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Abstract
The linear Faraday effect is used to implement a continuous measurement of
the spin of a sample of laser-cooled atoms trapped in an optical lattice. One
of the optical lattice beams serves also as a probe beam, thereby allowing
one to monitor the atomic dynamics in real time and with minimal
perturbation. A simple theory is developed to predict the measurement
sensitivity and associated cost in terms of decoherence caused by the
scattering of probe photons. Calculated signal-to-noise ratios in
measurements of Larmor precession are found to agree with experimental
data for a wide range of lattice intensity and detuning. Finally, quantum
back-action is estimated by comparing the measurement sensitivity to spin
projection noise, and shown to be insignificant in the current experiment. A
continuous quantum measurement based on Faraday spectroscopy in optical
lattices may open up new possibilities for the study of quantum feedback
and classically chaotic quantum systems.

Keywords: Linear Faraday effect, laser cooling and trapping, optical lattice,
continuous quantum measurement

1. Introduction

It is well known that optically pumped atomic vapours
can exhibit a significant Faraday effect for near-resonant
probe light [1]. Even in relatively dilute samples, such
as those produced by laser cooling in magneto-optical
traps (MOTs), the resulting polarization rotation is easily
measurable and can be used as a sensitive monitor for
the spin degrees of freedom [2]. Kuzmich et al [3]
and Takahashi et al [4] have shown that the coupling
between the Stokes vector of the light and the total
many-body spin is of the form required for a quantum
non-demolition (QND) measurement of the latter. For a
sufficiently strong atom–field coupling the sensitivity may be
below the quantum uncertainty associated with a spin-coherent
state, and may allow for the generation of spin squeezing. In a
single-pass geometry this occurs when the sample is optically
thick on resonance. An experimental demonstration of spin
squeezing in an atomic beam has been performed by Kuzmich
et al [5]. Along the same lines Julsgaard et al [6] measured the
Faraday rotation of a probe beam passing through two separate,
room temperature vapour cells and so created a modest amount
of entanglement between the corresponding many-body spins.

In this work we examine the use of Faraday spectroscopy
to probe the collective spin of a sample of ultracold atoms
trapped in a far-off-resonance optical lattice. Our goal
is to implement a continuous, non-perturbing measurement
scheme which allows one to monitor coherent dynamics in the
atom–lattice system. This is accomplished by measuring the
polarization rotation of one of the component lattice beams
as it passes through the atomic sample. We give a detailed
evaluation of the sensitivity and sensitivity/decoherence trade-
off as a function of the lattice parameters, and discuss the
conditions necessary to have significant measurement back-
action on the atomic sample. The optical lattice used for
these initial investigations is a special (θ = 0) case of the 1D
lin–θ–lin configuration, which consists of a pair of counter-
propagating laser beams with linear polarizations forming an
angle θ . In this configuration the lattice potential is spin
independent [7], and it is straightforward to spin polarize the
atoms by optical pumping and to induce Larmor precession
in an external magnetic field. Eventually we plan to study
the much richer dynamics that can arise in lattices with
θ �= 0 and in the presence of magnetic fields. In that case
one can design an atom–lattice interaction which couples
the spin and centre-of-mass motion of individual atoms, so
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that coherent evolution in the lattice can produce spinor
wavepackets with strong entanglement between spin and space
degrees of freedom. This allows the spin to serve as a
meter for the entire quantum dynamics, as demonstrated in
the study of atom tunnelling in mesoscopic optical double
wells [8]. Ghose et al [9] have shown that a classical model
of the coupled spin-centre-of-mass motion in this system
exhibits deterministic chaos. The prospect of using Faraday
spectroscopy to implement a continuous measurement then
makes the atom/lattice system a good candidate for studies of
quantum chaos and—ultimately—the role played by quantum
measurement in the emergence of classical chaos. Faraday
spectroscopy can also provide a signal for feedback control
of the collective atomic spin, and perhaps even for the more
complex spin-motion dynamics in a 1D lin–θ–lin lattice. If
the measurement sensitivity can be increased to the point of
significant back-action, this will make the atom–lattice system
an attractive platform for studies of quantum feedback [10].

2. Faraday spectroscopy

Linear magneto-optical phenomena, including the Faraday
effect, have been studied since the 1800s, and the theoretical
understanding of these phenomena is very mature. Here we
review just a few of the salient features of the Faraday effect
in alkali atom vapours, in order to estimate the measurement
sensitivity and determine how it scales with experimental
parameters. Faraday rotation of a linearly polarized probe field
arises from different indices of refraction for left- and right-
hand circularly polarized light. These indices in turn depend on
the diagonal elements of the polarizability tensor. A discussion
of the tensor polarizability of alkali atoms in the usual regime
where the probe detuning is large compared to the excited state
hyperfine splitting can be found in for example [7]. From
the diagonal elements of the polarizability tensor in spherical
coordinates we obtain
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ρα(�)
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3
± 1
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〉
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where α(�) = −3ε0λ
3�/8π2� is the scalar polarizability

for a two-level atom with transition wavelength λ and natural
linewidth �, in the large-detuning, low-saturation limit. Also,
ρ is the atom density and � = ω − ω0 is the detuning from
resonance. For a linearly polarized, travelling wave probe field
the differential phase shift between the σ+- and σ−-components
is then
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where σ = 3λ2/2π is the resonant photon scattering cross-
section, l is the optical path length through the sample, and
σρl is the optical depth on resonance. For a probe intensity
IP and input polarization εP = εx cos(π/4) + εy sin(π/4), the
difference in output intensity for the εx - and εy-components is

�I = Ix − Iy = −IL sin(ϕ) ≈ −ILϕ. (3)

In our experiment the atomic density distribution is
approximately Gaussian and contains a total number of atoms
N within a 1/e radius L . In that case different parts of the

probe beam see different optical depths and therefore different
amounts of Faraday rotation. We detect Faraday rotation by
measuring the total power difference between the εx - and εy-
components, �PS = Px −Py , in an aperture of radius a centred
on the atom cloud. Replacing ρl in equation (3) with the local
column density and integrating equation (3) over the detection
aperture, we obtain the result
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= 1
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where P is the total power passing through the aperture. Here
we have assumed that the probe beam is much larger than the
size of the atom cloud, so the probe intensity is effectively
constant across the aperture.

To determine the fundamental limit on sensitivity, the
result of equation (4) must be compared to the fluctuations
caused by shot noise. The shot noise is equivalent to
fluctuations in the power difference with a root mean square
(RMS) amplitude of

�PN =
√

Ph̄ω

2κτpd
, (5)

where κ is the quantum efficiency and τpd the time constant
of the photodetector [11]. The smallest detectable spin
polarization is found by setting �PS = �PN , giving
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Noting that the rate of photon scattering per atom is

γs = τ−1
s = �

12

I/I0

(�/�)2
∝ P

(�/�)2
, (7)

where the saturation intensity I0 = 2π2h̄c�/3λ3, we can
rewrite equation (6) as
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This expression is minimized by setting a/L ≈ 1.58 leading
to the simple expression
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. (9)

For the purpose of comparison with experiment it is convenient
to define another figure of merit, the signal-to-noise ratio
(SNR), with which we can measure a change in 〈F̂z〉 from
0 to F :

SNR = F

δFz
≈ 0.10

λN
√

κ

L

√
τpd

τs
. (10)

Equations (9) and (10) predict the sensitivity of our Faraday
measurement, and show how it varies with probe parameters.
Notably, the dependence on probe intensity and detuning is
completely contained in τs = γ −1

s , the mean time between
photon scattering events. In a concrete experiment the detector
time constant τpd determines the fastest changes that we can
see, while the photon scattering time τs sets the timescale for
decoherence. If we are trying to observe coherent dynamics
on some characteristic timescale τ , then we clearly need to
choose probe parameters and the detector bandwidth such that
τpd < τ < τs , say τs ∼ 10τpd .

324



Faraday spectroscopy in an optical lattice

2.1. Quantum back-action

It is instructive to consider when a measurement becomes
sensitive enough to create significant quantum back-action
onto the atomic ensemble. This problem has previously been
addressed in the context of QND measurements [3, 4]. Here we
discuss the issue in the context of spin projection noise [12] and
spin squeezing, in order to provide a simple physical picture.
Let

F̃ =
N∑

i=0

F (i) (11)

be the collective spin of a sample of N atoms. The
quantum uncertainty in a measurement of one of the individual
F (i)

z is given by the uncertainty relation, �F (i)2

y �F (i)2

z �
(h̄/2)|〈F (i)

x 〉|. If we prepare a spin-coherent state aligned along
the x-axis, then �F (i)

y = �F (i)
z = �Fz , and |〈F (i)

x 〉| = F . We
then get a total uncertainty for the z-component of the total
many-body spin of

�F̃2
z = N �F2

z ⇒ �F̃z
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= 1√

2F

1√
N

. (12)

If we measure F̃z with a precision better than �F̃z , then
the result is a spin-squeezed state. In other words, when
the measurement noise is less than the spin projection noise,
we gain new information about the spin statistics, the post-
measurement quantum state has a more precisely known value
of F̃z than the initial coherent state, and we have non-negligible
back-action. Next, we note that in equation (4) we can set
〈Fz〉/F = 〈∑

i Fi
z /F

〉 = 〈F̃z〉/F̃ , which suggests that the
Faraday rotation depends on the z-component of the total spin.
This is confirmed by a more complete analysis including a
quantized electromagnetic field [3, 4]. Thus, in equation (9) we
can set δFz/F = �F̃z/F̃ , and the condition for non-negligible
back-action becomes

�F̃z
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>

δ F̃z

F̃
⇒ 0.071
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√
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√
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where we have defined a figure of merit η that characterizes
the strength of the measurement and the significance of back-
action. It is sometimes convenient to express this in terms of
the optical density O = σ N/2π L2, at resonance and measured
through the centre of the atom cloud:

0.26

√
κO

F

√
τpd

τs
= η > 1. (14)

Equation (14) suggests that if τs ∼ 10τ , it might require
resonant optical depths of order 103 to enter the regime of
significant back-action. Note, however, that we have so far
considered an aperture size that maximizes the Faraday rotation
signal, with the consequence that a large part of the probe field
passes through the cloud away from the centre where the optical
depth is maximum. The numerical prefactor on left-hand side
of equation (14), by contrast, is maximized for an aperture size
a → 0. For a/L � 0.2 it is essentially independent of a and
increases to ∼0.41.

2.2. Faraday rotation in an optical lattice

So far we have considered Faraday spectroscopy in a travelling
wave geometry. In our experiment the probe field is part of an

optical lattice, and the atoms are cold enough to be tightly
confined and spatially ordered in the periodic lattice potential.
Previous work on Bragg scattering from optical lattices has
demonstrated that this spatial order is automatically of a form
that allows each lattice beam to Bragg scatter in the direction
of the other lattice beams [13]. The result is a few minor but
nevertheless important modifications of the results derived so
far.

In a Faraday active medium the atomic response includes
a dipole component orthogonal to the (linear) driving
polarization. It is the interference between the probe field and
the ‘signal’ field radiated by the atomic dipoles which produces
the observed polarization rotation. In the usual limit of large
detuning and low saturation the atomic response is linear, and
the total field radiated by the dipoles in an optical lattice is
simply the sum of the forward-scattered probe field and the
Bragg scattered fields from each of the other lattice beams. A
particularly simple situation occurs in our 1D lin–(θ = 0)–lin
lattice, where the polarization is everywhere linear. When the
lattice is detuned below atomic resonance (� < 0) the atoms
are confined near the antinodes of the standing wave, where
the electric field strength and dipole moment are twice those
for a single beam. This leads to twice the radiated field, and
therefore twice the rotation of the probe polarization and twice
the signal predicted by equation (4). If, on the other hand, the
lattice is detuned above atomic resonance (� > 0), atoms are
confined near the nodes of the standing wave where the field
strength and dipole moment vanish, and the probe polarization
is not rotated at all. Note that the total rate of photon scattering
in the first case is increased by a factor of four over that of a
single lattice beam, and in the second case decreased to zero,
so equation (8) and later equations still hold as long as we use
the appropriate τs . In practice the atomic localization is less
than perfect, leading to a suppression of Bragg scattering by a
factor β = exp[−�k2 �z2] (the Debye–Waller factor), where
�k = 2k is the change in photon momentum and �z is the
1/e width of the atomic wavepackets [13]. Thus, for � < 0
the Faraday signal is increased by a factor 1 + β � 2, while
for � > 0 it is decreased by a factor 1 − β � 0. A further
suppression of Bragg scattering due to the non-isotropic dipole
radiation pattern may also occur for some geometries, but in
our case this correction is negligible.

Interestingly enough, this analysis suggests that Faraday
rotation can be turned into a continuous probe of atom position
in the optical lattice. Consider a situation in which the atomic
sample has been optically pumped so that 〈Fz〉 = F , and where
the spins are kept aligned by a bias magnetic field along the
z-axis. If x denotes the position of an atom along the lattice
axis, with x = 0 corresponding to an antinode of the standing
wave, then the ‘signal’ field is proportional to 1+exp(−i 2kx),
where the first term corresponds to forward scattering and the
second term to Bragg scattering. The differential power �PS

detected by the polarization analyser is then proportional to
Re[1 + exp(−i 2kx)] = 1 + cos(2kx), which varies from 0
to 2 as the atom moves from a node to an antinode in the
lattice. This implies that we can detect movement from a node
to an antinode with the same SNR as Larmor precession from
〈Fz〉 = 0 to F . Note that �PS is an even function of x , i.e. we
get information only about the distance by which the atom
is displaced from the nearest node (or antinode). Of course
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a real atomic wavepacket contains a spread in x which must
be properly averaged over. It is precisely this average over a
wavepacket trapped at the lattice nodes or antinodes that leads
to the modification of the Faraday signal by the factors 1±β as
discussed above. In a more general situation both the internal
and centre-of-mass degrees of freedom will evolve over time,
and both will be reflected in the Faraday signal. Furthermore,
in more complex lattices (the simplest example of which is
the 1D lin–(θ �= 0)–lin family) both the lattice intensity and
polarization change as a function of position, and a careful
analysis is required to extract information about the overall
dynamics.

3. Experiment

We evaluate the performance of our Faraday spectroscopy
set-up by observing Larmor precession of a sample of laser-
cooled and trapped caesium atoms, and by comparing the
measured signals to the predictions of section 2. Our basic
experiment is similar to that of Isayama et al [2], the main
difference being that we use an optical lattice for both atom
trapping and probing. Atoms are first collected and cooled
in a standard vapour-cell MOT, then cooled further in 3D
optical molasses and a 1D near-resonance optical lattice, and
finally transferred adiabatically to a 1D lin–(θ = 0)–lin far-
off-resonance lattice tuned 10–100 GHz above or below the
Cs D2 transition at 852 nm. The far-off-resonance lattice is
formed by a MOPA semiconductor laser source with a total
output power of ∼0.4 W, which is split into a pair of lattice
beams having a roughly Gaussian intensity distribution with
1/e radius of ∼1.2 mm. This is more than three times the
typical radius L = 350 µm of our atom cloud, so the lattice
intensity is reasonably uniform across the atomic sample. We
are typically able to load the lattice with a number of atoms
in the range N ∼ 106–108. Once trapped in the far-off-
resonance lattice, the sample is optically pumped within the
F = 4 ground hyperfine manifold, using circularly polarized
light and a bias magnetic field along εy to produce a spin-
coherent state aligned along the y-axis. We can measure the
kinetic temperature of the atoms at this stage, from which we
infer vibrational excitations in the range n̄ � 0.2 in the lattice
microtraps. To initiate Larmor precession we quickly turn off
(switching time ∼5 µs) the bias field along εy, and apply a
field of ∼30 mG along εx .

A key aspect of our set-up is the use of one lattice beam
as a probe. As is evident from equation (10), the SNR in a
measurement of Larmor precession is tied directly to the rate
of decoherence arising from the scattering of probe photons.
In our set-up we avoid the introduction of extra decoherence
that would occur if we used separate probe and lattice fields,
as well as any disturbance of the atomic dynamics due to extra
light-induced forces from the probe. To allow the observation
of Faraday rotation in one of the lattice beams is relatively
straightforward, requiring only a few minor additions to the
standard 1D lattice set-up as illustrated in figure 1. First, the
lattice beams are aligned at an angle ∼12◦ away from counter-
propagating. Second, a lens is inserted in the probe lattice
beam to image the plane of intersection with the atom cloud
at an aperture located ∼1 m downstream. The aperture in the
image plane allows us to select only the part of the lattice

Figure 1. The set-up for Faraday spectroscopy of atom samples in
optical lattices. One of the linearly polarized lattice beams serves
also as a probe beam, while an imaging lens and aperture ensures
that only the part of the beam passing through the sample is
detected. The polarization is analysed by a simple polarimeter
consisting of a polarization beam-splitter cube (PBS) and
differential photodetector.

beam that has undergone Faraday rotation; the remainder,
which carries no signal but will contribute to the overall
noise, is blocked. During measurements, the aperture size
is adjusted to optimize the SNR as discussed in section 2.
Finally, the Faraday rotation signal is measured with a simple
polarimeter consisting of a polarization beam-splitter cube and
a differential photodetector. The overall detection efficiency
of the system is κ ≈ 0.29.

In order to achieve close to shot-noise-limited detection,
care must be taken in the design and operation of the differential
photodetector. We use an autobalancing circuit developed by
Hobbs [14], which in principle allows very high rejection of
common-mode noise arising from laser power fluctuations.
The cancellation of common-mode noise is quite sensitive to
displacement of the lattice beam due to mechanical vibration, a
problem which we minimize by using large (∼1 cm diameter)
photodiodes. The autobalancing circuit is by design AC
coupled, with a low-frequency cut-off in the range 10–100 Hz
and a high-frequency roll-off at approximately 22 kHz. Further
shaping of the detection frequency response was performed
with a tunable fourth-order band-pass filter. The complete
system is essentially shot-noise limited from∼100 Hz–20 kHz,
apart from a small number of narrow noise peaks in the range
below 2 kHz which carry too little power to be of significance,
and which we ascribe to mechanical vibrations of the optics
in the lattice beam path. Below ∼50 Hz the noise spectrum
is well above shot noise, containing many broad peaks that
seem to be associated with building vibrations which are not
attenuated by the rigid legs of our optical table. This noise
is effectively removed by choosing a low-frequency cut-off of
∼2 kHz, which is still well below the Larmor frequency of
∼10 kHz used in our experiment.

3.1. Results

We have performed Faraday spectroscopy on samples of
Larmor precessing atoms for a wide range of optical lattice
intensities and detunings. Figure 2 shows two typical
signals, both real-time and averaged, taken with similar lattice
depths and detunings � = ±50 GHz, and with samples
containing identical numbers of atoms in identical volumes.
For negative detuning the SNR allows easy observation of
Larmor precession in real time. In the case of positive detuning
the observed signal and SNR is smaller by a factor of 4.7.
Following the discussion in section 2.2, this corresponds to a
Debye–Waller factor of β ≈ 0.65, a value which varies slightly
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Figure 2. Time-dependent Faraday rotation, measured for a sample of a few ×106 atoms which are spin polarized and undergoing Larmor
precession in the plane of the probe beam. (a) Real-time Larmor precession signals, for � = 50 GHz (top) and � = −50 GHz (bottom).
(b) Signal averages, for � = 50 GHz (top) and � = −50 GHz (bottom). For negative detuning the photon scattering time is τs = 4.1 ms.

with lattice parameters but can be regarded as typical of our
data. As a consistency check we note that the sign of the
Faraday rotation angle is reversed from positive to negative
detuning, as one would expect from the sign change of the
real part of the polarizability when going from below to above
resonance.

Experimental signal amplitudes were extracted from data
such as those shown in figure 2, by fitting the averaged signal
with a damped sinusoid, s(t) = A exp(−t/τ ) sin(ωL t + ϕ).
Except for an initial transient caused by our fourth-order
band-pass filter, the fits are generally good and show only
minor deviation from exponential damping. The RMS noise is
estimated from the part of the real-time signal immediately
preceding the start of Larmor precession, and the SNR
computed by dividing the signal amplitude with the RMS
noise. Note that this measure does not take into account noise
intermodulation, i.e. excess noise on the signal at non-zero
level due to fluctuations of the probe power. Since the total
probe power is stable to �2%, we expect noise intermodulation
to be significant only at signal levels much larger than those of
figure 2. Figure 3 shows the variation of the measured SNR
as a function of τs , the mean time between photon scattering
events. Also shown is the prediction of equation (10), for a
total atom number N ∼ 2.6 × 106, which yields the best fit
to our data. Figure 3 clearly displays the expected scaling
over roughly two orders of magnitude in τs and one order of
magnitude in SNR, and strongly supports the model developed
in section 2. The absolute value of the observed SNR is more
difficult to compare against theory, chiefly because it is difficult
to measure the atom number with good accuracy. First we note
that, in deriving a value for N from the observed SNR, we have
carefully taken into account several effects, including a Bragg
scattering enhancement 1 + β < 2, a small angle between
the prepared spin state and the y-axis, and a small amount
of birefringence in the beam path between the atoms and the
polarimeter, which reduces the Faraday rotation signal by an
overall factor of ∼0.65. Secondly, we have measured N more
directly in two independent ways, one based on the amount
of fluorescence emitted from the MOT, and the other based

Figure 3. The SNR for Larmor precession versus the mean time
between photon scattering events (τs). Symbols represent data taken
at detunings of −9.9 GHz (•), −20.1 GHz (◦), −30.2 GHz (�),
−40.2 GHz (�), −50.2 GHz (�), −60.4 GHz (♦), −70.2 GHz (�),
−80.0 GHz (�), −90.5 GHz ( ), −100.0 GHz (�). Also shown is a
best fit to the data, corresponding to an atom number
N = 2.6 × 106.

on the amount of fluorescence emitted when the atom sample
is released from the lattice and falls through a probe beam
normally used for time-of-flight temperature measurements.
In the first case we estimate N ≈ 1.5 × 106 and in the second
case N ≈ 5×106, where the difference between these numbers
may be regarded as representative of the absolute accuracy.
Thus we conclude that the absolute SNR in our experiment
is consistent with equation (10), but that the experimental
uncertainty on N prevents us from testing the agreement to
better than roughly a factor of three.

Ideally, depolarization of the atomic sample due to photon
scattering will be the primary cause for decay of the Larmor
precession signal. Figure 4 shows the observed damping time
τ versus photon scattering time τs . For scattering times below
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Figure 4. Dephasing times for the Larmor precession signal versus
the mean time between photon scattering events. Symbols represent
data taken at different detunings as in figure 3.

∼5 ms we find τ ≈ 0.5τ 1.4
s , in rough agreement with the

expected scaling law. For longer scattering times the observed
damping times reach a plateau. The obvious conclusion is
that some other mechanism limits the decay time for the
Larmor precession signal to about ∼5 ms. One likely cause is
dephasing due to magnetic field variations, which only need
to be a few tens of microgauss across the sample in order to
explain the observed limit.

In addition to the scaling of SNR with lattice parameters,
it is also interesting to explore the maximum SNR which can
be achieved with our set-up. First, if we are interested only in a
small bandwidth centred on the Larmor frequency, then much
of the measurement noise can be eliminated with an appropriate
band-pass filter. Second, our apparatus allows us to produce
much larger samples, with as many as 108 atoms in a cloud
with 1/e radius L ≈ 750 µm. Figure 5 shows examples of two
real-time signals acquired with such a sample, using detector
bandwidths of 2 kHz (effective τpd = 125 µs), and at detunings
of ∼−20 and ∼−60 GHz respectively. In either case the signal
shapes are virtually identical to those achieved with smaller
samples, but the SNR has been greatly improved. Estimating
the SNR as for the data in figure 3 we find values (excluding
intermodulation noise) of ∼470 at −20 GHz, and ∼250 at
−60 GHz. These numbers are within a factor of two of those
estimated using equation (10) and the independently measured
atom number, similar to the case for smaller atom samples.

With these larger atomic samples it is relevant to consider
the significance of quantum back-action. For the data in
figure 5(a) the on-resonance optical depth at the centre of
the atom cloud is O ≈ 6.6 and the scattering time τs ≈
1.36 ms. Thus we estimate a figure of merit of η ≈ 0.035
in equation (14), suggesting that we are still a factor ∼30 away
from the quantum-limited regime. For the data in figure 5(b)
we are further away still, due to a slightly larger τs at this
large detuning. To move closer to the quantum regime we
could close down the detection aperture, choose probe/detector
parameters τs ≈ τ , and improve the detection system to avoid
losses. In that case a sample with N = 108 and L ≈ 750 µm
has an optical depth O ≈ 10 and gives a figure of merit
η ∼ 0.6, which is quite close to the quantum regime.

Figure 5. The real-time Larmor precession signal, measured with a
sample of ∼108 atoms. (a) Detuning of −20 GHz and τs = 0.97 ms;
(b) detuning of −60 GHz and τs = 5.6 ms.

4. Conclusions

We have developed a simple theory of Faraday spectroscopy
in optical lattices, which predicts the sensitivity and SNR in
measurements of the spin of laser-cooled atomic samples.
A key conclusion is that the SNR depends on probe and
detector parameters solely through the ratio of the detector
time constant to the mean time between photon scattering
events. By comparing the measurement sensitivity against
the spin projection noise we also determine approximately
the conditions under which quantum back-action becomes
significant. We further examine the implications of using
one of the component beams of an optical lattice as a probe,
including the effect of Bragg scattering and the resulting
dependence of the Faraday rotation on the atomic position in
the lattice standing wave. We have carried out a demonstration
experiment which observes Larmor precession of atoms
trapped in a 1D optical lattice. Our data confirm the basic
scaling of measurement sensitivity over nearly two orders
of magnitude of variation in the photon scattering rate, and
the Larmor signal shows an absolute SNR which agrees well
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with theory within the experimental uncertainty. The data
also clearly demonstrate the unavoidable trade-off between
sensitivity and decoherence due to photon scattering. With
samples containing ∼108 atoms we have achieved SNRs of
a few hundred, though even in this case we remain at least a
factor ∼30 away from the regime of significant back-action.

It is interesting to consider whether our measurement
can be extended into the back-action-limited regime. By
matching the detector bandwidth and photon scattering rate,
and by working with very large atomic samples, it seems quite
plausible that this can be achieved. It will be much more
challenging to realize a back-action-limited measurement with
significant bandwidth margin, so as to allow the monitoring
of coherent quantum dynamics and/or quantum feedback
control. One possibility is to work with a Bose condensed
sample, in which case the optical density on resonance
can be as large as a few hundred for samples containing
∼106 atoms. Another possibility is to perform Faraday
spectroscopy in a build-up cavity [15]. A simple analysis
suggests that the measurement sensitivity increases as the
square root of the cavity finesse, so substantial improvement
can be achieved even with moderately high-finesse cavities.
However, intracavity polarization spectroscopy brings with it
new difficulties associated with the management of intracavity
birefringence and Faraday activity, and it remains to be seen
whether this approach is feasible in practice.
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