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a b s t r a c t

Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-
designed time-dependent control fields must be applied to the system of interest. To read out the quan-
tum state, information about the system must be transferred to a probe field. We study a particular
example of this dual action in the context of quantum control and measurement of atomic spins through
the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decom-
position, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin
state. This shows how polarization spectroscopy can be used for continuous weak measurement of
atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift
induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary
unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a
unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering.
Based on this formalism, we review applications to quantum control, including the design of state-to-
state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically
controlled ensemble.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Atomic spins are robust, coherent, and controllable quantum
systems. These features make atomic vapors an ideal platform for
applications in precision metrology [1] and quantum information
processing [2]. Key tools that enable these applications are the
ability to prepare, dynamically evolve, and measure an arbitrary
quantum state with high precision in an environment that is suffi-
ciently free from noise and decoherence. As applied to atomic
spins, such tools have been developed over the course of decades,
with steady advances in coherent spectroscopy, laser cooling and
trapping, and quantum optics. In particular, the interface between
ensembles of atomic spins and the polarization of optical fields has
recently been revived as a rich platform for the exploration of
quantum information processing, building on the long history of
magneto-optical techniques, originally developed in the context
of optical pumping [3]. In the modern laboratory, a wide variety
of proof-of-principle experiments have been demonstrated, such
as the storage of quantum memory of light in atomic spin vapors
[4–11], continuous observation of nonlinear spin oscillations
[12,13], QND measurements of atomic spin ensembles [14–17],
the production of spin-squeezed states [18–22], the generation of
ll rights reserved.
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entanglement between macroscopically separated atomic spin
ensembles [23], and quantum-state control/tomography [24–26].

In this article we revisit the interaction between atomic spins
and optical probe polarization as a platform for quantum control
and measurement. Our goal is to develop a unified and pedagogical
treatment, starting from first principles in order to establish the
necessary formalism and theoretical description, and then to dem-
onstrate its application in specific protocols that we have carried
out in the laboratory. We focus the formalism on alkali atoms,
the canonical elements used in most laboratory studies, and partic-
ularly 133Cs, employed in our experiments. Our central concern
here is the manipulation of uncorrelated atoms in an ensemble of
identically prepared and evolving systems. Each atom itself has a
rich internal structure, due to the large hyperfine manifolds of
magnetic sublevels (e.g., 133Cs, with its valence electron spin
S = 1/2 and nuclear spin I = 7/2, spans a d = (2S + 1)(2I + 1) = 16
dimensional ground-electronic subspace). The atom-photon cou-
pling acts simultaneously to affect the spin dynamics and as a
mechanism to extract quantum information about the spins
through polarization spectroscopy. We review our recent work
on this subject, including the use of nonlinear spin dynamics to
control and prepare arbitrary spin states in a given hyperfine man-
ifold, and to reconstruct the full spin density matrix through weak
continuous measurement and control on a single atomic ensemble.

The remainder of the article is organized as follows. In Section 2
we establish the fundamental Hamiltonian that governs the tensor
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nature of the light-shift interaction, expressing it with great utility
as a coupling between the probe field’s Stokes vector and the cor-
responding atomic spin variables. The evolution of the Stokes vec-
tor on the Poincaré sphere is thus correlated with moments of the
atomic spin variables, and polarimetry on the probe can be used as
a measurement of the quantum state. The spins’ dynamics are gen-
erated by a combination of real magnetic fields and light-shift
potentials that are decomposed into irreducible tensor compo-
nents. A complete (semiclassical) description of the spin dynamics
is formulated in terms of a master equation that includes the
unavoidable effects of decoherence via photon scattering and opti-
cal pumping. In Section 3 we apply our formalism to laboratory
studies of quantum control and measurement. We first establish
the conditions for controllability, and then employ optimal control
techniques to design waveforms that generate arbitrary spin states
from an initially spin-polarized sample. Monitoring the polariza-
tion of the transmitted probe provides a mechanism for continuous
weak quantum measurement of the atomic spin. We quantify the
conditions under which the measurement strength is sufficiently
small that measurement of the probe polarization induces negligi-
ble backaction on the atoms. For optically thin samples, this condi-
tion is satisfied and continuous weak measurement is seen as
monitoring the ensemble average of uncorrelated atoms. We use
this to our advantage in implementing a fast and robust protocol
for quantum-state reconstruction of our large atomic spins. Finally,
in Section 4 we summarize and give an outlook for future studies.
2. The atom-photon tensor interaction

2.1. The system foundations

A schematic of our quantum control and measurement system
is shown in Fig. 1. An ensemble of �106 cesium atoms is collected
from a magneto-optical-trap (MOT) at a density of �1010

atoms/cm3, cooled in optical molasses and then released into free
Fig. 1. Schematic of our system geometry. A cold gas of atoms is collected from a magnet
of identical spins. The spins are controlled through a combination of light-shift interacti
spins is performed by polarization analysis of the transmitted probe. The nature of the ato
A sketch of the atomic level structure for 133Cs is shown inset (not to scale). Our probe fre
mostly work with atoms in a single ground manifold of given F only; atoms in the othe
resonance by the very large ground hyperfine splitting.
fall. At this point, the sample is spin-polarized via optical pumping,
creating a nearly pure spin coherent state of atoms. Control and
measurement of the spins are then achieved through the combina-
tion of applied magnetic/optical fields and polarimetry analysis of
the transmitted probe field, as detailed below.

A critical component in the theoretical analysis of this system is
the tensor nature of the atom-photon interaction, described in de-
tail by a formalism established decades ago in the context of opti-
cal pumping [27]. We lay out here the essential ingredients
necessary to describe quantum control and measurement of atom-
ic spins in a more modern context. For a monochromatic light field
detuned off-resonance, and at sufficiently low intensity that the
saturation parameter is small, the atom-light interaction is effec-
tively governed by the dynamics of the magnetic sublevels in the
electronic-ground-state manifold coupled to the polarization
modes of the field. This interaction describes the potential energy
of a polarizable particle in an ac-electric field, governed by a Ham-
iltonian with the same form classically and quantum mechanically:

H ¼ �Eð�Þi EðþÞj aij; ð1Þ

where E(±) are the positive/negative frequency components of the
field and aij is the atomic dynamic polarizability tensor at frequency
xL. Quantum mechanically, perturbation theory gives an expression
for the polarizability tensor operator:

a
$
¼ �1

�h

X
g;e

dgedeg

Deg
; ð2Þ

where dge ¼ dyeg ¼ PgdPe is the atomic electric dipole operator con-
necting excited (e) and ground (g) subspaces via projection opera-
tors Pe and Pg, and Deg = xL �xeg is the detuning of the light field
from resonance. The dynamics generated by this interaction affect
the field through the spin-dependent index of refraction, and the
state of the atoms through the polarization-dependent light-shift.

We restrict our attention to alkali atoms, the species used in most
quantum-atom-optics laboratories such as ours; the formalism is
o-optic-trap/optical molasses, and optically pumped to form a nearly pure ensemble
on and magnetic fields produced by pairs of Helmholtz coils. A measurement of the
m-photon interaction depends strongly on the detuning of the light from resonance.
quency is typically tuned in-between the two transitions to the 6 P1/2 manifold. We

r manifold are invisible to the probe field as transitions starting from there are off-
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easily generalized to other elements. The basic level structure is
shown in the inset to Fig. 1, indicating the important regimes of
the atom-probe coupling. We tune the probe frequency near a strong
nS1=2 ! nPJ0 transition, where J

0
= 1/2 (D1 line) or J

0
= 3/2 (D2 line).

Here and throughout, primed variables represent excited electronic
states, and unprimed variables represent electronic-ground states.
Associated with each electronic state is a hyperfine multiplet,
specified by total angular momentum F = I + J, where I is the nuclear
spin. The ground-state hyperfine splitting is typically an order of
magnitude larger than that of the excited state. We will consider a
detuning on the order of the excited-state hyperfine splitting, a
regime for which we obtain rich spin dynamics as discussed below.

The key physical properties of the interaction are seen in a
decomposition of the Hamiltonian into its irreducible tensor com-
ponents [3,28–31], as detailed in Appendix A. We will assume that
the population of interest is restricted to a single ground-state
hyperfine manifold with total angular momentum F. In that case,
according to the Landé projection theorem, the Hamiltonian has
an irreducible decomposition of the form:

H ¼ �a0 Cð0ÞEð�Þ � EðþÞ þ Cð1Þi Eð�Þ � EðþÞ
� �

� F
h

þ Cð2ÞEð�Þi EðþÞj

1
2
ðFiFj þ FjFiÞ �

1
3

F2dij

� ��
; ð3Þ

where F is the angular momentum operator, the tensor coefficients
C(K) follow form the Wigner–Eckart theorem as given in Eq. (A13),
and the characteristic polarizability a0 depends on the detuning
from the excited state. For a fixed excited hyperfine manifold with
quantum number F 0;a0 ¼ �jhPJ0 kdkS1=2ij2=�hDF0F ¼ �ð3k3=32p3Þ
ðC=DF0FÞ, where k is the wavelength of the transition and C is the
spontaneous emission rate (note, cgs units are used throughout).
More generally, for the detunings we consider, the Hamiltonian will
be a sum of contributions from each state in the excited-state
multiplet.

The behavior of the different rank contributions depends on the
detuning. Physically, the alkali ground state is a spherically sym-
metric l = 0 state. The anisotropic properties of the ac-polarizability
arise through the coupling of the orbital angular momentum to the
electron and nuclear spins. For detunings that are large compared
to the excited-state hyperfine splitting, the optical coupling to the
nuclear spin is negligible, and the polarizability depends on of the
s = 1/2 electron spin. As this spin can only support representations
of SU(2), the rank-2 contribution must vanish. Quantitatively, one
finds interference between different (indistinguishable) excited-
state hyperfine channels F

0
. For the D1 and D2 lines, the overall ten-

sor coefficients in the limit of detunings that are large compared to
the hyperfine splitting are:

D1 : Cð0ÞJ0F ¼
X

J0¼1=2;F 0
Cð0ÞJ0F 0F ¼

1
3
;Cð1ÞJ0F ¼

X
J0¼1=2;F 0

Cð1ÞJ0F 0F ¼ þ
gF

3
;

Cð2ÞJ0F ¼
X

J0¼1=2;F 0
Cð2ÞJ0F 0F ¼ 0; ð4aÞ
D2 : Cð0ÞJ0F ¼
X

J0¼3=2;F 0
Cð0ÞJ0F 0F ¼

2
3
;Cð1ÞJ0F ¼

X
J0¼3=2;F 0

Cð1ÞJ0F 0F ¼ �
gF

3
;

Cð2ÞJ0F ¼
X

J0¼3=2;F 0
Cð2ÞJ0F 0F ¼ 0; ð4bÞ

where gF is the Landé g-factor. In the ground-electronic state, in the
two hyperfine manifolds F"(;) = I ± 1/2, we have gF" ¼ 1=F" and
gF# ¼ �1=ðF# þ 1Þ ¼ �1=F" (neglecting the small nuclear magneton).
For larger detunings, much greater than the fine-structure splitting,
the spin-orbit interaction is negligible and the ac-polarizability
loses all spin and polarization dependence, as seen in the vanishing
vector contribution to the Hamiltonian through destructive inter-
ference, Cð1ÞF ðD1Þ þ Cð1ÞF ðD2Þ ¼ 0.

More precise relations that show the detuning dependencies of
the different irreducible tensor contributions follow from a Taylor
series expansion. Defining DFF 0 ¼ Dþ dF 0 , where D ¼ DF0max ;F

and dF 0 is
the residual excited-state hyperfine splitting relative to F 0max, then
to order 1/D2, the weighted coupling constants in Eq. (3) for the
D2 line are

X
F 0

Cð0Þ3=2;F0F"

C
DFF 0

� �
� 2

3
C
D

� �
� bð0Þ

C
D

� �2

; ð5aÞ

X
F 0

Cð1Þ3=2;F0F"

C
DFF 0

� �
� � 1

3F"

C
D

� �
� bð1Þ

C
D

� �2

; ð5bÞ

X
F 0

Cð2Þ3=2;F0F"

C
DFF 0

� �
� �bð2Þ

C
D

� �2

; ð5cÞ

where the coefficients bðiÞ ¼
P

F0 ðdF0=CÞC
ðiÞ
F0 are constants that de-

pend on the atomic species, and C is the excited-state linewidth.
We see that for detunings that are large compared to the excited-
state hyperfine splitting, but small compared to fine structure, the
irreducible rank-2 contribution to the tensor interaction is of order
C/D smaller than the vector terms. In fact, this term scales with
detuning exactly as the rate of photon scattering. Control and mea-
surement of the atomic spins thus depends on a careful choice of
detuning, balancing the requirements of low decoherence with
the necessary interactions. We discuss these tradeoffs in detail
below.

In the sections below we study the dynamics of the field due to
the atomic spin and vice versa. In principle, these are two coupled
subsystems, and their joint quantum dynamics should be treated
simultaneously. As we will see in Section 3.2, for the dilute atomic
samples we work with, the quantum entanglement between atoms
and photons is negligible, and we can study their evolution sepa-
rately. In this situation, the quantum state of the light evolves
according to the mean field of the atoms and the spins evolve
according to the mean field of the light. Strong coupling between
the quantum systems will lead to nonclassical correlations beyond
the mean-field description, but this regime will not be considered
in detail in this article.

2.2. Field dynamics

The atom-photon coupling Hamiltonian correlates the dynam-
ics of the atomic spin with the light field. Given the state-depen-
dent tensor polarizability of the atomic sample, this correlation
can be used to perform a continuous weak measurement on the
atomic spin by monitoring the polarization of a probe beam that
traverses the sample, as we will study in Section 3.2. Because fun-
damental fluctuations in the field ultimately limit such a measure-
ment, we include a full quantum mechanical description of the
optical modes. We employ a travel-waving quantization scheme
discussed in [32], and consider a wave-packet mode of duration
Dt of a paraxial beam with area A. Accounting for the two trans-
verse polarizations (here linear ‘‘horizontal” eH and ‘‘vertical” eV

polarization), the positive frequency component operator is

EðþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hx
AcDt

r
eHaH þ eV aVð Þ; ð6Þ

where aH, aV are the corresponding photon annihilation operators.
Associated with these modes is the Stokes vector S, whose position
on the Poincaré sphere represents the polarization state of the field.
In quantized form, the corresponding operator is a spin angular
momentum via the Schwinger representation for a two-mode
oscillator:
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S1 ¼
1
2

ayHaH � ayV aV
� 	

; S2 ¼
1
2

ayHaV þ ayV aH
� 	

;

S3 ¼
1
2i

ayHaV � ayV aH
� 	

; ð7Þ

satisfying the SU(2) algebra [Si, Sj] = ieijkSk. We define the total pho-
ton number operator, S0 ¼ ayHaH þ ayV aV .

The coupling of the Stokes vector to the atomic variables fol-
lows from the irreducible tensor decomposition of the Hamilto-
nian, Eq. (3). From the modal decomposition of the field, Eq. (6),
one finds:

Eð�Þ � EðþÞ ¼ E2
vacS0; ð8aÞ

Eð�Þ � EðþÞ ¼ 2iE2
vacS3ðeH � eV Þ; ð8bÞ

Eð�Þi EðþÞj

FiFj þ FjFi

2

� �
¼ E2

vac S0
F2

H þ F2
V

2

 !
þ S1 F2

H � F2
V

� �
þ S2ðFHFV þ FV FHÞ

" #
: ð8cÞ

Plugging these expressions into the Hamiltonian, we arrive at a
compact expression for the coupling of the Stokes vector compo-
nents to the atomic variables:

H ¼ �hv0

Dt
A0S0 þ A1S1 þ A2S2 þ A3S3ð Þ; ð9Þ

where the operators Ai are atomic observables:

A0 ¼ Cð0Þ � Cð2Þ
3F2

k � F2

6

 ! !
; A1 ¼ Cð2Þ

F2
H � F2

V

2

 !
; ð10aÞ

A2 ¼ Cð2Þ
FHFV þ FV FH

2

� �
; A3 ¼ Cð1ÞFk; ð10bÞ

with ek = eH � eV, the direction of propagation. The dimensionless
coupling constant,
-45º

SinS1

S2

S 3

2

3

R

L

H

V

45º

Fig. 2. Transformation of the Stokes vector on the Poincaré sphere. For an initially
linearly polarized field along the S1 direction, a rotation on the sphere about S3 by
an angle H3 / hFki corresponds to a physical rotation of the polarization vector by
H3/2, proportional to the atomic magnetization (the Faraday effect). A rotation
about S2 by an angle H2 / hFHFV + FVFHi corresponds to a change in the ellipticity of
the light (birefringence). For small angles of rotations, as occur in atomic vapors at
large probe detunings, the rotation angles and their correlation to associated atomic
observables appear as local displacements on the sphere. The Faraday effect is thus
measured as a displacement along S2 and birefringence as a displacement along S3.
These polarization changes can be detected as an intensity imbalance in the
photodetectors of an appropriately configured polarimeter (see Fig. 1).
v0 ¼ �
4px

Ac
a0 ¼

r0

A

� � C
2DF 0F

� �
; ð11Þ

is proportional to the fraction of light forward-scattered into the
probe mode by one atom, where r0 = 3k2/2p is the resonant cross
section for unit oscillator strength.

When the Hamiltonian is expressed as in Eq. (9), we explicitly
see the effects of the atoms on the dynamics of the field. The polar-
ization-independent index of refraction is set by the S0 term and is
uninteresting for our purposes here. The remaining terms generate
a rotation of the Stokes vector on the Poincaré sphere about an axis
and angle depending on the moments of the atomic spin distribu-
tion according to a unitary transformation, U ¼ e�iHDt=�h ¼ e�iv0A�S.
Rotation about the 3-axis precesses the Stokes vector in the equa-
torial plane of the Poincaré sphere by an amount proportional to
the atomic magnetization along the propagation direction – the
Faraday effect. Rotation about the 1-axis or 2-axis changes the
ellipticity of the probe – the signature of birefringence (see
Fig. 2). These interactions have the form necessary for QND mea-
surements of the three atomic observables through analysis of
each of the three Stokes vector components.

For an ensemble of atoms with density nA distributed in a vol-
ume V = AL, we treat the interaction between the probe Stokes vec-
tor and the NA = nAAL spins in the mean-field approximation, i.e., as
a sum over the expectation values of individual atoms,
HL ¼

PNA
i¼1 HðiÞAL

D E
. Assuming identical states for all spins, the light

couples to the atomic ensemble with an effective coupling constant
that is NA times that given in Eq. (11), NAv0 ¼ qODC= 2DF0Fð Þ, where
qOD = nAr0L is the ‘‘optical density” on resonance. The expected
rotation angles of the Stokes vector on the Poincaré sphere are then
determined by the mean moments of the atomic spin variables.
Following Eq. (10), these rotation angles, Hi ¼ NAv0hbAii, are

H1 ¼
qOD

4
F2

H � F2
V

D EX
F 0

Cð2ÞJ0F 0F

C
DFF0

; ð12aÞ

H2 ¼
qOD

4
FHFV þ FV FHh i

X
F0

Cð2ÞJ0F 0F

C
DFF 0

; ð12bÞ

H3 ¼
qOD

2
Fkh i
X

F0
Cð1ÞJ0F 0F

C
DFF 0

: ð12cÞ

In the limit where Hi� 1, the field’s Stokes vector is trans-
formed according to

Sout ¼ Sin þ ~H� Sin: ð13Þ

Maximum sensitivity in the measurement is achieved when the
polarimeter analyzes the output along a direction on the Poincaré
sphere (defined here as eout) orthogonal to the input. In this case,
the signal is approximately proportional to eout � Sout ¼ ðSin � eoutÞ
�~H. For example, taking the input polarization along the eH-direc-
tion, Sin = e1, an output analyzer along the linear diagonal directions
(±45�), eout = e2, performs an ensemble measurement of hFki via Far-
aday rotation, eout � Sout �H3, whereas an output analyzer in the cir-
cular basis, eout = e3, performs a measurement of the second order
atomic moment hFHFV + FVFHi due to birefringence in the sample,
eout � Sout �H2. Such measurements can be used to continuously
observe the dynamics of the atomic spin. Examples of continuous
measurement of this kind will be discussed in Section 3.2.

2.3. Spin dynamics

The atom-probe coupling Hamiltonian depends on the atomic
spin degrees of freedom through the tensor polarizability, and thus
have the potential to drive nontrivial dynamics of the atomic spins.
This evolution complements the transformation of the probe
Stokes vector described in the previous section. We restrict our
attention to probe fields described by a coherent state jE0i, defined
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by E(+)jE0i = (E0/2)jE0i, where E0 is the classical complex amplitude
for a probe polarization~e, so that the expectation value of the field
is E ¼ ReðE0~ee�ixLtÞ. With a coherent state input and no measure-
ment backaction the atoms remain uncorrelated, evolving inde-
pendently according to a light-shift Hamiltonian set by the probe
mean-field:

HA ¼ hE0jHALjE0i

¼
X

F 0
V0 Cð0ÞJ0F0F j~ej

2 þ iCð1ÞJ0F 0F
~e� �~e
� 	

� Fþ Cð2ÞJ0F0F j~e � Fj
2 � 1

3
F2j~ej2

� �
 �
;

ð14Þ

where j~e � Fj2 ¼ 1
2 ð~e � FÞ

yð~e � FÞ þ ð~e � FÞð~e � FÞy
h i

. The overall scale,

V0 ¼ �
1
4
a0 E0j j2 ¼

�hX2

4DFF0
¼ �hC

8
I

Isat

� �
C

DFF0
; ð15Þ

is the ac-Stark shift (light shift) associated with a field of intensity I
acting on a transition with unit oscillator strength and saturation
intensity Isat, detuned by DF0F from a hyperfine resonance, where
X ¼ hnPJ0 kdknS1=2iE0=�h is the characteristic Rabi frequency of the
D1 or D2 line.

The decomposition of the light-shift interaction into its irreduc-
ible tensor components reveals physically distinct effects. The
rank-0 component produces an equal energy level shift for all sub-
levels within a ground hyperfine manifold, depending only on the
total intensity of the field, and independent of its polarization~e. For
systems restricted to a given manifold F, this term does not drive
atomic dynamics. The rank-1 component is a Zeeman-like interac-
tion, H(1) = Bfict � F, with a fictitious magnetic field proportional to
ið~e� �~eÞ, and thus depends on the ellipticity of the probe polariza-
tion (photon spin). This component generates rotations of the
atomic spin about Bfict. The rank-2 component contains a nonlinear
light-shift proportional to j~e � Fj2, generating dynamics beyond
SU(2) rotations.

The relative strength of these different contributions depends
on the polarization of the light and the detuning from resonance.
For detunings that are small compared to the excited-state hyper-
fine splitting, the rank-2 and rank-1 contributions are of the same
order for a generic elliptical polarization. For much larger detu-
nings, the rank-1 dominates over the rank-2 contribution to the
light shift. The exception is for linear polarization, in which case
the fictitious magnetic field vanishes and the light shift within a
hyperfine manifold takes the form:

HA ¼
X

F 0
V0Cð2ÞJ0F 0Fð~e � FÞ

2 	 bð2Þ�hcsð~e � FÞ
2
; ð16Þ

where we have omitted constant terms that are independent of the
spin projection. In the second expression for this nonlinear light
shift Hamiltonian we have explicitly factored out the unit oscilla-
tor-strength photon scattering rate, cs = X2C/(4D2). We do this for
two reasons. First, our ability to drive control and coherent spin
dynamics is limited by decoherence arising from photon scattering.
The coefficient b(2) thus roughly determines how many nonlinear
oscillations can occur in a photon scattering time. Secondly, though
in general b(2) depends on detuning, for detunings large compared
to the excited-state hyperfine splitting, this coefficient becomes a
constant, according to Eq. (5c). This reminds us that the rank-2 light
shift can never be made arbitrarily large compared to photon scat-
tering, but in fact scales with detuning exactly as a scattering rate in
the large detuning limit. The ability to implement nonlinear spin
dynamics depends on achieving a favorable balance between the
two, as discussed in further detail in Section 3.

These considerations show that a complete description of spin-
control via the nonlinear light shift must include the effects of pho-
ton scattering in a quantitative manner. In the low saturation limit,
one can obtain a master equation solely for the ground-electronic
manifold via adiabatic elimination, as outlined in Appendix B.
The master equation for a single ground-state manifold F is

dq
dt
¼ � i

�h
Heff

A q� qHeffy
A

� �
þ C

X
q

WqqWy
q: ð17Þ

Here, the non-Hermitian effective atomic light-shift Hamiltonian is
obtained by substituting D ? D + iC/2 in the definition of the polar-
izability in Eq. (2) and taking the fields to be classical under the
coherent-state assumption as in Eq. (14):

Heff
A ¼ �

1
4

E�i Eja0ij; a0
$
¼ �1

�h

X
F 0

dFF 0dF 0F

DF0F þ iC=2
: ð18Þ

In the off-resonance limit, the effective Hamiltonian is well-approx-
imated through the addition of an imaginary part to the light-shift
amplitude in Eq. (15), V0 ? V0 � i⁄cs/2. The sum term in the master
equation Eq. (17) accounts for optical pumping that returns excita-
tion back to the hyperfine manifold of interest. Each ‘‘jump process”
corresponds to a cycle of absorption of a probe photon of polariza-
tion~e, excitation from the ground-manifold F to some excited man-
ifold, F

0
emission of a spontaneous photon with polarization eq, and

decay back to the original manifold. As shown in Appendix B, adia-
batic elimination gives the jump operators as

Wq ¼
X

F 0

X=2
DF 0F þ iC=2

e�q � DFF0

� �
~eL � DyF 0F
� 	

: ð19Þ

Here eq � DyF0F ¼
P

M;M0o
J0F0

JF hF
0M0jFM; 1qijF 0M0ihFMj are the dimension-

less raising operators from ground to excited sublevels, accounting
for the Clebsch–Gordan coefficients for the different dipole transi-
tions and the relative oscillator strengths for the transitions
S1=2;F $ PJ0 ;F0 ; o

J0F0

JF (see Eq. (A2)). In the rate equation limit, it follows
that the optical pumping transition rate from Fm1 to Fm2 is

cFM1 ! FM2
¼
X

q

jhFM2jWqjFM1ij2

¼ X2C
4

X
q

X
F 0

hFM2j e�q � DFF0

� �
~e � DyF 0F
� 	

jFM1i
DF 0F þ iC=2

������
������
2

; ð20Þ

in agreement with the Kramers–Heisenberg formula [33]. This
equation explicitly shows the interference between different scat-
tering paths through virtual excitation to the excited states F

0
. Note

that the master equation in Eq. (17) is not trace-preserving, as pop-
ulation can be optically pumped to the other ground hyperfine
manifold. The large ground hyperfine splitting ensures both that
this population is invisible to the probe, and that it is unlikely to
be optically repumped back into the manifold of interest. A more
complete description, including all hyperfine sublevels, can be
found in Appendix B.

For detunings much larger than the excited-state hyperfine
splitting, processes associated with the irreducible rank-2 tensor
interaction interfere destructively. In addition to a reduction of
the light-shift interaction to only scalar and vector terms, optical
pumping transitions with DM = ±2 vanish. Quantitatively, using
the decomposition of the polarizability tensor into its irreducible
components Eq. (A12), the jump operators can be expressed as

e�q � DFF 0D
y
F 0F

� 	
�~eL

¼ Cð0ÞJ0F 0Fe�q �~eL þ iCð1ÞJ0F0F e�q �~eL

� �
� F

þ Cð2ÞJ0F 0F

e�q � F
� �

~eL � F
� 	

þ ~eL � F
� 	

e�q � F
� �

2
� 1

3
e�q �~eL

��� ���2F2

24 35: ð21Þ
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Fig. 3. Larmor precession of a hyperfine spin in the presence of a static magnetic field and a linearly polarized probe field. (a) Theoretical model based on the master Eq. (17)
and including an average over a distribution of nonlinear strengths, as described in the text. (b) Experimental data measured via polarization spectroscopy. The nonlinearity
gives rise to collapse and revivals of the Larmor precession signal, while photon scattering and variations in the nonlinearity both contribute to overall damping at later times.
Detailed parameter values are given in the text.
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When the detuning is approximately independent of F
0
it can be fac-

tored out of the sum, and the spontaneous ‘‘feeding” terms in the
master equation become:

dq
dt

����
feed
¼ cs

X
q

fW qqfW y
q; ð22aÞ

fW q ¼
X

F 0
e�q � DFF 0D

y
F0F

� 	
�~eL ¼ Cð0ÞJ0F e�q �~eL þ iCð1ÞJ0F e�q �~eL

� �
� F; ð22bÞ

with the coefficients CðKÞJ0F defined in Eq. (4).
As an example, consider an atom driven on the D2 line by a

probe that is linearly polarized and detuned far from the excited-
state hyperfine multiplet compared to the hyperfine splitting.
The effective atomic Hamiltonian is approximately given as,
Heff

A ¼ HA � i�hðcs=3Þ1̂, and the jump operators become:

fW 0 ¼
2
3

1̂;fW
1 ¼
gF

3
ffiffiffi
2
p F�; ð23Þ

where F± = Fx ± iFy are the angular momentum raising and lowering
operators. The master equation then takes the form:

dq
dt
¼ � i

�h
HA;q½ � � 2

9
csqþ

g2
F

18
cs FþqF� þ F�qFþð Þ: ð24Þ

As a comparison, consider a hypothetical atom with zero nuclear
spin. In that case, given linear polarization, HA / 1̂; gF ¼ gs ¼ 2,
and thus:

dq
dt
¼ �2

9
csqþ

2
9
cs rþqr� þ r�qrþð Þ: ð25Þ

This is a trace-preserving map describing optical pumping in
the two-level system, familiar from, e.g., the theory of Sisyphus
cooling [34].

As an example of nontrivial spin dynamics, we consider Larmor
precession of a spin F in a static magnetic field, in the presence of
an x-polarized probe field that gives rise to both a tensor light shift
and photon scattering. Choosing the static magnetic field along the
x-direction, the master equation is given by Eq. (17), with the effec-
tive Hamiltonian now accounting for both magnetic and optical
interactions, taking the form Heff

A ¼ �hXLarFx þ �hcsðb
ð2Þ � i=2ÞF2

x ,
where XLar = gFlBB/⁄ is the Larmor frequency, and b(2) is defined
in Eq. (16). For concreteness, we consider an experiment with
133Cs atoms initially prepared in the F = 3 manifold with maximum
projection along y. We set the Larmor frequency to XLar/
2p = 17.5 kHz, and tune the probe field �524 MHz to the red of
the 6S1/2(F = 3) ? 6P1/2(F

0
= 4) transition, approximately halfway

between the two components of the D1 line, where the tensor light
shift is greatest and the nonlinear coefficient b(2) � 8.2. The probe
intensity is chosen so the average time between photon scattering
events is c�1

s � 2:5 ms, and the period of nonlinear oscillation is
ðbð2Þcs=2pÞ�1 � 1:9 ms. Fig. 3 shows the corresponding evolution
of hFz(t)i, consisting of rapid oscillations at the Larmor frequency,
a series of collapse and revivals on the expected timescale for non-
linear oscillation, and an overall signal decay on a timescale
roughly equal to c�1

s . In this particular example, the overall decay
occurs in part due to photon scattering and optical pumping, and
in part due to variations in probe intensity and accompanying non-
linear strength /cs across the spin ensemble. The latter leads to a
spread in the timescale for nonlinear oscillation, and thus a smear-
ing and reduction in the amplitude of the later revivals. Neverthe-
less, for the parameters chosen here we see at least six distinct
revivals, demonstrating that a considerable degree of nonlinear
evolution can be achieved before the system decoheres or depha-
ses. Note also the close agreement between the prediction of a full
theoretical model based on the master equation (Eq. (17)) and
including a statistical average over the nonlinear strengths
(Fig. 3a), and the experimentally measured signal (Fig. 3b). This
underscores the considerable precision with which the system
can be characterized in the laboratory, and modeled according to
the formalism presented here. These capabilities form the founda-
tion for applications in quantum control and measurement, as dis-
cussed in more detail in the following section.

3. Application to quantum control and measurement

Quantum control and measurement are typically considered
separate tasks, but when both are accomplished by coupling the
quantum system of interest to ancillary fields they become flip
sides of the same coin. In the quantum control scenario, the goal
is to affect a dynamical map on the quantum system through the
application of one or more control fields, while the goal of quan-
tum measurement is to transfer quantum information about the
system to one or more of probe fields, which are subsequently read
out as macroscopic classical signals. In our case the coupling be-
tween atomic spins and the polarization of a single probe field is
central to both, simultaneously driving spin dynamics according
to the Hamiltonian in Eq. (14) and rotations of the Stokes vector
on the Poincaré sphere according to Eq. (9). In this section we de-
scribe in detail some of the protocols we have designed and imple-
mented for control and measurement in this system.

3.1. Quantum control

In closed-system dynamics, a quantum system is said to be con-
trollable if, given the available Hamiltonian interactions, there
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exists a possible route to implement an arbitrary unitary map on
the Hilbert space of interest. Group theory provides the natural
framework in which to study quantum controllability [35]. For a
d-dimensional Hilbert space, the goal is to implement an arbitrary
map U in the group SU(d). At our disposal is a time-dependent
Hamiltonian of the form:

HðtÞ ¼
Xjmax

j¼1

kðjÞðtÞhj; ð26Þ

where {k(j)(t)} are c-number ‘‘control waveforms” that are functions
of the applied classical fields, and {hj} are a set of available time
independent Hamiltonians.

All unitary maps generated by the Hamiltonian are functionals
of the control fields according to the time-ordered product:

Ut kð1Þ; . . . ; k jmaxð Þ
h i

¼ T exp � i
�h

X
j

Z t

0
dt0kðjÞðt0Þhj

 !( )
: ð27Þ

In general, the infinitesimal generators of these maps form a Lie
algebra, defined as the span of linear combinations of {hj} and any
multiple commutators of members of the set. A system with this
time-dependent Hamiltonian, acting on a finite dimensional Hilbert
space of dimension d is then said to be controllable if and only if {hj}
is a generating set for the full Lie algebra of interest, su(d) [35].

In the context of the atomic system at hand, controllability of a
spin in a hyperfine manifold with total angular momentum F re-
quires a set of Hamiltonian interactions that generate the Lie group
SU(2F + 1). For a linear Zeeman interaction HZ(t) � B(t) � F, the set of
scaled control Hamiltonians, {Fx,Fy,Fz}, form a basis for the Lie alge-
bra su(2). Since the group SU(2) consists solely of geometric rota-
tions, this interaction leads to full controllability only for F = 1/2.
For F > 1/2 one requires an interaction that is nonlinear in some
component of the spin, such as the Hamiltonian arising from the
irreducible rank-2 light shift in Eq. (16). Consider, for example,
the light-shift interaction induced by a probe field that is linearly
polarized along the x-direction. Ignoring constant terms within
the hyperfine subspace, the light-shift Hamiltonian reduces to Eq.
(16) and takes the form HLS ¼ bð2Þ�hcsF

2
x . Such an interaction is

known to produce squeezed states [36] and so-called ‘‘cat-states”
in F > 1/2 spin systems [37], and must therefore be able to generate
maps that are more general than geometrical rotations. To achieve
full controllability, one must combine this nonlinear interaction
with other noncommuting Hamiltonians. A minimal generating
set is Fx; Fy; F

2
x

n o
. This can be seen as follows. Multiple commuta-

tors of the linear set {Fx,Fy} close to the finite set {Fx,Fy,Fz}, and thus
generate su(2). Commutators with the nonlinear terms, however,
produce new generators. For example, F2

x ; Fz

h i
¼ �iðFxFy þ FyFxÞ is

an addition to the set. Multiple commutators will eventually span
all polynomials in the components of F, and thus the entire Lie
algebra of su(2F + 1), for an arbitrary F.

We can implement this minimal generating set based on the
Zeeman interaction between an atomic spin and a constant-magni-
tude magnetic field rotating in the x–y plane, combined with a con-
stant nonlinear light shift from an x-polarized probe field. The total
control Hamiltonian then takes the form:

HðtÞ ¼ �hXLarðcos hðtÞFx þ sin hðtÞFyÞ þ bð2Þ�hcsF
2
x ; ð28Þ

where h(t) is the time-dependent angle of the magnetic field with
respect to the x-axis.

Given the Hamiltonian in Eq. (28), a unitary map on the spin is
determined by the time-dependent direction of the magnetic field,
set by h(t). While controllability guarantees that such a function
exists for any unitary matrix of interest, in general there are no
constructive algorithms for finding it. Instead, one must employ
the methods of ‘‘optimal control” and perform a numerical search
for the best approximation to U by maximizing an objective func-
tion with respect to the control waveform. The computational
complexity of such an optimization depends on the quantum con-
trol task at hand. In a series of papers, Rabitz and coworkers ex-
plored the structure of the ‘‘control landscape” [38–41], i.e., the
hypersurface representing the objective as a function of the control
waveform. The landscape for a general unitary map is not favor-
able, and empirical studies show that the numerical effort required
to find optimal solutions grows exponentially with the dimension
of the Hilbert space [41].

A simple but important special control task is state-to-state
mapping, or state-preparation, i.e., finding a control waveform that
maps a known fiducial state jw0i to an arbitrary desired target state
jwti. Imposing only the requirement jwti = Ujw0i is equivalent to
specifying just one column of a unitary matrix, with no constraint
whatsoever on the action of U on the orthogonal complement to
jw0i. In this situation there is no unique solution, and the added
freedom in designing U makes the topology of the control land-
scape much more amenable to numerical optimization. In an
important theorem, Rabitz et al. proved that for perfect Hamilto-
nian evolution with an arbitrarily long duration, all local optima
of the objective function are also global optima [38], and each opti-
mum is located on a high-dimensional manifold that slopes gently
towards it [39]. This favorable landscape greatly simplifies the
search for control waveforms, guaranteeing that a simple gradient
ascent from a random starting point will end in a global optimum.
Note that the theorem is strictly true only in the ideal case, with no
decoherence, no errors in the control Hamiltonian, and arbitrarily
long control time. Nevertheless, we have found that control wave-
forms determined for these ideal conditions serve as excellent
starting points for further optimization that take into account
experimental imperfections.

Numerical optimization of the control waveform requires that it
be specified by a finite number of parameters. To do this we pick
some fixed control time T, short compared to the decoherence time
but long enough to reach an arbitrary state, coarse-grain by speci-
fying the angles at discrete times, hi = h(ti), and interpolate between
them in a manner consistent with experimental constraints on the
bandwidths and slew rates of the control fields. Propagating the
state according to pure Hamiltonian evolution allows us to deter-
mine the final state, jwðTÞi ¼ Uð~hÞjw0i, as a function of the vector
~h containing the coarse-grained values hi. Having set up the prob-
lem in this way, we can optimize the fidelity of the prepared state
relative to the target state, Fð~hÞ ¼ jhwt jUð~hÞjw0ij

2. Given a random
initial seed vector, ~hð0Þ, a search through a gradient ascent,
~hðnþ1Þ ¼~hðnÞ þ e~rFð~hÞ, will quickly converge on a local optimum.
Empirically, we find that the finite control time available for our
system is not a significant limitation, and that we can reach a typ-
ical fidelity >99% from an arbitrary seed. Having found a set of can-
didate control waveforms, it is usually desirable to perform a
second round of optimization that accounts for decoherence from
photon scattering, as well as statistical variations in the control
waveform across our atomic ensemble. A simple way to do this
is to check the candidate waveforms one by one, plugging the con-
trol fields into the master equation, Eq. (17), and integrating to find
the corresponding final state qð~hÞ. The optimal choice is then the
waveform that maximizes the fidelity Fð~hÞ ¼ hwt jqð~hÞjwti.

We have tested the above procedure in experiments with
ensembles of laser cooled and optically pumped Cs atoms, as
described in detail in [26]. As discussed in Section 2.3, Cs is a
good choice for such work because of the large hyperfine splitting
of the 6P1/2 excited-state manifold. By tuning the probe frequency
approximately halfway between the transitions to the 6P1/2(F

0
= 3)

and 6P1/2(F
0
= 4) states, we obtain a nonlinear coefficient b(2) � 8.2,

the largest possible for any of the alkalis. Since b(2) is a measure of
the relative rates of nonlinear evolution and decoherence from



3
0

−3
3

0

−3

0

0.5

1

−1

−0.5

0

0.5

1

-90

-45

0

45

90

0 0.1 0.2 0.3
Time [ms]

(a)
(b)(1)

(2)

(4)

(3)

(3) (4)(2)(1)
θ

 

ρM  M 

 

M 

 

M

[o ]

Fig. 4. Quantum control of an atomic spin. (a) Example of a control waveform h(t) specifying the direction of a constant-magnitude magnetic field in the x � y plane. (1–4)
Wigner functions calculated at four stages during the control sequence. Both Bloch hemispheres are shown. The final result is close to the target state jwti / jM = 2i + jM = �2i
(b) Density matrix (absolute values) and Wigner function for jwti. From [26].

0.87 0.91

  (a) (b)

3

0

−3
3

0

−3

0

0.5

1

3

0

−3
3

0

−3

0

0.5

1

3
0

−3
3

0

−3

0

0.5

1

3

0

−3
3

0

−3

0

0.5

1 0.97

3

0
−3

3

0

−3

0

0.5

1

3
0

−3
3

0

−3

0

0.5

1

  (c)

M
M’

ρ
MM’

M
M’

ρ
MM’

ρ
MM’

M M’

MM

M

M’ M’

M’

ρ
MM’ ρ

MM’

ρ
MM’

Fig. 5. Examples of target and measured density matrices (absolute values). The target states are (a) ðjMz ¼ 2i þ jMz ¼ �2iÞ=
ffiffiffi
2
p

, (b) jMx = 2i and (c)
P

My
MyjMyi. The fidelity

between target and measured states is indicated in each case. From [26].

688 I.H. Deutsch, P.S. Jessen / Optics Communications 283 (2010) 681–694
photon scattering, this value suggests that quantum-state mapping
is possible but that a non-negligible infidelity is likely to result
from photon scattering. Detailed simulations for the same param-
eters as used in Fig. 3 show that fidelities in excess of 90% are
possible if there are no errors in the control fields. Fig. 4 shows
an example of a control waveform, designed to map an initial state
jF = 3,M = 3i in the F = 3 ground-state manifold to a nontrivial
superposition of magnetic sublevels. Also shown are theoretical
predictions for the evolving state, as expressed on the Bloch sphere
by a spin Wigner-function representation. For clarity the states are
shown in a rotating frame to transform away overall rotations
caused by the control magnetic field. We see that the effect of
the nonlinear light-shift is to squeeze the initial spin coherent
state, as expected for an F2

x interaction. Eventually, the Wigner
function is elongated to the point where it wraps around the Bloch
sphere and nonclassical interference is exhibited. The role of the
time-dependent magnetic field is to move and rotate the Wigner
function on the Bloch sphere, thereby modifying the squeezing
and interference so that, at the end of the waveform, the evolved
state comes as close as possible to the target state. Note that the
cumulative rotation on the Bloch sphere is quite large, and that a
small over- or under-rotation can degrade the fidelity consider-
ably. Fig. 5 shows examples of three target states, along with the
states produced in the laboratory. The latter were determined by
the quantum-state reconstruction procedure outlined in the next
section. For these examples the observed fidelities are quite high;
in the course of more than 100 trials producing 21 different states,
we observe typical fidelities in the range 70-90%. Factoring out
small under- and over-rotations and taking into account the
�90% fidelity of our quantum-state reconstruction puts most of
these fidelities in the 80-90% range, in good agreement with the
�90% predicted by the theoretical model used to design the
control waveforms in the first place.

3.2. Measurement

3.2.1. Quantum measurement backaction
Kastler first proposed the use of off-resonant light to probe the

spin state of atoms [42], and the idea was subsequently demon-
strated in experiments by Manuel and Cohen-Tannoudji [43]. In
the modern quantum optics context, the light-shift interaction be-
tween atomic spins and a probe field provides a realization of
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quantum measurement in the classic von Neumann paradigm –
the quantum system (spins) is coupled to a quantum ‘‘meter”
(probe polarization) for some time, and then the meter is read
out by polarization analysis. In this fashion we can continuously
monitor one of several possible spin observables that correlate
with rotations of the Stokes vector on the Poincaré sphere
[14,44]. For example, if the state of the probe is initially one of lin-
ear polarization along x, and we choose to measure the probe Far-
aday rotation then we obtain a (classical) signal proportional to the
atomic magnetization Fz. If instead we choose to measure the
probe ellipticity then we obtain a signal proportional to the atomic
alignment, FxFy + FyFx, as discussed in Section 2.

Experiments of this type invariably works with atomic ensem-
bles, and one typically assumes the probe field couples identically
to every ensemble member. In principle, a measurement of the
probe’s Stokes vector can then reveal information about the
many-body state of the collection of spins. For this to be the case,
the quantum uncertainty of the measured observable must be
greater than the fundamental resolution of the quantum probe
[15]. The quantum uncertainty of the observable is often referred
to as ‘‘projection noise” because repeated strong measurements
on identically prepared spins will produce values that fluctuate
randomly within the uncertainty distribution, and cause measure-
ment backaction that modify the state accordingly (in the extreme
case of a very strong measurement, the backaction is a projection
onto an eigenstate of the observable) [45]. The fundamental reso-
lution of the quantum probe is set by shot noise in the polarimeter
photodetectors. We show below that for a dilute sample, such as
that produced by a typical magneto-optic-trap, shot noise domi-
nates over projection noise and measurement backaction can be
neglected on timescales shorter than the photon scattering time.
In this situation, if we start with a sample of NA uncorrelated spins,
the mean polarimetry signal is NA times the signal expected from a
single spin, and the probe shot-noise alone determines the signal
fluctuations. A weak continuous measurement of this type is very
useful for single-atom measurement and control, and serves as
the basis for, e.g., experimental quantum-state reconstruction.
Ultimately, the creation and control of many-body states, such as
spin-squeezed states of the collective spin, requires ensembles that
are optically dense on resonance, an avenue that is currently ex-
plored in a number of laboratories [17].

We can quantify the effect of backaction using the theory of
completely positive maps [2]. The probe must now be treated as a
quantum field with Stokes vector components defined according
to Eq. (7). We assume that all of the spins are identically coupled
to the same mode of the field, so that the probe couples to the
‘‘collective spin” F 	

P
if
ðiÞ, where for clarity we henceforth denote

the single spins by lower case letters and the collective spin operator
with a capital letter. Consider, e.g., a Faraday rotation measurement
which correlates the collective atomic magnetization Fz to the field
Stokes vector component S3. The coupling is established by the
unitary transformation UAL = exp[ � ivFzS3], where v = v0/(3f) is
the Faraday rotation angle per unit angular momentum, for a single
spin and for a probe detuning much larger than the excited-state
hyperfine splitting (see Eqs. (4),(9),(10)). We further assume that
the probe pulse contains a large photon number NL, and is initially
prepared with linear polarization in the x-direction. For physically
reasonable Faraday rotation angles, the 1-component of the Stokes
vector is approximately constant, S1 �

ffiffiffiffiffiffiffiffiffiffiffi
NL=2

p
, and the Poincaré

sphere is well-approximated by a phase-plane in which the
probe is described by a set of canonical coordinates according to
the Holstein-Primakov approximation, XL ¼ S2=

ffiffiffiffiffiffiffiffiffiffiffi
NL=2

p
; PL ¼ S3=ffiffiffiffiffiffiffiffiffiffiffi

NL=2
p

; ½XL; PL� � i. Faraday rotation then corresponds to an
X-displacement in the ‘‘Poincaré plane” proportional to the atomic
magnetization, and the corresponding unitary can be written as
UAL ¼ exp �iðv

ffiffiffiffiffiffiffiffiffiffiffi
NL=2

p
FzÞPL

h i
.

The resolution of the polarimeter follows from the general the-
ory of quantum measurement [2]. In the Holstein–Primakov
approximation, the initially x-polarized probe pulse is represented
by the vacuum state j0Li, which has mean values hXLi = hPLi = 0 and
vacuum fluctuations DX2

L ¼ DP2
L ¼ 1=2. After the probe is coupled

to the spins via the Faraday interaction, the outcomes of measuring
S2 are characterized by the eigenvectors jXLi and Kraus operators
AXL ¼ hXLjUALj0Li. For a given atomic state qA, the probability of
observing the value XL with the polarimeter is PrXL ¼ TrðqAEXL Þ,
where the POVM element is given by

EXL ¼ AyXL
AXL ¼ hXLje�i

ffiffiffiffiffiffiffiffi
NL=2
p

vFz

� 	
PL j0i

���� ����2 ¼ e� XL�v
ffiffiffiffiffiffiffiffi
NL=2
p

Fz

� 	2

¼ exp �
Fz � XL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=v2NL

p� �2

2=ðv2NLÞ

264
375: ð29Þ

The measurement results are Gaussian distributed about a mean
XL ¼

ffiffiffiffiffiffiffiffiffiffiffi
NL=2

p
vhFzi, with a variance of 1/2 caused by shot noise. Intu-

itively, the minimum resolvable value of hFzi can be determined by
setting the corresponding signal equal to the root-mean-square of
the shot noise, which yields hFzimin ¼ 1= v

ffiffiffiffiffiffi
NL
p� 	

. More formally, gi-
ven a measurement value XL, the post-measurement state of the
atomic spin ensemble is given by the update rule,
q) AXLqAþXL

=PrXL . As seen from Eq. (29), the update on the distribu-
tion of collective Fz values is a Gaussian filter of width
ðDF2

z ÞSN ¼ 1=ðNLv2Þ, corresponding to the shot-noise limited resolu-
tion of the polarimeter. One commonly defines the measurement
strength in terms of the rate of decrease in the measurement vari-
ance [46],

j 	 1
ðDF2

z ÞSNs
¼ v2 NL

s
¼ 1

ð3f Þ2
r0

A
cs; ð30Þ

proportional to the rate of photon scattering into the probe by a sin-
gle spin.

The shot-noise limited resolution must now be compared with
the quantum fluctuations of the atomic magnetization relative to
its expected value. For an ensemble of NA uncorrelated atoms in
a spin coherent state, the projection noise variance is NA times that
of an individual spin, DF2

z

� �
PN
¼ NADf 2

z ¼ NAf=2 (the standard
quantum limit). Backaction is important when the uncertainty
from projection noise dominates over the shot-noise variance,
and we can characterize its importance in terms of the key
parameter:

n 	
DF2

z

� �
PN

DF2
z

� �
SN

¼ f
2

NLNAv2 ¼ 1
18f

qODcss: ð31Þ

Here, the optical density on resonance, qOD = NAr0/A, and photon
scattering rate, cs = (Ir0/⁄x)(C2/4D2), are defined for a two-level
transition with unit oscillator strength, whose optical scattering
cross section is r0 = 3k2/2p. Physically, this parameter quantifies
the probability of scattering a photon into the probe mode. It is this
process that leads to entanglement between the spin ensemble and
the probe polarization, and the possibility of backaction on the
quantum many-body state after a polarization measurement on
the probe [12]. Significant backaction thus requires n
 1. In gen-
eral, there is also some probability for scattering photons into other
modes of the electromagnetic field, which leads to decoherence as
described by the master equation in Section 2.2. This process is
characterized by the photon scattering rate cs, and this limits the
useful measurement window to times s � c�1

s . As a result, signifi-
cant backaction can be achieved only for high optical densities on
resonance, qOD
 1, much larger than those achieved in a typical
magneto-optic-trap, but accessible in vapor cells [4] and optical
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dipole traps [17], or with the enhanced coupling strength available
in an optical cavity [21].

For optically thin samples, projection noise is masked by shot
noise, and quantum backaction is negligible. In that case, an
ensemble of NA atoms will remain uncorrelated for any time short-
er than the coherence time s � c�1

s , and we can assume the collec-
tive spin remains in a product state q�NA . Continuous measurement
of an observable O will then lead to a record that is Gaussian dis-
tributed about the expected value. A stochastic realization can be
modeled as

MðtÞ ¼ NAhOit þ rWt; ð32Þ

where hOit = Tr(Oq(t)) is the mean signal. The second term repre-
sents white noise modeled as a Wiener process, where Wt is a
Gaussian random variable of unit variance, and r2 = 1/js is the
shot-noise variance.

3.2.2. Quantum-state reconstruction
The combination of weak continuous measurement and quan-

tum control provides a powerful tool for robust and efficient quan-
tum-state reconstruction (QSR). The standard paradigm for QSR
involves a series of repeated, strong measurements for each mem-
ber of an informationally complete set of observables [47]. The pro-
cedure is time consuming because the number of real parameters
required to specify a general state of d-dimensional system scales
as d2, and more so because strong backaction erases information
about complementary observables and thus requires a freshly pre-
pared copy of the quantum state for each new measurement. Fur-
ther complexity is added if the measurement apparatus needs to
be reconfigured each time a new observable is measured. In con-
trast, a weak continuous measurement performed simultaneously
across a single, large ensemble, combined with a suitable dynami-
cal evolution of the ensemble members, allows us to extract com-
plete information about the state from a continuous measurement
record.

In the weak backaction regime, continuous measurement of the
observable O leads to a signal of the form given by Eq. (32). The
requirement for informational completeness is then equivalent to
the requirement of controllability. We can write the time-depen-
dent expectation value in the Heisenberg picture, hOit = Tr(q0O(t)),
where q0 is the initial state and O(t) is the time-evolved observa-
ble. This illustrates how new information about the initial state be-
comes available in the measurement record as the system evolves,
and shows that complete information is obtained when, in the
course of time, O(t) spans the space of Hermitian matrices. In the
absence of noise, the measurement record uniquely specifies the
0 0.5 1 1.5

Time [ms]

(a)

Fig. 6. Continuous measurement and QSR. (a) Simulated (dark blue) and observed (light r
(middle) and a nearly maximally mixed state (bottom). (b) Input and estimated d
measurement records. From [25]. (For interpretation of the references to color in this fi
state. Shot noise reduces the problem to stochastic estimation,
but noise can be averaged out over time if decoherence does not
erase the state before complete information is retrieved. For a suf-
ficiently large signal-to-noise ratio, the measurement record from
a single ensemble provides a unique fingerprint of the initial state
and enables us to perform high-fidelity QSR.

A brief description of our QSR algorithm follows. The initial den-
sity matrix is decomposed in an arbitrary orthonormal basis of
Hermitian matrices q0 ¼

P
ara
bEa. In general we take the density

matrix to be unit trace, though in practice, population in the sub-
space of interest can decrease due to loss processes in the experi-
ment. This leaves d2 � 1 basis matrices and real parameters.
Discretizing the signal into bins set by the detector bandwidth,
the measurement record time-series is

Mi ¼ NATr O tið Þq0ð Þ ¼ NA

X
a

eOiara þ rWi; ð33Þ

where eOia 	 TrðOðtiÞbEaÞ is a rectangular matrix of real numbers. Be-
cause of shot noise, perfect inversion is not possible, but because
the statistics are approximately Gaussian, a least-squares-fit (max-
imum likelihood (ML) estimate) is given by the Moore–Penrose
pseudo-inverse:

rML
a ¼ NA

X
i

ðeOT eOÞ�1
ab
eOT

biMi: ð34Þ

In the absence of noise, the ML estimate will be an exact reconstruc-
tion when eOT eO is a full-rank square matrix (this defines an informa-
tionally complete set of observables). In the presence of noise, the
fidelity will be imperfect. In particular, whereas the parameteriza-
tion we have chosen ensures that the density matrix is Hermitian,
it does not ensure that the reconstructed state is positive semidef-
inite, as required. The closest positive (physical) density matrix to
the ML estimate, Eq. (34), can be found efficiently through convex
optimization via a linear program [48,49].

Beyond the finite SNR, the reconstruction algorithm is limited
by nonideal dynamics. Fundamentally, probing the spin with an
optical field causes decoherence due to photon scattering into
modes other than the probe. O(t) thus does not evolve according
to a unitary transformation, but instead according to an irrevers-
ible map that eventually will map O to the identity, at which time
no further information about the state can be retrieved. In addition,
inhomogeneities across the sample can interfere with the dynam-
ical control, thereby degrading the accuracy of the intended
observables O(ti) and the information retrieved by the measure-
ment. Successful QSR therefore requires that the dynamical control
be fast enough to generate an informationally complete set of
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observables on a timescale shorter than those set by decoherence
and dephasing.

The atomic spin/optical system is well suited for the above ap-
proach to QSR, and we have implemented it in the laboratory as
described in [23,24]. First, we configure our polarimeter to mea-
sure ellipticity, i.e., rotation of the probe Stokes vector around
the 2-axis. According to Section 2.1, this measurement correlates
to the mean atomic moment hOi = hFHFV + FVFHi. Second, we design
a magnetic field waveform that maps this observable onto an infor-
mationally complete set in T � 1.5 ms, using the same general
parameter values as for Figs. 3–5. Fig. 6a shows three examples
of measurement records obtained in the laboratory, compared to
the predicted measurement records from a full model simulation
based on the master equation (Eq. (17)), and including a statistical
average over the spatial distribution of probe intensities. The gen-
eral parameter values are the same as used in Fig. 3. Two points are
of note from this figure. Firstly, the simulated measurements are
an extremely accurate model of the experimental data, and
secondly, each initial state has its own distinct fingerprint in the
measurement record. It is these facts in combination that allow
high-fidelity quantum-state construction, as shown by the initially
prepared and reconstructed states in Fig. 6b. It is instructive also to
perform QSR based on the measurement record prior to a certain
time t < T, and then consider the reconstruction fidelity as a func-
(c)
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Fig. 7. Evolving fidelity, state estimate, and purity during QSR. Plots show the
fidelity of the estimate qML (light red) and the largest eigenvalue (dark blue) of the
evolving state as a function of elapsed measurement time, for the input states in
Fig. 6. Inserts show the estimated density matrices (absolute values only) at a few
representative times. From [25]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
tion of t as shown in Fig. 7. For short times, long before the dynam-
ics has generated an informationally complete set of observables,
the reconstructed state fluctuates randomly and the fidelity is
low. After about 300 ls, the generated observables span a suffi-
cient subspace of Hermitian matrices for the extracted informa-
tion, combined with the positivity constraint on the state, to
allow QSR with reasonable fidelity. After 1.5 ms the generated set
of observables is near complete, and the QSR fidelity approaches
unity even for ‘‘difficult” states such as the maximally mixed state.
4. Summary and outlook

In this article we have revisited the quantum interface between
an ensemble of alkali atomic spins and an optical probe field as a
means to perform quantum-state control and measurement. We
have emphasized the dual features of this interaction: the polariza-
tion-dependent light-shift acts to drive dynamics of the atomic
spin, while the spin-dependent index of refraction acts to affect
the probe’s polarization dynamics. The former provides an essen-
tial ingredient that allows for full quantum control of the atomic
dynamics, while the latter allows us to continuously measure
ensemble averages of atom-spin observables through polarization
spectroscopy.

By introducing an irreducible tensor decomposition, one sees
how different moments of the atomic spin distribution are coupled
to the components of the field’s polarization, parameterized by the
Stokes vector. Transmission of the probe through the atomic gas
thus leads to rotation of the Stokes vector on the Poincaré sphere,
corresponding to birefringence and/or the Faraday effect. Detection
in a well-chosen polarization analyzer yields a QND measurement
of the corresponding atomic observable.

The irreducible tensor decomposition also gives insight into the
field-driven atomic spin dynamics. The rank-1 component gives
rise to a Zeeman-like Hamiltonian, with a fictitious magnetic field
that is proportional to the ellipticity of the probe polarization. The
rank-2 component of the interaction gives rise to a Hamiltonian
that is nonlinear in the components of the spin angular momentum
operators, and thus to richer dynamics than simple spin rotations.
When the excited-state hyperfine splitting is large, the strength of
the nonlinearity can be sufficient that it dominates the atomic
dynamics over several scattering times. Ultimately, the nonlinear
interaction cannot be made arbitrarily large compared to the rate
of photon scattering, because the two effects scale with probe
parameters in the same way when the detuning is large compared
to the excited-state hyperfine splitting. In this situation an accu-
rate master equation treatment is essential, and we have included
a full derivation in Appendix B, including all optical pumping and
light-shift processes.

With theoretical models in hand, we have reviewed the proto-
cols for quantum control and measurement that we have imple-
mented in the laboratory. The electronic-ground-state hyperfine
manifolds of 133Cs, with F = 3 or 4, span moderately sized Hilbert
spaces of dimension d = 2F + 1, on which control is nontrivial. The
combination of time-varying magnetic fields and a nonlinear spin
rotation arising from the irreducible rank-2 light-shift interaction
are sufficient to generate an arbitrary unitary transformation on
either of these Hilbert spaces. Focusing on the F = 3 manifold and
employing the techniques of optimal control, we found time-
dependent control fields that drive a state mapping from a spin-
polarized state to an arbitrary superposition of magnetic sublevels.
To verify this, one must perform full quantum-state tomography.
We have designed and implemented a protocol whereby we utilize
our capacity to generate an arbitrary unitary map in order to gen-
erate an ‘‘informationally complete measurement record”. Here,
the probe field acts both to drive the nonlinear dynamics of the
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evolving spins that generate new information, and as the meter in
a weak measurement of the spin state when analyzed in a polarim-
eter. The continuous measurement record can then be inverted to
determine the initial spin state.

While the tools we have developed so far have been used for
high-fidelity control and measurement, they can be substantially
improved and extended. Firstly, the nonlinear dynamics of the
spins, essential for full controllability of the Hilbert space, arise
from a light-shift interaction that is intrinsically tied to photon
scattering, and thus has a limited figure of merit for nonlinear evo-
lution vs. decoherence rates. One can achieve the same controlla-
bility by introducing resonant microwave and radio-frequency
oscillating magnetic fields. We have recently completed an initial
theoretical study of this system, and seen that we can achieve full
control on the 16 dimensional 6S1/2 subspace of 133Cs in �150 ls,
with accessible experimental parameters [50]. Such control must
be combined with a continuous measurement protocol to allow
for QSR in the entire ground-manifold. Secondly, our control objec-
tive to date has been state mapping from an initially known fidu-
cial state. A more challenging and powerful goal is to design
control fields that implement a full unitary map on any unknown
quantum state. Such maps are of importance for implementing,
e.g., unitary logic gates on qudits (d > 2 subsystems used to store
quantum information) [2]. We have developed a constructive pro-
tocol to efficiently design these unitary maps that leverages off of
the simplicity of state-to-state maps [51]. Implementation of such
a protocol will require the design of highly robust, fast, and coher-
ent controls for state mapping.

Finally, we have restricted our attention here to quantum con-
trol and measurement of single atomic spins. This leaves out new
and interesting physics that plays out in the many-body context.
The simplest system to consider in this context is the collective
spin consisting of the symmetric subspace of the many-body
ensemble. Studies of the quantum interface between the collective
spin and polarization spectroscopy have been the focus of a num-
ber of research groups. Based on our quantum control perspective,
we hope to build upon this work, exploring the production and
measurement of highly nonclassical states of the system [52,53],
their dynamics, and their application in quantum information pro-
cessing [54].
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Appendix A

In this appendix we express the light-shift interaction in terms
of its irreducible tensor components using a Cartesian expansion
that is most amenable to a basis independent representation. For
light detuned between a ground and an excited hyperfine manifold
with quantum numbers F and F

0
respectively, the atomic ac-polar-

izability tensor is

a
$
ðF; F 0Þ ¼ �

Pg;F dPe;F 0dPg;F

�hDF 0F
; ðA1Þ

where Pg;F ; Pe;F0 are projection operators onto the ground/excited
subspaces, and d is the atomic dipole operator. We can extract
the characteristic units by expressing d in terms of its reduced ma-
trix element via the Wigner–Eckart theorem. We define a raising
operator:

DyF0F 	
Pe;F 0dPg;F

hnPJ0 kdknSJi
¼
X

q;M;M0
e�qoJ0F 0

JF hF
0M0jFM; 1qijF 0M0ihFMj; ðA2aÞ

where

oJ0F0

JF ¼ ð�1ÞF
0þ1þJ0þI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J0 þ 1Þð2F þ 1Þ

q F 0 I J0

J 1 F

� 

ðA2bÞ

are the relative oscillator strengths depending on Wigner 6J sym-
bols and degeneracy factors, determining the branching ratios for
spontaneous decay in the hyperfine multiplets by CJ0F0!JF ¼ oJ0F0

JF

��� ���2
CJ0!J . We thus express the polarizability tensor operator as

aijðF; F 0Þ ¼ a0ðei � DFF0 Þ DyF 0F � ej
� 	

	 a0Aij; ðA3Þ

where a0 ¼ �jhnPJ0 kdknSJij2=�hDF0F is the characteristic polarizability.
We further employ the Wigner–Eckart theorem to decompose

the tensor Aij, into its irreducible component. We define the spher-
ical irreducible tensor operators acting in a hyperfine manifold
with spin F:

TðKÞQ ðFÞ ¼
X

M

jF;M þ QihF;M þ Q jFM; KQihFMj ¼
YK

Q ðFÞ
hFkYKkFi

¼ 2K

K!

4pð2F þ 1Þð2F � KÞ!
ð2K þ 1Þð2F þ K þ 1Þ!


 �1=2

YK
Q ðFÞ; ðA4Þ

where YK
Q ðbFÞ are the solid harmonics as a function of the compo-

nents of the spin operator, and the normalization is chosen so that
these tensors have a unit reduced matrix element [55]. The first
three tensors, corresponding to the atomic population (K = 0), orien-
tation (K = 1), and alignment (K = 2) are

Tð0Þ0 ðFÞ ¼ 1; ðA5aÞ

Tð1ÞQ ðFÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þ
p FQ ; ðA5bÞ

Tð2ÞQ ðFÞ ¼
ffiffiffi
6
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þð2F � 1Þð2F þ 3Þ
p X

q;q0
h2Q j1q; 1q0iFqFq0 : ðA5cÞ

To transform to Cartesian components, express the tensor:
TðKÞij ðFÞ ¼
X

Q

ð�1ÞQ ei � e
$ðKÞ
�Q � ej

� �
TðKÞQ ðFÞ; ðA6Þ

where the basis dyadics are [3]:
e
$ðKÞ

Q ¼
X

q

eqeQ�qhKQ j1Q � q; 1qi; ðA7aÞ

ei � e
$ð0Þ

0 � ej ¼ �
1ffiffiffi
3
p dij; ð�1ÞQ ei � e

$ð1Þ
�Q � ej ¼

1
i
ffiffiffi
2
p eijkek � e�Q : ðA7bÞ
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According to the basis change:

Tð0Þij ðFÞ ¼
�1ffiffiffi

3
p
� �

dij; ðA8aÞ

Tð1Þij ðFÞ ¼
�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2FðF þ 1Þ
p !

eijkFk; ðA8bÞ

Tð2Þij ðFÞ ¼
ffiffiffi
6
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þð2F � 1Þð2F þ 3Þ
p !

1
2

FiFj þ FjFi
� 	

� 1
3

F2dij

� �
:

ðA8cÞ

Using the Wigner–Eckart theorem, we can then express the ten-
sor as

Aij ¼
X

K

hFkAðKÞkFiT ðKÞij ðFÞ; ðA9Þ

where hFkA(K)kFi is the reduced matrix element. This is related to
that of the dipole operators through the 6J symbol:

hFkAðKÞkFi ¼ hFkðDDyÞðKÞkFi

¼ ð�1ÞKþ2F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2F 0 þ 1Þð2K þ 1Þ

q F 1 F 0

1 F K

� 

� hFkDkF 0ihF 0kDykFi: ðA10Þ

By definition, hF0kD�kFi = 1, and from our convention:

hFkDkF 0i ¼ ð�1ÞF�F 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F 0 þ 1
2F þ 1

s
; ðA11Þ

leading to a basis independent form of the polarizability tensor:

aijðF;F 0Þ ¼a0 Cð0ÞJ0FF 0dijþCð1ÞJ0FF0 ðieijkFkÞþCð2ÞJ0FF 0
1
2
ðFiFjþFjFiÞ�

1
3

dijF
2

� �
 �
;

ðA12Þ

where

Cð0ÞJ0F 0F ¼ ð�1Þ3F�F 0þ1 1ffiffiffi
3
p 2F 0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2F þ 1
p F 1 F 0

1 F 0

� 

oJ0F 0

1=2F

��� ���2; ðA13aÞ

Cð1ÞJ0F 0F ¼ ð�1Þ3F�F 0
ffiffiffi
3
2

r
2F 0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þð2F þ 1Þ
p F 1 F 0

1 F 1

� 

oJ0F0

1=2F

��� ���2;
ðA13bÞ

Cð2ÞJ0F 0F ¼ ð�1Þ3F�F0
ffiffiffiffiffiffi
30
p
ð2F 0 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þð2F þ 1Þð2F � 1Þð2F þ 3Þ
p

� F 1 F 0

1 F 2

� 

oJ0F 0

1=2F

��� ���2: ðA13cÞ
Appendix B

We derive here the master equation for the ground-electronic
subspace of an alkali atom, driven off resonance by an optical field
in the low saturation limit, including light-shifts, optical pumping,
and hyperfine multiplets. This a generalization of the form used in
near resonance polarization-gradient laser cooling, where the field
is tuned close to a single hyperfine resonance F

0
[56]. We begin

with the master equation for the nSJ¼1=2 ! nPJ0 atomic transition
with spontaneous emission. In the Lindbald form:

dq
dt
¼ � i

�h
Heffq� qHyeff

� 	
þ C

X
q

DqqDyq; ðB1Þ

where the effective non-Hermitian Hamiltonian including hyperfine
structure and the light-atom interaction in the rotating wave
approximation is
Heff ¼
X

F

EFPg;F þ
X

F 0
EF0 � i

�hC
2

� �
Pe:F0

� �hX
2

e�ixLt~eL � Dy þ eþixLt~e�L � D
� 	

: ðB2Þ

The dimensionless, dipole raising operator, and its conjugate are
defined as in Eq. (A2), with Dy ¼

P
F;F 0D

y
F 0F . As in Appendix A, we de-

fine operators projected between and hyperfine manifolds,
OF1F2 	 PF1 OPF2 ¼

P
M1M2
hF1M1jOjF2M2ijF1M1ihF2M2j. Going to the

interaction picture with respect to the free-atom Hamiltonian:

HðIÞeff ¼ �i
�hC
2

X
F 0

Pe:F0 �
�hX
2

�
X
F;F 0

e�iDF0F t~eL � DyF 0F þ eþiDF0F t~e�L � DFF0
� 	

: ðB3Þ

Excluding the ‘‘feeding term” in the master equation, the
dynamics by the effective Hamiltonian is governed by the Weiss-
kopf–Wigner description of nonunitary evolution of a wave func-
tion [57]. Defining the ground and excited probability amplitudes
of the atomic state, cFM

g 	 hnSJ; FMjwi; cF 0M0
e 	 hnPJ0 ; F 0M0jwi, the

Schrödinger equation is

d
dt

cF 0M0

e ¼ �C
2

cF 0M0

e0 þ i
X
2

X
FM

e�iDF0F thF 0M0jeL � DyjFMicFM
g ; ðB4aÞ

d
dt

cFM
g ¼ i

X
2

X
F 0M0

eiDF0F thFMje�L � DjF
0M0icF0M0

e : ðB4bÞ

Adiabatic elimination slaves the rapidly oscillating excited
amplitude to the slowly varying ground state [58]. By formal
integration:

cF0M0

e ¼ i
X
2

e�
C
2t
X
FM

hF 0M0jeL � DyjFMi
Z t

0
dt0e�i DF0FþiC2ð Þt0cFM

g ðt0Þ

� �X
2

X
FM

e�iDF0F t hF
0M0jeL � DyjFMi
DF 0F þ iC=2

cFM
g ðtÞ: ðB5Þ

Plugging this into the equation for the ground amplitude
evolution:

d
dt

cFM
g ¼ �

i
�h

X
F 0 ;F1M1

e�ixFF1
t X2=4
DF0F1

þ iC=2

� hFMjðe�L � DFF0 ÞðeL � DyF 0F1
ÞjF1M1icF1M1

g : ðB6Þ

Because X2=2DFF1 � xF1F for F – F1, Raman–Rabi flopping between
different hyperfine manifolds is completely negligible. The effective
light-shift interaction is then block-diagonal in the two hyperfine
manifolds, with non-Hermitian evolution:

d
dt

cFM
g ¼ �

i
�h

X
M1

hFMjHeff
A jFM1icFM1

g ; ðB7Þ

Heff
A ¼ �

1
4

E�L � a
$
�EL; a

$
¼ �

X
F;F0

Pg;FdPe;F0dPg;F

�hðDF0F þ iC=2Þ : ðB8Þ

Finally, to get the complete master equation, we must include
the feeding terms for populations and coherences in the ground-
electronic subspace. In the interaction picture, the matrix-blocks
of the ground subspace are fed according to

dqF1M1 ;F2M2

dt

����
feed
¼ C

X
q;F 01 ;F

0
2

e
�iðxF0

1
F0

2
�xF1F2

ÞthF1M1j e�q � DF1F01

� �
� qF 01F 02

eq � DyF02F2

� �
jF2M2i: ðB9Þ

The excited-state coherences and populations can be expressed in
terms of the adiabatically eliminated excited-state amplitudes:
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hF 01M0
1jqF 01F 02

jF 02M0
2i ¼ cF 01M01

e

� �
cF 02M02

e

� ��
¼ e

i xF0
1

F0
2
�xFaFb

� �
X2

4

X
FaFb

�
F 01M0

1 eL � DyF 01Fa

� �
qFaFb

e�L � DFbF 02

� ���� ���F 02M0
2

D E
ðDF 01Fa þ iC=2ÞðDF 02Fb

� iC=2Þ :

ðB10Þ

Plugging this back into Eq. (B9):

dqF1 ;F2

dt

����
feed
¼ C

X
q;Fa ;Fb

e�iðxFaFb
�xF1F2

ÞtWF1Fa
q qFaFb

WyFbF2
q ; ðB11Þ

where

WFbFa
q ¼

X
F0

X=2
DF0Fa

þ iC=2
e�q � DFbF 0

� �
eL � DyF 0Fa

� �
; ðB12Þ

are the jump operators for optical pumping between magnetic sub-
levels according to the Kramers–Heisenberg formula,

cFaMa!FbMb
¼
P

q FbMb WFbFa
q

��� ���FaMa

D E��� ���2. The rapidly oscillating terms

in Eq. (B11) average quickly to zero unless xF1F2 ¼ xFaFb
, and can be

completely neglected. This is the secular approximation and leads
to an equation in which populations within a given hyperfine man-
ifold are fed by other populations (optical pumping) and coherences
are between manifolds fed coherences. It is essential to include the
feeding of coherences in order to properly account for indistin-
guishable scattering processes that do not cause full decoherence
[59]. The final form of the master equation in the ground-electronic
subspace is then:

dq
dt
¼ � i

�h
Heff

A q� qHeffy
A

� �
þ C

X
q

X
F;F1

WFF1
q qF1F1

WyF1F
q þ

X
F1–F2

WF2F2
q qF2F1

W yF1F1
q

 !
:

ðB13Þ

This is a trace-preserving completely positive map, accounting
for all light shifts, optical pumping, and the effects of decoherence
of the atom in the process of photon scattering.
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