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Mesoscopic Quantum Coherence in an Optical Lattice

D. L. Haycock,1 P. M. Alsing,2 I. H. Deutsch,2 J. Grondalski,2 and P. S. Jessen1

1Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
2Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131

(Received 24 April 2000)

We observe the quantum coherent dynamics of atomic spinor wave packets in the double-well poten-
tials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates
between the left and right localized states of the ground doublet, and at certain times the wave packet cor-
responds to a coherent superposition of these mesoscopically distinct quantum states. The atom/optical
double-well potential is a flexible and powerful system for further study of quantum coherence, quantum
control, and the quantum/classical transition.

PACS numbers: 42.50.Vk, 03.65.Bz, 32.80.Pj, 32.80.Qk
Quantum coherence between localized but separated
states of a particle in a double-well potential has long
served as a paradigm for nonclassical dynamics. Of
particular interest is the possibility to create and ma-
nipulate coherent superpositions of mesoscopically or
macroscopically distinct quantum states and to study the
role played by decoherence in the emergence of classical
dynamics [1]. Extending the limits of coherent control of
large quantum systems is of great fundamental interest
and lies at the heart of the quest for quantum computation
[2]. Macroscopic quantum tunneling [3], i.e., the inco-
herent decay of a metastable quantum state along some
macroscopic system coordinate, is known to occur for the
phase difference of the superconducting order parameter
across Josephson junctions [4] and has been seen also
in the relaxation of the cooperative magnetization vector
in magnetic grains [5] and of spin domains in atomic
Bose-Einstein condensates (BECs) [6]. Such phenomena
do not provide evidence for superpositions of macroscopi-
cally distinguishable quantum states, for which one must
undertake the much harder challenge of demonstrating
coherent dynamics on the macroscopic scale. So far,
quantum coherent dynamics has been achieved only on
a mesoscopic scale, notably in ion traps [7] and cavity
QED [8], though spectroscopic evidence for the existence
of macroscopic superpositions has very recently been
seen in SQUIDs [9]. Proposals also exist to search for
macroscopic quantum coherence in BECs [10].

In this Letter we report the observation of quantum co-
herent dynamics in a new system consisting of cesium
atoms in wavelength-sized optical double-well potentials
in a far-off-resonance optical lattice. The atomic wave
packets undergo clear Rabi oscillations between two lo-
calized states with a mesoscopic separation of �150 nm,
at frequencies that show excellent quantitative agreement
with theory. Our experiment gives insight into decoher-
ence and dephasing of delocalized wave packets in deep
optical lattices and provides guidance for proposals to im-
plement quantum logic in this system [11]. Optical lattices
[12], created by the ac Stark shift in laser standing waves,
are well suited for studies of quantum coherent dynamics
0031-9007�00�85(16)�3365(4)$15.00
due to low rates of decoherence and the flexibility with
which the optical potential can be designed [13]. Dissi-
pation can be engineered back into the system in a well
controlled manner through noise on the potentials, pho-
ton scattering, and Raman sideband cooling [14]. Last
but not least, one can hope to apply a range of quantum
control techniques, including pure state preparation, con-
trolled unitary evolution, and quantum state reconstruction.
Earlier work on quantum transport in optical lattices has
explored a number of related phenomena such as Bloch
oscillations and Wannier-Stark ladders [15], Landau-Zener
tunneling [16], and tunneling in optical gauge potentials
[17]. The coherent dynamics studied in those experiments,
however, involved shallow potentials and a continuum of
Bloch states, rather than the discrete two-level dynamics
demonstrated here.

Our atom/optical lattice system has been discussed in
detail in [13], and only the most important features are
summarized. The lattice is produced by two counterpropa-
gating laser beams with linear polarizations at an angle u

(1D lin-u-lin configuration), forming s1 and s2 polarized
standing waves with a relative spatial phase given by u.
It is detuned �3000G below the cesium 6S1�2�F � 4� !
6P3�2�F � 5� transition, far compared to the excited-state
hyperfine splitting. In this limit the lattice potential can be
written in terms of a scalar potential (proportional to the
field intensity) and a fictitious magnetic field (proportional
to the field ellipticity) interacting with the magnetic mo-
ment �̂m � 2gFmBF̂, where F̂ is the angular momentum
operator for the hyperfine state F. If we include an exter-
nal magnetic field B the resulting potential is

Û�z� � UJ�z� 1 gFmBF̂ ? Beff�z� ,

UJ �z� �
4U1

3
�1 1 cosu cos�2kLz�� ,

Beff�z� � 2
2U1

3mB
sinu sin�2kLz�ez 1 B ,

where U1 is the light shift produced by a single lattice
beam driving a transition with unit oscillator strength.
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One typically defines diabatic and adiabatic potentials
as the diagonal elements (in the basis �jmF�	) and eigen-
values of Û�z�, respectively; the former govern the motion
when the internal atomic state is independent of z (e.g.,
in a lattice with no coupling between different jmF�), the
latter when it adiabatically follows the direction of Beff�z�
(the Born-Oppenheimer approximation). For our parame-
ters the lowest adiabatic potential (Fig. 1) forms a periodic
array of double wells. The lattice polarizations on the two
sides of the well are predominantly s1 and s2 and the
eigenstates of Û�z� in these regions have predominantly
mF . 0 and mF , 0 character, so that motion from one
side of the well to the other is accompanied by rotation of
the spin. The spin thus acts as a “meter” through which
one can measure the evolution of the center-of-mass atomic
wave packet.

For our system the Born-Oppenheimer approximation
breaks down and one cannot describe the dynamics in
terms of a particle moving on the adiabatic potential. We
solve instead for the exact energy spectrum (band struc-
ture) and stationary states of the complete lattice Hamilto-
nian. For the parameters of Fig. 1 the two lowest bands are
split by a small energy h̄V, much less than the separation
to the next excited bands. In addition, the negligible band
curvature shows that tunneling between different double
wells is unimportant. It is then possible to restrict the dy-
namics to a subspace spanned by the Wannier spinors jcS�
and jcA�, corresponding to the symmetric/antisymmetric
ground doublet of individual double wells. We can recast
the problem in familiar terms by defining left and right
localized states jcL� � �jcS� 1 jcA���

p
2 and jcR� �

�jcS� 2 jcA���
p

2 and see immediately that the system
will Rabi oscillate between these at frequency V if
initially prepared in, e.g., jcL�. We emphasize that jcL�
and jcR� are spinor wave packets with highly entangled
internal and motional degrees of freedom, whose dynam-
ics is governed by the full lattice Hamiltonian. Figure 2
shows the spatial probability distribution (obtained by
tracing over the internal state) and magnetic populations
(obtained by tracing over the center-of-mass coordinate),

FIG. 1. Lowest two adiabatic potentials (thick curves) and
six energy bands (thin lines) for U1 � 84ER , u � 80±, Bx �
85 mG, and Bz � 0 mG.
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at different times during the Rabi oscillation. Note that
the key property of a double-well system is preserved:
the spatial probability densities corresponding to jcL� and
jcR� are localized on the left and right sides of the double
well, and the minimal overlap between them ensures
that the states can be effectively distinguished by the
mesoscopic center-of-mass coordinate.

We prepare atoms in the optical lattice and follow their
quantum coherent dynamics as follows. First, a standard
magneto-optical trap/3D molasses is used to prepare �106

cesium atoms with a temperature of �4 mK within a
�200 mm rms radius. The atoms are cooled further in
a near-resonance 1D lin-u-lin lattice and then adiabati-
cally transferred to the far-off-resonance 1D lin-u-lin lat-
tice. The two 1D lattices are oriented vertically, which
allows us to measure the atomic momentum distributions
by time-of-flight analysis, and the magnetic populations
by Stern-Gerlach analysis [18]. Care is taken to assure
that the lattice polarizations are linear and at the appro-
priate angle and that the background magnetic field is less
than �0.3 mG. Once in the far-off-resonance lattice the
atoms are optically pumped to mF � 4. We then select the
motional ground state in the mF � 4 potential by lower-
ing the lattice depth until only the lowest band is bound,
and accelerating the lattice at 300 m�s2 for 1.5 ms to allow
atoms in higher bands to escape [16]. The state selection
is done in the presence of a large external Bz to lift degen-
eracies between different potentials and prevent precession

FIG. 2. Spinor wave packets during a Rabi oscillation. Pa-
rameters are identical to Fig. 1. (a) Center-of-mass probability
density calculated from the Wannier states. The dotted curve
in the plot for t � t�2 indicates the distribution at t � 0 and
shows the minimal spatial overlap of the left and right localized
wave packets. (b) Magnetic populations calculated from the
Wannier states. (c) Experimentally measured magnetic popu-
lations. The preparation of the initial state is not instantaneous
on the time scale of the Rabi oscillation and we cannot assign
an effective t � 0 for the experiment. The first row therefore
shows calculated and measured distributions at a slightly later
time, t � t�10.
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FIG. 3. Typical magnetization oscillation as a function of time,
for parameters identical to Fig. 1. The solid line is a fit to a
decaying sinusoid.

of the magnetic moment. When the population in higher
bands has been eliminated we increase the lattice depth to
the value used in the experiment and change the accelera-
tion so that the lattice frame is in free fall. This prepares
roughly 90% of the atomic population in the lowest band
of the mF � 4 potential, estimated from the measured mo-
mentum spread and magnetic populations. To initiate Rabi
oscillations we adiabatically connect this state to a local-
ized state in a symmetric double-well potential, by ramping
Bx from zero to its desired value in 250 ms, then ramp-
ing Bz to zero in 70 ms. To create the desired localized
state the final turn-off of Bz must be fast compared to the
ground-doublet splitting, but slow compared to the sepa-
ration from higher bands. We have checked, by numerical
integration of the time-dependent Schrödinger equation us-
ing the full lattice Hamiltonian, that this requirement can
be met over a wide range of parameters including those
used here.

Rabi oscillations between jcL� and jcR� are detected
by measuring the magnetic populations. Figure 3 shows
a typical oscillation of the magnetization as a function of
time. Our data fit well to an exponentially damped sinu-
soid, and we can extract good measures for the Rabi fre-
quency over a wide range of parameters. Figures 4(a) and
4(b) show the measured frequencies versus the single beam
FIG. 4. Measured Rabi frequencies with base lattice parameters identical to Fig. 1, except for one parameter as indicated in the
plots. (a) V versus U1, (b) V versus Bx , and (c) V versus Bz . Open (filled) circles indicate data taken for a lattice tuned below
(above) resonance. The solid curves show the ground-doublet splitting from band structure calculations, with no free parameters;
the dashed curve shows the same splitting with a 4% increase in U1 relative to our best independent estimate.
light shift U1 and transverse magnetic field Bx , together
with the ground-doublet splitting predicted by band struc-
ture calculations. To carry out a direct theory/experiment
comparison we independently measure U1 to within 62%
[19] from parametric wave packet oscillations, and the ex-
ternal Bx to within 61% from Larmor precession of the
magnetic moment. Excellent agreement is observed, espe-
cially if we allow for a �4% systematic underestimate of
U1. Figure 4(c) shows the variation of the Rabi frequency
versus Bz , which changes the energy asymmetry (detun-
ing) of the two-level system. The observed dependence is
characteristic of two-level dynamics and confirms that our
system is restricted to the ground doublet.

We have also the possibility to examine the magnetic
populations in detail during the Rabi oscillation. Fig-
ure 2(c) shows typical values at t � t�10, t � t�4, and
t � t�2, where t � 2p�V is the Rabi period. Generally,
we find qualitative agreement with the results of a band
structure calculation, though the experiment shows a some-
what smaller net magnetization than expected. This might
indicate that the initial state is slightly mixed, with �80%
population in jcL� and �20% population in jcR�. There
is also a slight modification of the measured populations
due to a small degree of adiabatic following as we turn
on a magnetic field to define the quantization axis for
our Stern-Gerlach measurement. This effect is responsible
for the deviation from the expected mirror symmetry of
jcL� and jcR� around mF � 0. Of particular interest
is the spinor wave packet at t � t�4, where jc�t�� ~

jcL� 2 ijcR�. Within the limits just mentioned we mea-
sure magnetic populations consistent with this delocalized
superposition state, though the populations by themselves
do not allow us to distinguish between a coherent super-
position and an incoherent mixture of jcL� and jcR�. Evi-
dence of the coherence comes instead from the persistence
of Rabi oscillations at later times.

As illustrated by the data in Fig. 3, we find that the am-
plitude of the Rabi oscillations decays with a time con-
stant of a few hundred microseconds. We estimate the time
scale for decoherence from photon scattering to be �1 ms,
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which is too slow to account for the observed damping.
We have looked at Rabi oscillations also in a lattice tuned
above atomic resonance, where the coherent dynamics is
identical but the rate of photon scattering is reduced by a
factor of 2 to 3. In practice we see no difference in the de-
cay rate. This suggests that the decay is caused by dephas-
ing of the Rabi oscillations, which occurs because different
atoms see a slightly different lattice environment. The
most likely cause is an estimated �5% variation of the lat-
tice beam intensities, which is consistent with the observed
dephasing time. The dephasing underscores the fragile
nature of highly entangled states of atomic internal and
external degrees of freedom and suggests that proposals
for quantum information processing [11] should seek clean
separation of spin and center-of-mass motion.

In summary, we have observed Rabi oscillations of
atomic spinor wave packets in the optical double-well po-
tentials of a far-off-resonance 1D lin-u-lin optical lattice.
We have taken extensive data for a relative polarization
angle u � 80±, plus additional data at u � 85± (not shown
here). Both data sets show Rabi frequencies in excellent
agreement with theory. The persistence of oscillation for a
few Rabi periods indicates that quantum coherent super-
positions of the left and right localized states occur at
certain times. Furthermore, the decay of these oscilla-
tions is most likely not caused by intrinsic decoherence
from photon scattering, but rather by lattice inhomogene-
ity across the atomic sample. Dephasing can, in prin-
ciple, be reversed by spin-echo techniques similar to those
employed in nuclear magnetic resonance, and we are set-
ting up an improved experiment to explore this possibil-
ity. With better lattice homogeneity and larger detuning
and echo techniques we hope to explore coherent dynam-
ics on time scales much longer than the Rabi period. We
can then reintroduce dissipation and study the fundamen-
tal process of decoherence, as well as the transition from
quantum coherent to classical dynamics. This last aspect
is especially intriguing, as the coupled spin-motion Hamil-
tonian associated with this system can be mapped onto the
Tavis-Cummings model without the rotating wave approxi-
mation, whose classical counterpart exhibits deterministic
chaos [20]. Our system should then allow us to study the
effects of decoherence on the emergent nonlinear behavior
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[21]. Additional phenomena, such as the coherent suppres-
sion of tunneling [22], can be studied in the presence of
coherent driving fields.
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