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We control the quantum mechanical motion of neutral atoms in an optical lattice by driving microwave

transitions between spin states whose trapping potentials are spatially offset. Control of this offset with

nanometer precision allows for adjustment of the coupling strength between different motional states,

analogous to an adjustable effective Lamb-Dicke factor. This is used both for efficient one-dimensional

sideband cooling of individual atoms to a vibrational ground state population of 97% and to drive coherent

Rabi oscillation between arbitrary pairs of vibrational states. We further show that microwaves can drive

well resolved transitions between motional states in maximally offset, shallow lattices, and thus in

principle allow for coherent control of long-range quantum transport.
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Accurate, simultaneous control of multiple degrees of
freedom is crucial for the experimental realization of
quantum information processing and quantum simulation
[1]. Thus, in schemes that use trapped ions or atoms as
carriers of quantum information, qubits are often encoded
in internal states and the motional degree of freedom is
manipulated to engineer state-dependent interactions be-
tween them. In ion traps this involves the controlled exci-
tation of a collective mode of vibration [2], leading to
robust quantum gate protocols and entanglement of mul-
tiple qubits [3]. Proposals based on neutral atoms in optical
lattices rely instead on short-range collisional interactions
that occur only when the center-of-mass wave packets
overlap [4]. Accurate control of the collisional interaction
thus requires preparation of pure center-of-mass states, and
the ability to move atoms conditionally on the qubit state.
Variations of this approach have been used to entangle
pairs [5] and chains of atoms [6], with a fidelity limited
mainly by the speed and accuracy with which the optical
potentials can be changed during the transport phase. For
this reason there has been considerable interest in optimal
control techniques to improve atom transport in optical
lattices and other traps [7], mostly through more elaborate
control of the trapping potentials. Here we show that
microwave coupling between spatially offset, state-
dependent lattices allows sideband cooling to the vibra-
tional ground state, and thus offers an alternative means for
wave packet initialization in lattice geometries that cannot
easily be loaded from a Bose-Einstein condensate [8,9].
Our approach also provides new tools for coherent control
of atomic motion in static potentials [10]. In principle this
enables the generation of a broad class of spin-motion
entangled states [11,12], and lends itself to the application
of composite pulses and other robust control techniques
(see Ref. [13] and references therein).

We consider caesium (Cs) atoms with two hyperfine
states j#i � jF ¼ 3; mF ¼ 3i and j"i � jF ¼ 4; mF ¼ 4i,
which are coupled by microwave radiation. Here F andmF

are the total angular momentum and its projection onto the
quantization axis, respectively. Microwaves provide a co-
herent, homogeneous and readily controllable radiation
field, but since microwave photons have negligible mo-
mentum they are rarely considered for driving transitions
between vibrational states in atom and ion traps. We cir-
cumvent this limitation by trapping atoms in the j#i and j"i
states in separate optical lattice potentials offset by a
distance�x. The matrix element for a vibrational transition
is then proportional to the center-of-mass wave function
overlap, i.e., the Franck-Condon factor,

@�n;n0 ¼ @�0h~n0je�i�xp̂=@j~ni ¼ @�0hn0jni; (1)

where �0 is the ‘‘bare’’ Rabi frequency for the j#i to j"i
transition in free space, n0 and n (~n0 and ~n) label the
vibrational quantum states in the shifted (unshifted) j#i
and j"i potentials, and p̂ is the momentum operator.
From Eq. (1) an effective Lamb-Dicke parameter �eff �
i�xp0=@ can be defined, where p0 is the size of the
harmonic oscillator ground state in momentum space. In
analogy to the usual Lamb-Dicke parameter defined for
optical transitions in traps with no offset, �eff enters as a
common factor in the Franck-Condon factors for various
n; n0 [14]. Changing �x allows us to tune the Franck-
Condon factor (and thus �n;n0) between an arbitrary pair

of vibrational states from zero to �0:5.
Comparing the size of the ground state wave packet x0

with the lattice spacing alat, one can identify two regimes
where the physics is qualitatively different. For deep lat-
tices the atomic wave packets are strongly localized, and
the overlap between different vibrational states is only
significant for displacements �x � alat. In this situation
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the motion is confined to a pair of neighboring wells of the
j#i and j"i lattices; see Figs. 1(a) and 1(b). This regime is
similar to the recently reported coupling of a charge-phase
qubit to an LC oscillator [15] or the coupling of motional
and spin states of trapped ions using rf radiation and a static
magnetic field [14].

For shallow lattices the extent of the wave packet be-
comes comparable to half the lattice spacing (x0 & alat=2).
In this regime the overlap between the j#i and j"i wave
packets is significant even for the maximum offset of�x ¼
alat=2. In that case the microwave field introduces nearest-
neighbor coupling between potential wells throughout the
j#i and j"i lattices as illustrated in Figs. 1(c) and 1(d). The
result is a quantum walk of the atom on the lattice [9],
equivalent to ballistic tunneling in a �lat=4 period micro-
wave dressed lattice potential.

Our lattices are created by two counterpropagating laser
beams with linear polarizations forming an angle #. The
resulting light field consists of two circularly polarized
standing waves, which can be shifted in opposite directions
along the axis by adjusting the angle #. Because of the
different tensor polarizabilities of the j#i and j"i states, this
leads to spatial offset of their respective lattice potentials
[16]. Microwave radiation around 9.2 GHz couples the j#i
and j"i states with a bare Rabi frequency �0 of up to
60 kHz, while a magnetic field of up to 3 G lifts their
degeneracy with other Zeeman states. Spectra are obtained
by scanning the frequency of the microwave field and
detecting the number of atoms in state j#i or state j"i
[13,17]. For �x ¼ 0, transitions to different vibrational
levels are not detectable, but when the displacement is
sufficient for the effective Lamb-Dicke parameter �eff to

be non-negligible, the spectrum consists of both a carrier
(j"; ni $ j#; ni transitions) and sidebands at �!ax

(j"; ni $ j#; n� 1i transitions); see Fig. 2.
The regimes of strong and weak confinement have been

realized in separate experiments [18]. Strong confinement
is realized in a one-dimensional (1D) geometry, in which
two counterpropagating laser beams with a wavelength of
�lat ¼ 865:9 nm are focused to a waist of 20 �m. After
molasses cooling and subsequent adiabatic lowering of the
trap depth to kB � 80 �K, the atoms have a typical tem-
perature of �10 �K. For our axial and radial trapping
frequencies of !ax ¼ 2�� 110 kHz and !rad �
2�� 1:1 kHz, the atoms populate vibrational states with
a mean quantum number of �n � 1:2 axially and �nrad � 200
radially.
Weak confinement is realized in a shallow, three-

dimensional optical lattice consisting of three individual
1D lattices whose optical frequencies differ by tens of
MHz. The lattice is loaded with 106 Cs atoms, which are
sideband cooled [19] into the j#i state, with a mean vibra-
tional excitation of 0.1–0.2 for each dimension. During
microwave spectroscopy we set # ¼ 0 for the transverse
lattices, and the lattice depths are adjusted to obtain vibra-
tional frequencies !ax ¼ !trans ¼ 2�� 18 kHz. The
common lattice detuning is 140 GHz blue of the Cs D2

line, where the j#; 0i $ j"; f0; 1gi transition frequencies
show minimal dependence on lattice depth; see below.
In the strongly confining lattice we begin our experi-

ments by sideband cooling the atoms with a microwave
field tuned to the j"; ni $ j#; n� 1i transitions. This cor-
responds to the blue sideband of the spectrum as the
cooling cycle starts in the upper hyperfine state.
Repumping on the F ¼ 3 ! F0 ¼ 4 transition of the D2
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FIG. 1 (color online). (a) Deep, slightly offset state-dependent
optical lattices for the j#i and j"i hyperfine states. (b) The offset
enables on site microwave transitions changing the vibrational
quantum number. (c) Maximally offset, shallow lattices.
(d) Microwave radiation can couple an initially localized popu-
lation of j#i symmetrically to the neighboring potential wells and
further throughout the lattice.
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FIG. 2 (color online). Microwave spectra for strong confining
and slightly displaced (�x ¼ 24 nm, # ¼ 0:064�) traps, for
(a) molasses cooled and (b) sideband cooled atoms with a ground
state population of 97%. The pulse area amounts to � for both
sidebands and to 1:6� for the carrier. (c) Spectrum for all
vibrational states in the trap, starting from the axial ground state.
The different spectra correspond to (from back to front) �x ¼
f0; 43; 111; 176g nm (# ¼ f0; 0:112; 0:280; 0:420g�).

PRL 103, 233001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 DECEMBER 2009

233001-2



line breaks the coherence of the microwave transition, and
subsequent spontaneous emission brings the atom back to
the j"i state. In addition, a second, circularly polarized laser
beam on the F ¼ 4 ! F0 ¼ 4 transition ensures spin po-
larization in state j"i. We apply the microwave field and
repumping laser simultaneously for 20 ms. For the re-
pumping process, both the recoil of the photon and the
lattice shift violate the assumption of a preserved vibra-
tional quantum number [20]. The influence of the latter is
minimized by choosing a relatively small lattice angle for
cooling (# ¼ 0:025�, �x ¼ 10 nm). A spectrum of side-
band cooled atoms is shown in Fig. 2(b). By comparing the
areas of the blue and red sideband peaks [21] we find 97%
axial ground state population ( �n ¼ 0:03� 0:01, Tax ¼
ð1:6� 0:1Þ �K), mainly limited by residual off-resonant
excitation of the final state.

Vibrational spectra can be obtained by adjusting the
coupling strength to favor transitions from the axial ground
state to a chosen group of final states. Figure 2(c) shows a
series of four such spectra measured for different �x,
mapping out all bound states in our trap. The experimen-
tally measured transition frequencies are in agreement with
a 1D band structure calculation, but the observed line-
widths suffer from inhomogeneous broadening associated
with the (uncooled) radial motion of the atoms. Because of
the nonharmonic radial potential the transition frequency
depends on both the radial position and the order of the
sideband [20].

Coherent Rabi oscillations for the first and seventh red
sideband transitions starting from state j"; 0i are shown in
Figs. 3(a) and 3(b). Their Rabi frequencies can be adjusted
by the displacement �x to be on the same order of magni-
tude as the bare Rabi frequency of 60 kHz. It is also
instructive to observe Rabi oscillations that start from a

thermal distribution of vibrational states. In that case the
signal is a sum of Rabi oscillations at a series of distinct
frequencies, each corresponding to a transition j"; ni $
j#; ni and contributing in proportion to the population of
the initial state. Figure 3(c) shows such a beat signal
obtained for �x ¼ 15 nm (# ¼ 0:036�). From the
Fourier transform [Fig. 3(d)] we deduce the probability
of occupancy pðnÞ � exp½�En=ðkBTÞ� [22]. This leads to a
mean axial vibrational quantum number of �n ¼ 1:0� 0:2
[Tax ¼ ð8� 1Þ �K].
To illustrate the range of adjustable coupling strength,

we measure the Rabi frequencies of three transitions (the
carrier and the first red and blue sidebands) starting from
the j#; 1i state for different displacements �x; see Fig. 4.
For weak coupling (�0=!ax � 1), this yields direct infor-
mation on the wave function overlap between the initial
and final wave functions according to Eq. (1). Since our
data are not taken in this regime, we compare instead to a
theoretical model that takes into account microwave dress-
ing and off-resonance excitation. This is done by first
calculating the band structure and Bloch states [23], then
integrating the Schrödinger equation in the Bloch basis,
and finally determining the Rabi frequency from the time
dependent oscillation of the j#i and j"i states. Transverse
motion in strongly confined lattices is modeled by averag-
ing the result of several such calculations for different lat-
tice depths. For most displacements, our model predictions
differ negligibly from Eq. (1), and reproduce our experi-
mental data for strong and weak confinement quite well.
In our weakly confining lattice a small but nonzero Rabi

frequency remains even for displacements of �x ¼ �lat=4,
as shown in the inset in Fig. 4. We stress that in a 3D lattice,
spatial inhomogeneities of the trapping potential can lead
to frequency broadening of transitions between the various
bound states, but that it is possible to find a ‘‘magic’’ lattice
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FIG. 3 (color online). Rabi oscillations for the
j"; 0i $ j#; 1i (a) and j"; 0i $ j#; 7i (b) transitions with Rabi
frequencies of 2�� 32 kHz and 2�� 22 kHz. Solid lines are

sines damped by the empirically found function expð� ffiffiffiffiffiffiffi

t=�
p Þ to

account for radial dynamics. We find �ðaÞ ¼ ð2:0� 0:1Þ ms,

�ðbÞ ¼ ð90� 10Þ �s. (c) Rabi oscillations on the carrier for a

thermal initial state and (d) its Fourier transform. From the
amplitudes we deduce Tax ¼ ð8� 1Þ �K.
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FIG. 4 (color online). Measured Rabi frequencies of the
carrier (	) and the red (e) and blue (h) sidebands, starting
from state j#; 1i for different polarization angles #. Solid lines
are predictions of a full model. The offset �x (upper axis)
depends nonlinearly on the polarization angle #. The inset
shows measured and calculated Rabi frequencies in a shallow
lattice, for # 
 �=2.
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detuning [24] for which this sensitivity is suppressed for
some states and for a limited range of !ax [Fig. 5(a)].
Figure 5(b) shows an example of a measured spectrum in
a lattice with �x ¼ �lat=4, along with a theoretical pre-
diction from our model based on integrating the
Schrödinger equation in the Bloch basis and including
inhomogeneous broadening from variations in the lattice
depth and magnetic field across the atomic ensemble. The
excitation pulse has a Gaussian envelope with a 1 ms full
width at half maximum and pulse areas of 0:35� for the
j#; 0i $ j"; 0i transition and 0:9� for the j#; 0i $ j"; 1i
transition. In this geometry, coupling between states
throughout the lattice [Figs. 1(c) and 1(d)] will drive a
quantum walk that delocalizes an atom in space on a time
scale comparable to the Rabi period. At this point tracing
over the spatial degree of freedom leads to a statistical
mixture of the j#i and j"i states. Experimentally, we see this
as a rapid damping of the Rabi oscillation. The demonstra-
tion of clearly resolvable lines in the microwave spectrum
is a prerequisite for control of quantum transport, explored
theoretically in [12].

In summary, we have demonstrated microwave control
of atomic motion in state-dependent optical lattices. We
have used this to implement a convenient scheme for
sideband cooling, and to drive coherent Rabi oscillations
between selected pairs of vibrational states. In the near
term our approach may prove useful in optical lattice based
quantum simulation, e.g., by populating high-lying bands
and controlling the tunneling properties in deep lattice
potentials. Possible applications include investigations of
nonequilibrium systems [25] on the border between clas-
sical and quantum thermodynamics. Other prospects in-
clude detection and control of two-body interactions and
trap induced resonances [26]. In the longer term, micro-
wave driven quantum transport may be a good candidate

for robust control, which will likely prove essential to
quantum information processing.
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FIG. 5 (color online). Vibrational spectroscopy in a weakly
confining lattice with �x ¼ �lat=4. (a) Calculated light shift of
the j#; 0i $ j"; f0; 1gi carrier and sideband transitions. The
shaded areas indicate line broadening due to band curvature.
The dashed line indicates the !ax used in our experiment.
(b) Microwave spectrum. Solid points are experimental data,
the line a prediction from our full model. The various linewidths
reflect the slope of the light shift curves in (a).
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