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Quantum State Reconstruction via Continuous Measurement
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We present a new procedure for quantum state reconstruction based on weak continuous measurement
of an ensemble average. By applying controlled evolution to the initial state, new information is
continually mapped onto the measured observable. A Bayesian filter is then used to update the state
estimate in accordance with the measurement record. This generalizes the standard paradigm for quantum
tomography based on strong, destructive measurements on separate ensembles. This approach to state
estimation induces minimal perturbation of the measured system, giving information about observables
whose evolution cannot be described classically in real time and opening the door to new types of
quantum feedback control.
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The control of quantum mechanical systems is finding
new applications in information processing tasks such as
cryptography and computation [1]. Experimental recon-
struction of a quantum state is essential to verify prepara-
tion, to detect the presence of errors due to noise and
decoherence, and to determine the fidelity of control pro-
tocols using process tomography. Moreover, real-time
‘‘state estimation’’ may allow improvement of precision
metrology beyond the standard quantum limit [2], with the
possibility of active control through closed-loop feedback
protocols [3]. In addition, measurement of the quantum
state can provide information about unknown or nontrivial
dynamics, such as those arising in the study of quantum
chaos. Laboratory demonstrations of state reconstruction
are numerous and span a broad range of physical systems,
including light fields [4], molecules [5], ions [6], atoms [7],
spins [8,9], and entangled photon pairs [10].

In this Letter we consider a new protocol for quantum
state reconstruction based on continuous, weak measure-
ment of a single observable on a single ensemble of iden-
tically prepared systems. The ensemble is driven so that
each member undergoes an identical, carefully designed
dynamical evolution that continually maps new informa-
tion onto the measured quantity. This is in contrast to the
standard paradigm for quantum state reconstruction based
on strong measurements, often of a large set of observables
performed on many copies of the unknown state. Our weak
measurement approach has a number of possible advan-
tages in situations that lend themselves naturally to work-
ing with ensembles. Strong measurements on ensembles
are inefficient because only a single observable can be
measured after each preparation and the information
gained about the observable is extracted independent of
the required fidelity. By contrast, weak measurements can
be optimized to obtain just enough information to estimate
the density matrix to some required fidelity, in real time,
and with minimal disturbance of each member. The ex-
tracted information could be used to perform closed-loop
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feedback control based on knowledge about the entire
quantum state extending protocols based on state estima-
tion of Gaussian random variables that evolve according to
classical dynamics [11]. Our procedure is broadly appli-
cable in systems where continuous weak measurement
tools have been developed, such as nuclear magnetic reso-
nance in molecules [8] and polarization spectroscopy in
dilute atomic vapors [12], but where noise and decoher-
ence limits the ability to perform strong measurements
regardless of the amount of signal averaging.

In our protocol we consider an ensemble of identically
prepared systems, �N � ��N

0 , whose dynamical evolution
is driven in a known fashion and monitored by a probe that
measures the sum of the identical observables fOg on each
member. Because of the central limit theorem the mea-
surement record of this probe has the form

M�t� � NhOit 	 �M�t�; (1)

where hOit is the quantum expectation value at time t, and
�M�t� is a Gaussian white noise process with variance
�2 � 1=	�t for measurement strength 	 and detector
averaging time �t. In principle, a measurement of the
collective observable NhOit leads to backaction on the
collective many-body state and can cause individual mem-
bers of the ensemble to become correlated [3,13]. Such
correlations influence the outcome of future measurements
and greatly complicate the task of reconstructing the initial
state �0. Additionally, the gain from performing such
quantum limited measurements is small, as the majority
of the information about the state of individual ensemble
members has already been extracted by the probe prior to
reaching the quantum limited regime. We thus restrict our
considerations to cases where the measurement uncer-
tainty, averaged over the total measurement time T, is large
compared to the intrinsic quantum uncertainty (projection
noise) of the collective observable, 1=	T > N�O2, and
backaction onto the collective state is insignificant.
Experimentally, this is also the most common situation.
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A sufficient measurement signal-to-noise ratio (SNR) must
still be available to reconstruct the state of an individual
member of the ensemble. This requires N 
 1 so that the
quantum backaction associated with information gain is
distributed uniformly among the entire ensemble, with
negligible disturbance of any single member state.

The goal is to invert the measurement history, Eq. (1), to
determine �0. As we wish this procedure to be independent
of �0, it is most convenient to work in the Heisenberg
picture and express hOit � Tr�O�t��0� � �O�t�j�0�, where
in the second equality we have written the trace as an inner
product between ‘‘superoperators’’ [14]. We coarse grain
over the detector response time �t, such that �Oij �R
t	dt
t �O�t�jdt=�t, obtaining a discrete measurement his-

tory time series fMig, with Mi � N�Oij�0� 	 �W, where
now the measurement operators fOig are determined in
advance by the known dynamics, and where W is a
Gaussian random variable with zero mean and unit vari-
ance. This equation recasts the reconstruction problem as a
stochastic linear estimation problem for the underlying
state �0.

In order to reconstruct the state from the measurement
time series, the set of measurements operators fOig must
span the space of density operators, i.e., the dynamics must
map the initial measurement to all possible (Hermitian)
measurements. This is best achieved by introducing an
explicit set of control parameters, with a time-dependent
series of Hamiltonians fHig. We require that this set gen-
erate the Lie algebra for SU�d�, where d is the dimension
of the space; the system must be ‘‘controllable’’. Under
that assumption, and in the absence of decoherence, weak
measurement on an infinitely large ensemble can be used to
achieve arbitrary fidelity in the reconstruction by increas-
ing the averaging time, thereby reducing the uncertainty. In
the presence of decoherence, however, one must apply a
well chosen time-dependent Hamiltonian series that ac-
cesses the requisite observables with sufficient fidelity
before the state decays.

Including the coupling to the environment, the evolving
measurement operators can then be expressed in terms of
the base observable as �O�t�j � �OjSt where St �
T exp�

R
t
0 dt

0Lt0 � with Lt the generator of the dynamics
and T the time ordering operator. To simulate this evolu-
tion we consider a time scale �t over which Lt changes
negligibly. The semigroup property then allows us to ap-
proximate St	�t � eiLt�tSt which can be numerically cal-
culated given a system of reasonable size, d < 100.

A Bayesian filter determines how our knowledge of �0 is
updated due to a measurement history fMig,

P��0jfMig� � AP�fMigj�0�P��0�: (2)

Here A is the normalization constant for the posterior
distribution and P��0� contains the prior information, in-
cluding the fact that �0 is a valid positive trace-one opera-
tor. P�fMigj�0� is the conditional distribution that contains
03040
the information gained during the experiment. The condi-
tional distribution quantifies how well the measurement
performs. Because of the Gaussian measurement statistics,
this distribution has the form,

P�fMigj�0� �
Y
i

C exp
�
�

�Mi � N�Oij�0��
2

2�2

�

/ exp�����jRj����: (3)

The superoperator R is the covariance matrix of the multi-
dimensional Gaussian and �� � �0 � �̂ is the difference
between the prepared state and the maximum likelihood
estimate of this state given the measurements, equivalent to
the least squares estimator for a Gaussian random variable.
Following Eq. (3),

R �
N2

�2

X
i

jOi��Oij; j�̂� �
N

�2

X
i

MiR
�1jOi�: (4)

This evolving covariance matrix generalizes the classical
update rule discussed in [11]. Full state reconstruction
requires information about all d2 � 1 independent opera-
tors which implies the need for higher order moments of
the base observable if the system is larger than spin 1=2.

If the covariance matrix is full rank then the measure-
ment history is informationally complete with the d2 � 1
primary uncertainties given by the eigenvalues of the co-
variance matrix. Specifically, the conditional probability
distribution has entropy

S � �
1

2
logR � �

X
j

log
�����
�j

q
; (5)

where �j are the eigenvalues of the covariance matrix,
corresponding to the inverse of the variances of Eq. (3)
along its primary axes. This entropy provides a collective
measure of the information gained about all parameters,
independent of the initial state and any prior information.
To obtain an accurate reconstruction we need to optimize
the entropy and any additional costs over the free parame-
ters (controls).

Given the measured information the maximum likeli-
hood estimate of the quantum state is the mean of the
Gaussian conditional distribution, as given by the least
squares fit, Eq. (4). This, however, does not take into
account the prior information that Tr��0� � 1 and positiv-
ity. The trace condition is ensured by adding a pseudomea-
surement of the trace M0 � I=d, which has zero variance.
To enforce positivity, one could solve for the closest posi-
tive state to �̂ using convex optimization [15]. Alterna-
tively, one can get a reasonable and much simpler estimate
by setting the negative eigenvalues of �̂ to zero, and
renormalizing to give �̂pos. This simpler procedure is
used in the example below as the method employed to
enforce positivity has only a weak effect on reconstruction
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performance in general, though it may have a strong effect
for a few specific states.

As a concrete demonstration of the power and versatility
of our method we consider the reconstruction of the quan-
tum state associated with the total spin-angular momentum
of an ensemble of alkali atoms, in our specific example the
F � 3 or F � 4 hyperfine manifolds of the 6S1=2 ground
state of 133Cs. The number of parameters needed for re-
construction are then �2F	 1�2 � 1, giving 48 and 80 com-
ponents, respectively. Consider a cloud of atoms prepared
in identical states �0, and coupled to a common, linearly
polarized, probe beam tuned near the D1 (6S1=2 ! P1=2) or
D2 (6S1=2 ! P3=2) resonance [12]. Information about the
atomic spins is obtained by measuring the Faraday rotation
of the probe polarization, which provides a continuous
measurement of the spin component along the direction
of propagation, O � Fz. Shot noise in the probe polar-
imeter gives rise to the fluctuations W which limit the
measurement accuracy.

In the regime of strong backaction onto the collective
spin state, such measurements have been used to generate
spin squeezed states [3,13] and to perform subshot noise
magnetometry [3,11]. In the regime of negligible back-
action that is of interest here, Smith et al. continuously
monitored the Larmor precession of spins in an external
magnetic field and observed a series of dynamical collap-
ses and revivals due to a nonlinear term in the spin
Hamiltonian [16] resulting from the ac Stark shift caused
by off-resonance excitation. This nonlinearity allows for
full controllability of the atomic spin and reconstruction of
the input quantum state. Off-resonance excitation also
introduces a small but unavoidable amount of decoherence
due to photon scattering. Quantum state reconstruction
requires a large enough nonlinearity to generate dynamics
that cover the entire operator space before decoherence
erases information about the initial state. To generate this
with the ac Stark shift, one requires large excited state
hyperfine splittings.

To control the system we apply a time-dependent mag-
netic field. The overall Hamiltonian, including the non-
linear ac Stark shift induced by an x-polarized probe, is
[16]

H�t� � gF B�B�t� 	 B0� � F	 " �h$sF2
x; (6)

assuming that multiple scattering inside the ensemble is
negligible. B�t� is the control field and B0 represents any
background field that might be present in an experiment. In
the nonlinear term, we have factored out the scattering rate
$s for a transition with unit oscillator strength, and intro-
duced the detuning dependent ratio " between the time
scales for coherent evolution and decoherence due to opti-
cal pumping. In this example we explore two regimes: a
probe detuned from the D2 transition by much more than
the excited state hyperfine splitting, in which case beta is
approximately independent of detuning, (" � 0:81), and a
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probe tuned halfway between the two excited hyperfine
states (" � 7:67). The evolution of the ensemble is gov-
erned by the master equation Lt��� � � i

�h �

�H�t�; �� � $s
2 D���; where � has support only on the

ground state of interest and all other states have been
adiabatically eliminated. Optical pumping within and out
of the initial hyperfine manifold is accounted for by D��� .
To simulate this evolution we construct the Lt for some
choice of scattering rate, background field, and controls
B�t�. The measurement strength 	 is determined empiri-
cally by the shot-noise limited measurement uncertainty �,
which we characterize by the signal-to-noise-ratio SNR �
Mmax=�, where Mmax � max��Fzj�� is the maximum sig-
nal possible. We account for inhomogeneous values of B0

by averaging over a Gaussian distribution corresponding to
a standard deviation of 60 Hz in the induced Larmor
frequency. The duration of the simulated measurement is
T � 4 ms, the coarse graining time is 4  s, and the aver-
age photon scattering rate is $s � 103 s�1. Finally, we
simulate the effect of a low pass filter by averaging our
measurement over a few coarse graining time steps.

We optimize the controls based on a cost function con-
sisting of the entropy S�R� Eq. (5) and any additional
control costs C�B�. In this case the additional costs include
the degradation in reconstruction due to loss of field con-
trol at large amplitudes, and inability to rapidly change the
fields. We minimize these costs over all possible time-
dependent magnetic fields B�t�. This is done sequentially,
first restricting the magnetic fields to optimize the control
costs C�B�, and then optimizing the entropy subject to
these restrictions. The magnetic field is restricted to be in
the x-y plane, with magnitude jBj � B, such that the
Larmor frequency is !B �  BB=h � 15 kHz.
Additionally, we specify the field at only n � 50 indepen-
dent times and smoothly interpolate between them to en-
sure slow variation. The only free parameters are thus a set
of n � 50 independent angles. The entropy optimization
landscape subject to these constraints has many local min-
ima precluding the use of purely local search techniques.
Instead, we use a one dimensional global search, where we
iteratively optimize one of the n � 50 independent angles,
holding the others fixed. This process is repeated until all
of the angles are independently globally stationary.

The results of simulated reconstructions are shown in
Figs. 1 and 2. Given an initial preparation in the F � 3
hyperfine manifold, in the ‘‘cat state’’ j 0i � �jm � 3i 	
jm � �3i�=

���
2

p
, the fidelity of the reconstruction, F �

h 0j�̂posj 0i, averaged over 1000 noise realizations, is
plotted versus simulated SNR. Increasing SNR clearly
results in a better reconstruction. The parameters needed
to attain good fidelity for reconstruction of the F � 3
ground state using the D1 transition (Fig. 1) appear to be
well within the reach of current experiments at F � :95,
SNR � 30 [12]. Even with a possible 1% uncertainty in the
control fields, a fidelity of F � :85 should be possible
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FIG. 2 (color online). Quantum state reconstruction for the
F � 4 hyperfine state probed on the D2 transition, where the
nonlinearity is weaker than for the case in Fig. 1. The curves cor-
respond to an increasing number of distinct trajectories explored
in independent realizations of the experiment, which allows
increasingly complete coverage of the operator space. From
lowest to highest fidelity we use: 1 run (blue), 2 runs (green),
3 runs (red), 4 runs (cyan), 5 runs (magenta), and 6 runs (yellow).
Here, even at an unreasonable SNR of 500, reconstruction is not
possible in a single run, though similar performance to that
achieved in Fig. 1 can be obtained using 4–5 independent runs.
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FIG. 1 (color online). Quantum state reconstruction of the cat
state described in the text for the F � 3 hyperfine ground state of
133Cs probed on the D1 transition. The figure shows the fidelity
of reconstruction as a function of the measurement signal to
noise ratio. Experimentally, an SNR of 30 is readily accessible,
and SNRs of up to 100 have been achieved in a single run. In this
example the large nonlinearity allows good fidelity reconstruc-
tion based on a single trajectory through state space, as indicated
by the dashed line where a fidelity F � 0:95 is reached at an
SNR of 30. The inset shows how the reconstruction degrades due
to errors in the control field at a constant SNR of 30. For a
reasonable 1% control field error the fidelity drops to F � 0:85.
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(Fig. 1 inset). A different regime is illustrated in the
reconstruction of a spin F � 4 state using the D2 reso-
nance. Here we attempt to reconstruct more parameters, 80
versus 48, and use a smaller nonlinearity because of the
smaller hyperfine splitting of the P3=2 manifold.
Reconstruction here is infeasible with a single measure-
ment run performed on a single ensemble, even assuming
very large SNR (Fig. 2). High fidelity reconstruction is
obtained only when we combine the measurement records
from multiple independent runs, each starting with a fresh
ensemble, and explore operator space using distinct
trajectories.

We have presented a new protocol for quantum state
reconstruction based on continuous measurement of an
ensemble of N members, and demonstrated our procedure
through a simulated reconstruction of a spin J via polar-
ization spectroscopy of a gas of cold atoms. The recon-
struction technique is nondestructive and exploits classical
estimation theory, providing a starting point for considera-
tion of more complex applications of quantum control
tasks such as feedback. In future work we plan to improve
our optimization procedure for robustness in control-
parameter uncertainty and examine global search proce-
dures such as convex optimization [15]. The tools devel-
oped here should provide new avenues for real-time state
quantum estimation that allow us to explore the dynamical
generation of nonclassical features, such as entanglement.
This is of particular interest for mesoscopic systems whose
classical description exhibits chaos [17].
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