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Neutral atoms offer a promising platform for single- and many-body quantum control, as required for quantum
information processing.  This includes excellent isolation from the decohering influence of the environment, and
the existence of well developed techniques for atom trapping and coherent manipulation.  We present a review
of our work to implement quantum control and measurement for ultra-cold atoms in far-off-resonance optical
lattice traps.  In recent experiments we have demonstrated coherent behavior of mesoscopic atomic spinor
wavepackets in optical double-well potentials, and carried out quantum state tomography to reconstruct the full
density matrix for the atomic spin degrees of freedom.  This model system shares a number of important
features with proposals to implement quantum logic and quantum computing in optical lattices.  We present a
theoretical analysis of a protocol for universal quantum logic via single qubit operations and an entangling gate
based on electric dipole-dipole interactions. Detailed calculations including the full atomic hyperfine structure
suggests that high-fidelity quantum gates are possible under realistic experimental conditions.
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1.  Introduction

The discovery of efficient quantum algorithms [1] has drawn attention to the extraordinary promise of
information processing with devices that are governed by quantum mechanics.   Further
developments, such as error correcting codes [2] and fault tolerant protocols [3], suggest that quantum
computing may be practical if one assumes ambitious but finite improvements in our ability to
manipulate nature at the quantum level.  Even so, it is clear that bringing these ideas to fruition in the
laboratory will be extraordinarily difficult.  The underlying challenge is to find methods to accurately
prepare, control and measure the quantum mechanical state of a large many-body system.  We cannot
begin to undertake this complex task without first developing a number of enabling technologies Ð the
quantum analogs of  well known tools to model, control and optimize classical processes [4]. Thus,
while we might in principle envision an architecture for a fully functioning fault-tolerant quantum
computer, we believe such attempts are mostly premature.  Initially, one needs to focus on the
development, testing and optimization of basic control and measurement tools.  Only when these
building blocks are in hand does it make sense to consider how to design an optimal architecture that
takes into account the particular strengths and weaknesses of a given physical implementation.

Laser trapped ultracold atoms provide a particularly attractive platform for the exploration of
quantum control and information processing.  Dilute gaseous samples of laser cooled atoms can be
extremely well isolated from the environmental perturbations that lead to decoherence and destroy
quantum information.  Moreover, laboratory techniques for coherent manipulation of atomic
ensembles draw upon decades of experience in laser spectroscopy and laser cooling.  The exquisite
and steadily improving accuracy of atomic clocks is a good example of the capacity of atomic
systems to exhibit highly coherent quantum behavior.
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In this article we review some of our recent work, theoretical as well as experimental, which seeks to
extend the toolbox available for coherent control of trapped neutral atoms.  Our work makes extensive
use of Òoptical latticesÓ [5], periodic arrays of microtraps created by the interference pattern of a set
of intersecting laser beams.  These lattice traps provide considerable flexibility and ease of design,
with almost complete freedom from the complexities of device fabrication.  They  have been widely
employed in laser cooling and trapping experiments,  where resolved-sideband Raman cooling has
been used to prepare large numbers of atoms in pure vibrational ground states of their individual
potential wells [6], and at densities approaching one atom per lattice site [7].   For these reasons
optical lattices provide a powerful testbed for the development of single- and few atom control
procedures such as quantum logic.  We emphasize that this focus on optical lattices is not meant to
downplay the potential role of other laser- or micromagnetic traps for quantum information
processing; indeed an important goal is to develop control tools that are applicable across the full
spectrum of neutral atom traps.

The remainder of this article is organized as follows.  In Sec. 2 we describe the optical lattice
geometry and highlight those features which are central to the work presented here.  In Sec. 3 we
summarize some of the recent experimental developments in single-atom control, including the
observation of tunneling and mesoscopic quantum coherence in magneto-optical double-well
potentials [8], and experimental reconstruction of the density matrix for large atomic spins [9].
Finally, Sec. 4 outlines our theoretical work which sets the stage for future experiments on few-atom
quantum control.  We describe a protocol for implementing universal quantum logic gates based on
dipole-dipole interactions between pairs of atoms [10] and give an outlook towards the prospects for
quantum information processors.

2.  Optical Lattice Traps for Neutral Atoms

Optical lattices are formed by the ac-Stark effect arising from the interaction of individual atoms
with the spatially varying light field created by a set of interfering laser beams.  For monochromatic
fields, E x E x( , ) ( ) . .( )t e c ci tL= ++ − ω , sufficiently detuned from atomic resonance so that spontaneous

emission can be neglected, the result is a potential of the form,

  U = − ⋅ ⋅− +E x E x( ) ( )( ) ( )
t
α , (1)

where   
t
α  is atomic polarizability tensor operator.  We specifically consider alkali atoms interacting

with a lattice field detuned from the nS nP1 2 3 2/ /→  resonance (the D2 line) by an amount much larger

than the excited state hyperfine structure, but less than the fine structure splitting. The lattice potential
can then be cast as the sum of a scalar part (independent of spin state) and a vector part which appears
as an effective Zeeman interaction; the higher rank irreducible tensor contribution vanishes [11]. When
the atomic state is restricted to a given ground hyperfine manifold with total (electronic plus nuclear)
spin F, the lattice potential has the form

  
U U fict= − ⋅0 ( ) ( )x B x

r
µ , (2a)

where the scalar part

U0 0
2

3
( ) ( ) ( )( ) ( )x E x E x= ⋅− +α

(2b)
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is proportional to the local field intensity, with α 0  the polarizability determined by the reduced matrix

elements of the D2 line.  The effective Zeeman interaction occurs between the atomic magnetic
moment   

r
µ µ= −gF BF  ( gF  is the Land� g-factor, µB  the Bohr magneton) and a fictitious magnetic

field

B E x E xfict
B

i= − ×( )− +α
µ

0

3
( ) ( )( ) ( ) , (2c)

which is proportional to the local field ellipticity.  This representation of the lattice potential is
particularly useful when designing lattice potentials and qubit encodings.  It also establishes a close
relationship between far-off-resonance optical and magnetic traps, with the important distinction that
optical traps have more freedom of design, since the fictitious field is not subject to MaxwellÕs
equations in the same way as a real magnetic field.

Most of the important features of optical lattice design can be illustrated by a simple example Ð a
one-dimensional potential formed by counter propagating, linearly polarized plane waves whose
polarization vectors are misaligned by an angle θ (the Òlin-θ-linÓ configuration).  The total field can be

decomposed in right- and left-hand circularly polarized standing waves whose nodes are separated by
λ θ π2( ). The light-shift interaction depends on both the internal state and the helicity of the driving

field, and atoms in different magnetic sublevels can therefore be made to move on different potential
surfaces, as illustrated in Fig. 1.  A better understanding can be derived from the decomposition
expressed in Eq. 2.  The scalar potential of the 1D lin-θ -lin lattice has the form
U z A k zL0 2( ) cos cos( )= θ , while the fictitious field is B efict L zz B k z( ) sin sin( )= θ 2 .  Near a minimum

of U z0 ( )  the potential consists of a scalar harmonic trap plus a magnetic field with a linear gradient.

By controlling θ  one can dynamically vary the scalar trap and magnetic field so as to superimpose
(θ = 0 ) or pull apart (θ ≠ 0 ) the center-of-mass wavepackets associated with different internal states.
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Fig. 1.  1D Lin- θ -lin optical lattice trapping a simple spin-1/2 atom.  Counter propagating laser beams create
standing waves of opposite helicity, with an offset depending on the relative angle θ  of the linear polarization.
For blue detuning, the resulting optical potential traps spin-up(down) atoms at the nodes of the σ +  ( σ − )
standing waves, allowing dynamical control of the atomic wavepackets.  For real alkali atoms with total angular
momentum F >1 2 , there are further potential surfaces for the 2F+1 Zeeman sublevels.

The 1D lin-θ -lin configuration is useful for exploring a variety of quantum control paradigms.
Consider for example a single atom moving near a local minimum of U z0 ( ) .  The gradient of B fict

causes a spatial separation of the minima of the potentials associated with different magnetic sublevels,
with those having m > 0  ( m < 0 ) trapped on the left (right) side.  The fictitious field has no transverse
component and therefore does not couple different m .  Such coupling can, however, be introduced
through the addition of a real, externally applied transverse magnetic field.  In that case the atom will
undergo Larmor precession accompanied by tunneling of the center-of-mass wavepacket, analogous to
motion in a double-well potential.  The correlation (entanglement) between spin- and center-of-mass
states then allow one subsystem to act as a ÒmeterÓ for the state of the other, in the sense of Von
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Neumann.  By measuring the spin one acquires information about the atomic motion, and oscillations
of the atomic magnetization provide direct evidence for coherent tunneling over mesoscopic distances.
Furthermore, through repeated measurements on ensembles of identically prepared atoms, one can
reconstruct the full density matrix of the atomic spin and obtain a quantitative measure for the degree
of coherence in the system.  Experiments of this type will be described in more detail in Sec. 3 below.

As a platform to test neutral atom implementations of quantum computing, the lattice geometry
offers many of the basic ingredients.  Atoms can be prepared in pure quantum states (internal and
external) through combinations of optical pumping and specialized laser cooling techniques such as
resolved-sideband Raman cooling [6].  Unitary operations on single atomic qubits can be driven
through laser or microwave pulses and/or other external fields (e.g. magnetic).  Two-qubit control
operations, i. e. quantum logic gates, are more difficult and we return to that problem in Sec. 4 below.
Finally, readout of the ensemble quantum state can in principle be achieved with very high fidelity
using the quantum-jump method employed in ion traps [12].  Using these building blocks we have
developed a specific protocol to encode qubits and carry out quantum logic.  Our basic lattice
configuration consists of three linearly polarized standing waves along the Cartesian axes.  The
resulting potential is purely scalar, provided that the frequencies of the component standing waves are
different enough to eliminate interference between them.  If now the polarization vectors for the
standing wave along ẑ  are rotated into the lin-θ -lin configuration, then atoms in different internal
states can be trapped on different potentials, transported and made to interact pairwise in such a way as
to implement quantum gates between them.

To this end we identify two ÒspeciesÓ of atoms with different signs of the magnetic moment.  Each
species is trapped on a potential that tracks either the σ+ and σÐ standing waves.  A logical basis can
be defined for each species by an appropriate choice of magnetic sublevels in the two ground hyperfine
states, for example

  
1 1 0 0 1 0± + ± −= = ± = = = =F m n F m nF F, , , m , (3)

where the ± on the ket denotes the species, F I± = ±1 2/  are the upper and lower hyperfine manifolds
for an atom with nuclear spin I, and n = 0  denotes the vibrational ground state of the trap.  This
particular encoding has the advantage of being relatively robust to phase errors, since the logical- 1

and logical- 0  states have identical magnetic moments (to one part in 103 ) and therefore undergo

common-mode level shifts from fluctuating magnetic fields and lattice potentials.  Moreover, the
internal and external states factorize and do not become entangled as atoms are transported in the
lattice.

3.  Experiments in Quantum Control.

Motion of a particle in a double-well potential has long been used as a paradigm for quantum control
and quantum coherent dynamics.  We have made considerable progress towards a laboratory
implementation of this Òtoy modelÓ, using Cs atoms trapped in a 1D lin-θ -lin magneto-optical lattice of
the type discussed in Sec. 2 above and in [8,11].  This single-atom quantum system is not intended to
lend itself directly to quantum information encoding and processing, but its successful realization
involves manipulation and observation of spin- and center-of-mass degrees of freedom, in the presence
of non-trivial interactions between them.  This makes it a perfect training ground for the development of
control and measurement tools needed to undertake the much harder challenge posed by few-atom
control processes such as quantum logic.  From a basic science perspective the cold atom/optical
double-well system is interesting because it is mesoscopic, in the sense that the characteristic action can
be varied continuously across the quantum classical border (the range   0 1 10. − h ), and therefore is
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subject to rapid decoherence if the lattice and its environment is poorly controlled.  It is also complex, in
the sense that the atomic wavepackets are spinors that represent highly entangled states of the atomic
center-of-mass and external degrees of freedom, and that the coupling of the two leads to dynamics
whose classical counterpart exhibits deterministic chaos [13,14].  Last but not least, we have a series of
powerful laboratory techniques available that allow us to prepare well defined pure states, subject them
to controlled unitary evolution, and accurately measure the quantum state along the way.

To model the system we solve the eigenvalue problem of the full lattice Hamiltonian. For typical
experimental parameters, the two lowest energy bands of the lattice potential are flat (indicating that
tunneling between separate double wells is negligible), and split by an energy   hΩT , well below the
separation to higher excited bands. It is then possible to constrain the system to a subspace spanned by a
pair of Wannier spinors ψ ψS A,{ } , which correspond to the symmetric/antisymmetric ground states
of individual double-wells. Left and right localized states can then be obtained as the
superposition ψ ψ ψL R S A= ±( ) 2 , and one sees immediately that the system will Rabi oscillate
between these at frequency ΩT . Fig. 2 shows the internal and center-of-mass probabilities during a Rabi
period, and illustrates the entanglement between spin and space coordinated, especially in the
delocalized ÒSchr�dinger CatÓ-like state at a quarter Rabi period.

0

-200 nm

+200 nm

-4

4

0

πm ρ(z)

spin

position

(a)

-4 0 +4

0.0

0.1

0.2

0.3

-4 0 +4

0

1

2

0 +π/2-π/2

(b) (c) (d)

t = τ 10

t = τ 4

t = τ 2

πmρ kLz( )

kLz m m

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0

1

2

0

1

2

Fig. 2. Spinor wavepackets during a Rabi oscillation between left and right localized states. At a quarter period
the state is a Schr�dinger Cat-like superposition. (a) Center-of-mass probability density distribution for each
magnetic sublevel in the ÒcatÓ state, showing the correlation between spin and spatial degrees of freedom. The
marginal distributions in spin and space are projected onto the walls. (b) Center-of-mass probability densities
obtained by tracing over the spin degree of freedom. The dotted curve indicates the wavepacket at t = 0 . (c)
Magnetic populations obtained by tracing over the center-of-mass degree of freedom. (d) Experimentally
measured populations.

To observe coherent tunneling we first prepare a dilute vapor of ~ 106  non-interacting Cs atoms, each
in an initially localized quantum state, say ψ L , and then observe the subsequent quantum evolution of
the ensemble.  This starting point is accomplished through a series of steps, beginning with laser
cooling in 3D molasses and in a near-resonance 1D lin-θ -lin lattice, followed by adiabatic transfer to
the superimposed, far-off-resonance 1D lin-θ -lin lattice.  Once in the far-off-resonance lattice the atoms
are optically pumped to mF = 4 , and the motional ground state in the corresponding potential is
selected by lowering the depth and accelerating the lattice to allow atoms outside the ground band to
escape. Optical pumping and state selection is done in the presence of a large external field Bz  to
prevent precession of the magnetic moment. When the population outside the ground band has been
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eliminated we increase the lattice depth, change the lattice acceleration to free-fall, ramp up the
transverse field Bx  and finally ramp Bz  to zero. This sequence adiabatically connects the quantum state
prepared by cooling, optical pumping and state selection (the ground state in the mF = 4  potential) to
the left-localized state of the optical double well.

We detect Rabi oscillations between ψ L  and ψ R  by measuring the time-dependent magnetization
of the atomic ensemble. A Stern-Gerlach measurement is easily accomplished by releasing the atoms
from the lattice, quickly applying a bias field Bz  to keep the quantization axis well defined, and letting
the atoms fall to a probe beam in the presence of an inhomogeneous magnetic field. The magnetic
populations can then be extracted from the separate arrival time distributions for different magnetic
sublevels. Figure 3 shows a typical oscillation of the atomic magnetization as a function of time. Our
data fits well to a damped sinusoid, and allows us to extract a good measure for the Rabi frequency. We
find generally excellent agreement between the measured Rabi frequencies and a bandstructure
calculation with no free parameters, over a wide range of experimental conditions. Direct examination
of the magnetic populations during Rabi oscillation is consistent with a ÒSchr�dinger CatÓÐlike
superposition at the appropriate time (Fig. 2b). In this first experiment the Rabi oscillations dephase on
a timescale of a few hundred microseconds, most likely due to variations in the Rabi frequency across
the atomic sample. The probable cause is an estimated ~5% variation of the lattice beam intensities,
which is consistent with the observed dephasing times. We estimate the timescale for decoherence due
to photon scattering to be of order ~1ms, which is too slow to account for the observed damping. A next
generation of the experiment is now underway, in which we hope to increase the dephasing time by an
order of magnitude by better control over lattice beam and magnetic field inhomogeneities. With better
homogeneity and larger detuning we hope to explore coherent dynamics on a time scale much longer
than the Rabi period.
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Fig. 3. Typical oscillation of the atomic magnetization as a function of time. The solid line is a fit to a decaying
sinusoid.

In our experiments so far we have followed the coherent evolution of spinor wavepackets by
measuring the magnetic populations. This cannot directly distinguish a coherent superposition from an
incoherent mixture, and quantum coherence must instead be inferred from the presence of Rabi
oscillations at later times. However, the correlation between internal and external degrees of freedom
suggests that we extend the use of the Òspin meterÓ to directly measure coherence in the double-well
system. Motivated in part by these considerations, we have developed an experimental method to
reconstruct the complete density matrix for a large angular momentum, in our case the 6 41 2S F =( )
hyperfine ground manifold of Cs [9].  It appears likely that the technique can be generalized to
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encompass the whole hyperfine ground manifold ( F I= ±1 2 ), which will make it an exceptionally
valuable tool to evaluate quantum logic gates.
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Fig. 4. Examples of input (top) and reconstructed states (bottom). All plots show the magnitude of the matrix
elements. (a) Input state mF = −4 , prepared by optical pumping with σ −  polarized light. (b) Input state
prepared by optical pumping with linear polarization along ŷ . This produces a state close to mF = 0  in a
coordinate system with quantization axis along ŷ , but with large coherences in the basis used for the
reconstruction. (c) Same input and reconstructed state as (b), but shown in the rotated basis where the state is
close to mF = 0 .

Reconstruction of a (generally mixed) quantum state is a nontrivial problem with no general solution,
though system specific algorithms have been found in a limited number of cases [15]. Our
reconstruction scheme relies on repeated Stern-Gerlach measurements with respect to many different
quantization axes. These measurements can be performed in a straightforward manner, by choosing
different directions for the magnetic bias field which determines the quantization axis for the Stern-
Gerlach analyzer. The algorithm requires that one measures the 2 1F +  magnetic populations for 4 1F +
different orientations of the quantization axis, characterized by polar angles θ  and azimuthal angles ϕ .
If one chooses a common θ  and 4 1F +  evenly separated ϕ  in the interval 0 2, π[ ]  it is possible to
derive analytical expressions for the 2 1 2F +( )  elements of the density matrix in terms of the

2 1 4 1F F+( ) +( )  measured populations [16]. In practice it is better to relate the measured populations to
the unknown elements of the density matrix by means of a non-square matrix whose elements are
determined by the angles θ  and ϕ , and then invert the problem numerically using the Moore-Penrose
pseudoinverse [17]. This gives us the freedom to choose angles that are more suitable for the
experimental geometry at hand, while at the same time decreasing the sensitivity to experimental and
numerical errors. A drawback of the inversion method is that it occasionally results in a non-positive
and therefore non-physical density matrix. If we find this to be the case for a particular data set we
instead parameterize the density matrix in terms of 2 1 12F +( ) −  real-valued variables in a way that
ensures Hermiticity, unit trace and positivity, and do a best fit to the measured data. This method finds
the best physical density matrix to fit the measurement, and often gives a better match between the input
and reconstructed state.



                                            P. S. Jessen, D. L. Haycock, G. Klose and G. A. Smith, I. H. Deutsch and G. K. Brennen    27

θθθθ

30°

90°

150°

φφφφ

0°

120°

0.0
0.3
0.6
0.9
1.2

z

x
y

θθθθ

30°

90°

150°

φφφφ

0°

120°

0.0
0.3
0.6
0.9
1.2

z

x
y

θθθθ

30°

90°

150°

φφφφ

0°

120°

0.0
0.3
0.6
0.9
1.2

z

x
y

(a)

(b)

(c)

Fig. 5. Measured Wigner functions W θ ϕ,( ) for spin coherent states, corresponding to (a) mF = −4 [  F = 0 97. ],
(b) 60°  [  F = 0 96. ] and (c) 120°  [  F = 0 92. ] rotation of this state around x̂ .

To test the performance of our reconstruction procedure we apply it to a sequence of known input states.
In the simplest case we can prepare something closely approximating the magnetic sublevel mF = −4 ,
by optical pumping with σ −  polarized light tuned to the 6 4 6 41 2 3 2S F P F=( ) → ′ =( ) transition. The

quality of the preparation can be checked by a single Stern-Gerlach measurement along ẑ , which
confirms the near-unit population of mF = −4  and constrains all off-diagonal elements to be very
nearly zero. Both the input and measured density matrices for this example are shown in Fig. 4, and are
clearly in excellent agreement. A more complex test state can be prepared by optical pumping with
linear polarization along ŷ , which prepares a state close to mF = 0  with respect to a quantization axis
along ŷ . The reconstruction procedure is still performed in a basis with quantization axis along ẑ , in

which case the input and reconstructed density matrices display a checkerboard pattern of alternating
zero and large coherences, as shown in Fig. 4b. Visual comparison is simpler when the quantization axis
is chosen along ŷ , and shows the ability of our measurement scheme to reconstruct non-trivial quantum
states (Fig. 4c). To quantify the degree of correspondence between the input state ρi  and reconstructed

state ρr , Fig. 4 also lists the fidelity [18] 
  
F =[ ]Tr

i r i
ρ ρ ρ1 2 1 2 2/ /  obtained for each test state.

Finally, starting from mF = −4  we can produce an arbitrary spin-coherent state by applying a
magnetic field and letting the state precess for a fraction of a Larmor period. In this case it is more
informative to display a Wigner function representation [19] of the measured states, which resemble
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localized ÒwavepacketsÓ in the spherical angular coordinates θ  and ϕ . Fig. 6 clearly shows the quasi-
classical nature of the spin-coherent states, i. e. the quasi-probability distribution retains its roughly
Gaussian shape as it precesses in the spherical phase space.

4.  Quantum Logic via Entangling Dipole-Dipole Interactions.

A universal set of quantum logic gates for implementing an arbitrary quantum algorithm can be
constructed from a set of single qubit rotations and an entangling two-qubit logic gate [20].  As
mentioned above, single qubit rotations can be implemented by coherent laser pulses, multiphoton
Raman-resonant between the logical basis states in the hyperfine ground manifolds, but far detuned
from the excited atomic manifolds.  In principle this can be achieved with very high fidelity as
demonstrated in ion traps [12]. Two-qubit logic requires precisely controlled interactions between
atoms.  Such coupling is generally difficult to achieve while simultaneously maintaining isolation from
the environment.

Various mechanisms for implementing entangling gates have been considered, such as ground-state
collisions of atoms [21], and induced electric dipole-dipole interactions [22], including highly excited
Rydberg states [23].  Our proposal focuses on optically excited electric dipoles d [22].  When separated
by distances r small compared to the optical wavelength  λ the near-field level-shift scales as
V d rdd ~ /2 3 whereas spontaneous emission scales as Γ ~ /d2 3λ .  This allows us to define a figure of
merit for the gate operation which scales as κ λ≡ V rdd / ~ ( / )Γ 3 .  For very tightly localized atoms at
close range we expect a large κ , and therefore high fidelity operation.
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Fig. 6.  Internal energy levels for two two-level atoms.  (a)  The bare energy eigenbasis showing degenerate
states associated with one photon excitation.  (b)  The two atom picture in the rotating frame at field detuning ∆
with dipole-dipole splitting of the symmetric and antisymmetric states.  The primed states to the right are the
dressed atomic states including the sum of the light shift and dipole-dipole potentials (not to scale).

A simple quantum mechanical picture of the dipole-dipole interaction can be given as follows.
Consider two point-like two-level atoms interacting with a monochromatic laser at frequency ωL ,
described by a Hamiltonian,

ˆ ˆ ˆ ˆ ˆ ˆH H H H H HA A A A A L A L= + + + +
1 2 1 2 1 2

, (4a)

  
ˆ ˆ ( )HA

eg
z
i

i
=

hω
σ

2
,  ˆ ( ˆ ˆ ˆ ˆ )( ) ( ) ( ) ( )H VA A dd1 2

1 2 1 2= ++ − − +σ σ σ σ ,  
  
ˆ ˆ ˆ( ) ( )H e eA L

i i t i i t
i

L L= +( )+
−

−
+hΩ

2
σ σω ω , (4b)

where the Pauli operators are the usual pseudo-spin representation of the two-level atoms, Ω is the
Rabi frequency of the exciting laser, and Vdd  is the dipole-dipole coupling constant depending
implicitly on the geometry.  A sketch of the energy level spectrum is shown in Fig, 6.  In the bare
atomic case (no coupling between atoms or to the field) we have a degeneracy corresponding to the
case of one excited- and one ground-state atom.  The addition of the dipole-dipole interaction breaks
this degeneracy through the virtual exchange of photons between the atoms.  The resulting eigenstates
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are the symmetric and anti-symmetric combinations, yielding the Dicke superradiant and subradiant
states (dark states in the near field approximation).    The off-resonant laser field then causes an energy
level shift (ac Stark effect) of the two-atom ground state by an amount inversely proportional to the
detuning between this level and the ÒmolecularÓ bright state.  Because this detuning depends on Vdd ,
the level shift is affected by the atom-atom interaction, thereby providing a physical handle with which
to coherently control the two-atom wave function.  The phase accumulated by the ground-state
probability amplitude is controllable by Vdd , which in turn can be controlled by transporting localized
atoms to well defined internuclear separations, as described in Sec. 2.

In order to implement quantum logic in our protocol, we must consider at least three-level atoms:
two ground states defining logical- 0  and logical- 1 , and an exited state e  connected to the two
ground states with optical dipole matrix elements.  The bare and dipole-coupled energy spectrum as a
function of the internuclear separation are shown in Fig. 7  The external laser field couples the two-
qubit logical basis states 0 0 0 1 1 0 1 1, , , , , ,{ }  to the various excited ground plus excited levels with
different detunings and oscillator strengths.  The logical basis thus is differentially light-shifted.  If we
choose the interaction time τ gate  so that

  
E E E E Egate gate00 11 01 10+ − −( ) ≡ =τ τ π∆ h , (5)

where Eij  is the perturbed energy eigenvalue of  level i j, , then the two-qubit transformation is
unitarily equivalent via single qubit operations to the universal entangling gate ÒCPHASEÓ [24].
During the gate time, there is a probability of error due to spontaneous emission which goes like

P e eerror
gate= − = −− −1 1

Γmax /τ π κ , (6)

where Γmax  is the maximum possible decay rate for any input state, and   κ = ∆ ΓE / maxh  is the figure of

merit defined above in the simple scaling argument.  High fidelity operation thus requires large
differential shifts ∆E so that the controlled-phase can be achieved before spontaneous emission occurs.

Note, in the absence of the dipole interaction E E Eij i j= +( ) ( )1 2 , so ∆E → 0 , τ gate → ∞ , and Perror → 1.

The model above, though sufficient for understanding the basic mechanism of the gate and its scaling,
is insufficient for making quantitative predictions of the gate fidelity.  The atoms are not point-like
particles but localized in finite width Gaussian wavepackets.  Thus, the detunings between the ground
logical states and the excited molecular potentials, functions of the internuclear separation, must be
averaged over properly. There are internuclear radii at which the field is resonant with an excited
potential (a Condon radius) which could lead to photoassociation and catastrophic failure of the gate.
These points must be restricted to the tails of the relative coordinate probability distribution.  Moreover,
when the separation between the centroids of the atomic packets is on the order of their widths, there is a
large distribution of possible orientations between the atomic dipole vectors and the internuclear axis.
One must then account for the full tensor nature of the dipole-dipole interaction which is not possible
with the simple three-level atoms.
We thus turn to the full hyperfine structure of the real alkali atoms.  In order to simplify slightly this
complex task, we treat here two 87Rb atoms (nuclear spin I = 3 2/ ) driven by a π-polarized laser detuned
from the D1 resonance 5 51 2 1 2S P/ /→ .  In the S P1 2 1 2/ /+  manifold, including hyperfine interactions
(energy splitting 

  
V Shf ( ) . ,/1 2 1263 4= hΓ  

  
V Phf ( ) ./1 2 151 2= hΓ , Γ / .2 5 4π = MHz ), there are 128 properly

symmetrized atomic basis states.  Diagonalization of the interaction Hamilton gives the molecular
potentials as plotted in Fig. 8.  These clearly correlate to the four asymptotic combinations of atomic
hyperfine energy levels as r → ∞ .



          Quantum control and information processing in optical lattices            30

D

0 a
0 b

1 b1 a
w01

ea e b

wc

(a)              

00

01 , 10

11
wL

Dd1d2 d3 d4

0+ e

1+ e

r

E

(b)

Fig. 7.  Two three-level atoms excited by a coupling laser at frequency ωc .  (a)  Separated noninteracting atoms.
(b)  Molecular eigenstates with dipole-dipole coupling.  The detunings from molecular resonance at a fixed
internuclear separation are indicated.
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and for small r , to the HundÕs case (c) states, as shown.  Logical 0  and 1 , encoded in the internal states
S F1 2 1/ ( )=  and S F1 2 2/ ( )=  respectively, are excited by a laser, blue detuned from the atomic transition
S F P F1 2 1 21 1/ /( ) ( )= → = .  The differential light-shift on the logical states leads to the CPHASE gate.  The
relative coordinate probability distribution is shown for two atomic Gaussian wavepackets of rms width

  
z0 0 05= . D , separated by ∆z z= 5 2 0. .  By keeping the packets separated, resonant excitation at the Condon

radius is strongly suppressed.

For weak saturation, we treat the dipole-dipole interaction as a perturbation to the trapping potential,
and the excited-state molecular potentials can be adiabatically eliminated.  Given a coupling strength
defined by atomic Rabi frequency Ω, the reduced ÒdressedÓ Hamiltonian in the ground-state basis ( , )i j
is [24],

  

H
c c

r i rij
ei ej

e ee
rel

=
+∑hΩ 2

4

*

( )

( ) ( )

( ) ( )

r r

r δ γ
, (8)
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where cei ( )r  is the oscillator strength for the transition driving ground state i to excited state e as a
function of the internuclear radius, and δe r( ),γ e r( )  are the respective detuning and linewidth of that
molecular resonance.  The average in Eq. (8) is taken over the relative coordinate probability
distribution of the atomic pair.  We then calculate the gate fidelity,

  

FCPHASE

00 11 01

2  Max

Re[ Re[ Re[
= −( )( ) = −

( )
+ −









 ≡ −exp exp

Im[ ]

] ] ]max

/γ τ
π

π κ
ij

ijH

H H H
e

2
. (9)

Figure 9a shows a surface plot of F as a function of catalysis laser detuning relative to atomic
resonance ∆, and the separation between the atomic wavepackets ∆ z, with localization
parameterη ≡ =kz0 0 05. , where z0  is the rms width of the ground-vibrational packet along ẑ .  We
find that the region of best fidelity occurs for internuclear separations where V Vdd hf~ .  
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Fig. 9.  Calculated fidelity for a CPHASE two-qubit logic gate, including loss from photon scattering.  (a)
Fidelity F is plotted as a function of wavepacket separation ∆z  in units of rms width η= kz0 0 05= . , and laser
detuning in units of atomic natural linewidth Γ. (b) Including loss from photon scattering and leakage of
probability amplitude to other magnetic sublevels. The plots show fidelity at the laser detuning ∆ Γ=106  for
the indicated localizations as a function of wavepacket separation in units of rms width for each localization.
For comparison, the dashed line shows the calculated fidelity at η = 0 05.  when leakage is not included in the
model.

There are several constraints that must be satisfied for the model presented here to be self-consistent.
First, the gate-time must be short compared to the time to scatter a photon.  Our analysis only accounts
for possible scattering from the external ÒcatalysisÓ laser and completely neglects spontaneous emission
from the optical lattice.  We thus require that the atomic saturation parameter for the lattice must be
small compared to that of the catalysis laser.  Second, we have assumed throughout that the dipole-
dipole shift is a perturbation to the trapping potential.  This is ensured by requiring the gate time to be
much larger than the oscillation period of the trap, τ π ωgate osc>> 2 / . For the parameters η = 0 05. ,

∆ Γc = 104 , we find that at a well separation k z∆ = 0 15.  the fidelity is maximum at   F = 0 925. .  The
constraints above can be satisfied for geometry with the following ambitious but reasonable parameters
for the lattice, I I IL c= = ×10 3 2 106

0. ,  ∆ ΓL = 104 ,  resulting in a gate speed
1 0 1 2 144/ . ( / )τ ω π≅ =osc kHz .

The fidelity of our gate is most strongly limited by the localization of the atoms. More tightly bound
atoms can be brought to a much smaller internuclear radius while keeping Condon points in the tails of
the relative coordinate probability distribution.  Figure 9b shows the fidelity at the same detuning
∆ Γ= 104  but for different localizations.  We include in this calculation the effect of ÒleakageÓ due to
coherent transfer of probability amplitude to other magnetic sublevels.  Such leakage is suppressed due
to the state dependent nature of the trap, which spatially separates the different magnetic sublevels as
depicted in Fig. 2a.  We see that for η = 0 01. , the peak fidelity is   F = 0 987.  at k z∆ = 0 078. .  Such an



          Quantum control and information processing in optical lattices            32

improvement comes at the cost of increased laser trapping power as the localization scales weakly with
the reciprocal of the trapping intensity, η ~ /Itrap

−1 4 .

Optimizing performance of the gate will require a more elaborate protocol.  Currently we have
considered a ÒquasistaticÓ interaction in which the constant interaction is turned on for a time τ gate  and
then turned off.  One could imagine implementing fully time dependent Hamiltonians that would lead to
different gate performance.  This is essentially the problem of optimal coherent control of a molecular
dimer.  Analogous problems have been studied for many years now in the context of Òcoherent
chemistryÓ whereby molecular states are manipulated through interactions with ultrafast laser pulses
[25].  Our system of laser trapped atoms has the added feature that, through the lattice geometry, one can
in principle control the precise motion of the atoms, their internuclear separation, and the shape of their
center of mass wavepackets.  This degree of control gives us optimism that high fidelity logic gates can
be implemented for application to quantum information processing. In addition, we see the lattice
geometry naturally lends itself to classical massive parallelism of operation.  This capability will
ultimately be required for fault-tolerant operation in the presence of decoherence and imperfect gate
fidelity [3].
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