspace described in Sec. II to design
	 rotations that take the error states to the upper manifold.
This is tricky for our implementation because our protocol
only included one magnetic sublevel in the F=4 manifold so
as to ensure proper phase imprinting. The solution is to
switch the auxiliary state in the upper manifold between two
different subspace maps. First, we consider the control sys-
tem where �4,4z	 is our auxiliary state and perform a 	 ro-
tation that maps �3,2x	 to �4,4z	, leaving the rest of the space
invariant. Then we employ control on the system where �4,
−4z	 is the auxiliary state and map �3,−2x	 to �4,−4z	, with
the identity on the remaining space. A quantum nondemoli-
tion �QND� measurement of F collapses the state to the ini-
tially encoded state when the measurement result is F=3 or
to the state ��4,4x	+��4,−4x	, if we find F=4. In the final
step of the protocol, if an error occurred, we conditionally
move the error subspace back to the encoded subspace,
which can be achieved through reverse maps of the sort de-
scribed above.

We simulate here the coherent steps in the error correction
protocol. These are implemented through our efficient search
technique to construct subspace maps for the sequences

��4,4z	, �3,3z	� → ��3,3x	, �3,− 3x	� ,

��3,2x	, �3,− 2x	� → ��4,4z	, �4,− 4z	� ,

��4,4z	, �4,− 4z	� → ��3,3x	�3,− 3x	� .

Each of these maps is achieved through a sequence of SU�2�
	 rotations on a two-dimensional subspace that leave the
orthogonal subspaces invariant. Starting from numerical
searches for state-preparation maps that have fidelity greater
than 0.99, we obtain subspace maps with comparable fideli-
ties. The performance of this error correction procedure is
shown in Fig. 3�b�. We plot the fidelity between the initial
state and the post-error-corrected state, averaged over ran-
dom initial pure states of the physical qubit, versus the mag-
nitude of the error as described by the rotation angle induced
the stray magnetic field. Even with imperfect subspace trans-
formations, the error correction protocol is significantly more
robust than the free evolution. Of course, like all quantum
error correction protocols, we assume here that the time nec-
essary for diagnosing the syndrome and correcting an error is
sufficiently shorter than the dephasing time, so that the
implementation of error correction does not increase the er-
ror probability.

In practice, the most challenging step in the error correc-
tion protocol in this atomic physics example is the measure-
ment of the syndrome. This requires addressing of individual
atoms and measuring the F quantum number in a manner
that preserves coherence between magnetic sublevels. In
principle, this can be achieved through a QND dispersive
coupling between an atom and cavity mode that induces an
F-dependent phase shift on the field that could be detected
�32�. Alternatively, F-dependent fluorescence from a given
atom would allow this code to perform “error detection,”
without correction.

IV. SUMMARY AND OUTLOOK

In this paper, we have presented a protocol for construct-
ing unitary operators that combines the strengths of both
stochastic and geometric control techniques. By utilizing sto-
chastic searches to construct state preparations, as opposed to
stochastically searching for full unitary maps, our protocol
requires computational resources that scale only polynomi-
ally with the dimension of the Hilbert space of our system.
The length of the control pulses also scales polynomially
with d. These stochastic search techniques place only very
mild restrictions on the types of Hamiltonian controls with
which our protocol is applicable. Additionally, the controls
easily generalize to the case where one wishes to control
only a subspace of a larger Hilbert space. For the subspace
control, the number of searches required scales as the dimen-
sion of the subspace, not as that of the embedding Hilbert
space.

Hybrid stochastic/geometric control schemes yield a very
promising path toward unitary control sequences that balance
broad applicability with ease of implementation �17�. The
most restrictive element of our protocol is the requirement
that we can impart a desired phase on one and only one state
�a U�2� operation�. A much less restrictive procedure is to
employ a control Hamiltonian that acts in imprint a relative
phase between two states in the Hilbert space �an SU�2� op-
eration�. This type of operation could be implemented
through, e.g., the microwave controls described in Sec. III.
As a generalization of our protocol, eigenstates would be
mapped pairwise to two chosen fiducial states, where an ex-
ternal field generates the desired phase difference. The diffi-
culty with this approach is that we require stochastic
searches for a control wave form that maps a 2D subspace in
one step rather than our two-step procedure, which maps
each basis vector separately. The topology of the control
landscape for such wave forms and complexity of such a
stochastic search are not known, though we expect this to be
polynomial in d.

While we have primarily emphasized here an exponential
speedup in the search for control wave forms that generate
unitary maps, a constructive protocol brings additional pos-
sible advantages. By exploiting the geometry of a problem,
we can engineer robustness more easily than in a stochastic
setting. For example, the microwave and rf controls dis-
cussed in Sec. III consist of representations of SU�2� rota-
tions in different subspaces of the Hilbert space. There are
well-known composite pulse techniques that implement
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rotations SU�2� rotations that are robust to errors in the in-
dividual pulse amplitudes and detunings �5,7�. In future
work, we will explore protocols that import these methods in
order to efficiently search for and implement robust SU�d�
transformations.
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