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Abstract. We review the quantum transport of ultra-cold alkali atoms trapped in a
one-dimensional optical lattice of double-potential wells, engineered through a combination
of ac-Stark shifts and Zeeman interactions. The system is modelled numerically through
analysis of the bandstructure and integration of the time-dependent Schrödinger equation. By
these means we simulate coherent control of the atomic wavepackets. We present results
from ongoing experiments on laser-cooled caesium, including the demonstration of quantum
state preparation and preliminary evidence for coherent tunnelling. Entanglement between
the internal and motional degrees of freedom allows us to access the tunnelling dynamics by
Stern–Gerlach measurements of the ground state magnetic populations. A scheme to extend
this into a full reconstruction of the density matrix for the ground state angular momentum is
presented. We further consider the classical dynamics of our system, which displays
deterministic chaos. This has important implications for the distinction between classical and
quantum mechanical transport.
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1. Introduction

Dynamics associated with a particle in a double-potential
well play a key role in numerous areas of pure and applied
sciences, and is an important paradigm for quantum coherent
evolution. Most fundamental is the decay or oscillation of
a meta-stable state via quantum tunnelling. For example,
in chemical kinetics, ‘reactants’ and ‘products’ experience
potential well minima with an activation barrier UB between
them. Quantum tunnelling plays a role at low temperatures
in modifying the usual Arrhenius law for the transition rate
� = ν0 exp[−UB/kBT ] [1]. Familiar examples of quantum
tunnelling in double wells are numerous in other physical
systems. Examples for condensed matter include electron
transport in semiconductor quantum wells [2], quasiparticle
transport in the molecular polaron model [3], and defect
tunnelling in crystals and amorphous solids which influences
their dielectric and acoustic properties [4].

Of particular interest is the tunnelling of meso/
macroscopic degrees of freedom [5]. Examples include
tunnelling of Cooper pairs through a Josephson junction [6],
and the tunnelling of the total cooperative magnetization
(or Néel) vector in ferromagnetic (or anti-ferromagnetic)
grains with anisotropic magnetic fields, as proposed by
Chudnovsky and Tejada [7]. In many of these systems,
coupling to the noisy environment leads to dissipation which

strongly influences the tunnelling dynamics. There is a
wealth of literature on the role of dissipation in tunnelling,
stimulated by the seminal work of Caldeira and Leggett [5,
8]. An important question is the effect of dissipation on
the phase transition between coherent quantum transport
and thermal hopping [9]. Besides its importance for the
performance of devices such as SQUIDS [6] and tunnelling
microscopes [10], this problem is of fundamental interest
in the study of macroscopic quantum coherence and the
boundary between quantum and classical dynamics [11]. The
decay of macroscopic superposition states via environment-
induced decoherence is central to our current understanding
of the emergent classical behaviour [12]. Tunnelling over
macroscopic distances result in delocalized states which
are extremely susceptible to decoherence, and it remains
a key challenge to design systems in which the regime of
quantum coherent dynamics, as well as the gradual transition
to classical dynamics, can be experimentally accessed.

The control of dissipation in quantum coherent systems
is increasingly important for new applications in quantum
information processing, such as quantum computing [13].
In one proposal, quantum logic would be implemented via
spin-dependent quantum tunnelling between coupled single-
electron quantum dots [14]. Suppression of decoherence
is crucial to the performance of such a device. In
this context there has been great interest in controlling

1464-4266/00/050633+12$30.00 © 2000 IOP Publishing Ltd 633



I H Deutsch et al

dissipative tunnelling dynamics through the application of
coherent driving forces [15]. Phenomena such as dynamic
localization [16] and stochastic resonances [17] arise through
the interplay between quantum interference, coherent drives
and noise.

Another fundamental problem in the quantum–classical
transition is the emergence of chaos in a nonlinear system.
One paradigm for such studies is the driven double well [18].
By monitoring the quasiprobability distribution in phase
space, one finds that localized regions of phase space,
corresponding to classically stable regions bounded by KAM
(Kolmogorov–Arnol’d–Moser) surfaces, are now connected
by quantum tunnelling. The transition rate between these
stable islands can be much greater than the ordinary
tunnelling rate, a phenomenon known as ‘chaos assisted
tunnelling’ [19].

We consider here the dynamics of ultra-cold atoms
in magneto-optical potentials as an ideal system in which
to explore the wide variety of phenomena associated with
double-potential wells. Optical lattices, arising from the
ac-Stark effect associated with a set of interfering laser
beams [20], have proven to be a very clean system to
investigate quantum transport phenomena, including Bloch
oscillations [21], Wannier–Stark ladders [22], Landau–Zener
tunnelling [23], dynamical band-collapse [24], and tunnelling
in gauge potentials [25]. The properties which make this
system well suited to this research are discussed throughout
this issue:

• The optical potential can be made nondissipative in the
far-off resonance limit.

• Pure quantum states can be prepared through cool-
ing [26] and state selection techniques [23], and their
subsequent evolution and decoherence monitored by
measuring the density matrix for the atomic internal
state [27].

• Properties of the lattice can be dynamically varied
through changes in the laser parameters such as
intensity, frequency, wavevector direction, polarization,
and through the addition of external magnetic and/or
electric fields.

• Noise can be reintroduced into the system in a well
characterized way [28].

Coherent control of atomic wavepackets can be achieved in
optical lattices [29] in a manner similar to that performed in
ion traps [30], with a flexibility reflected in the rich atom–field
interaction. This flexibility will allow us to study the interplay
of quantum dynamics, classical instabilities, coherent and
stochastic external driving fields, and quantum noise.

The remainder of this paper is organized as follows.
In section 2 we review the theoretical model for the
system under consideration—a far-off resonance optical
lattice trapping alkali atoms such as caesium, together with
external magnetic fields. Through an appropriate choice of
geometry, the magneto-optical potential consists of a lattice
of double-potential wells with variable barrier height, energy
asymmetry and separation. We describe our Hamiltonian
and solution methods, including numerical simulations of
the time-dependent Schrödinger equation for our hyperfine-
spinor wavepacket. In section 3 we detail our experimental

setup and measurements. A particularly appealing aspect of
quantum transport studies in optical potentials is that we can
bring to bear the full plethora of quantum control techniques:
pure state preparation, controlled unitary evolution and
quantum state readout. Coherent tunnelling is directly
observable from a measurement of time-varying microscopic
quantities, such as the populations of atomic magnetic
sublevels, rather than through an indirect signature in the
macroscopic properties of an ensemble in thermodynamic
equilibrium, as is often the case in condensed-matter systems.
Section 4 discusses further phenomena which we are
currently exploring, both theoretically and experimentally.
In order to fully characterize the coherent dynamics of our
system one must implement quantum state measurement
techniques which measure the off-diagonal matrix elements
of the density operator [27]. We describe a scheme to
reconstruct the ground state angular momentum density
matrix for our spinor wavepacket [31], and show the result
of a numerical simulation to demonstrate its robustness. We
end this section with a discussion of the classical dynamics
associated with motion of the atoms in the magneto-optical
double-potential well. Such an analysis is necessary to
identify those aspects of the transport which are uniquely
quantum mechanical. This is especially important for our
system where the Born–Oppenheimer approximation (BOA)
breaks down, and one can no longer treat the dynamics as
occurring on an effective one-dimensional potential surface.
Instead the effective phase space is multidimensional, and the
total energy does not uniquely determine the classical path
and can even be chaotic. Our system can be mapped onto the
Jaynes–Cummings [32] (or generally Tavis–Cummings [33])
Hamiltonian, without the rotating wave approximation,
which is known to exhibit classical chaos [34]. Finally, in
section 5 we summarize our results.

2. Theoretical model

2.1. Optical lattices—the effective magnetic field picture

We consider an optical lattice formed by a monochromatic
field with arbitrary polarization, E(x, t) = Re (E(x)e−iωLt ).
The light-shift potential has the form [20]

ÛLS(x) = − 1
4E∗(x) · ↔̂

α · E(x), (1)

where
↔̂
α = −∑e d̂ged̂eg/h̄�eg is the atomic polarizability

tensor for the optical transition |g〉 → |e〉, with d̂eg the dipole
operator and �eg = ωL − ωeg the detuning. Decomposing
these tensors into their irreducible components,

ÛLS(x) = − 1
4

(
|E(x)|2α̂(0) + (E∗(x)× E(x))i α̂

(1)
i

+

(
E∗
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Thus, by appropriate choice of atomic transition and
field distribution, we can design scalar, vector and tensor
interactions.

We restrict our attention here to alkali atoms excited
on the so-called D2 resonance, |S1/2〉 → |P3/2〉. When
the detuning is sufficiently large (but still small compared
with the fine structure splitting), hyperfine splitting can be
neglected and the ground state polarizability is essentially that
of a |J = 1

2 〉 atom. In that case the rank-2 tensor interaction
vanishes and only scalar and vector interactions are possible.
This is in strong contrast to the situation in which the atom
is excited close to one of the excited hyperfine states. In that
case strong tensor couplings occur as well. The resulting
optical potential in the far-off resonance limit then has the
form of a scalar plus Zeeman-like interaction with a fictitious
magnetic field [35],

ÛLS(x) = U0(x)− �̂µ · Bfict(x). (3)

We assume the atoms are optically pumped into a given
hyperfine ground state with quantum numberF and magnetic
moment �̂µ = h̄γ F̂ , where F̂ is the vector angular momentum
operator for this state and γ = −gFµB/h̄ is the gyromagnetic
ratio. If we further assume that our field is a superposition
of plane waves of amplitudeE1, and write E(x) = E1�εL(x),
we find [29],

U0(x) = 2
3U1(�ε∗L(x) · �εL(x)),

µBBfict(x) = 1

3
U1

( �ε∗(x)× �ε(x)
i

)
.

(4)

Here U1 is the light shift produced by a single lattice beam
(<0 for red detuning) driving a transition with unit oscillator
strength. To set the scales, for caesium with F = 4, gFµB =
0.17ER mG−1, where ER = (h̄kL)

2/(2M) ≈ h(2 kHz) is
the photon-recoil energy.

The above optical potential, together with real magnetic
fields B, can be used to design lattices of double-potential
wells. In the lin-θ -lin configuration [36] consisting of
counterpropagating plane waves with linear polarizations at
an angle θ (see figure 1(a)), we have �εL(z) = exeikLz +
(ex cos θ + ey sin θ)e−ikLz, giving

Û (z) = 2
3U1{(2 + 2 cos θ cos(2kLz))

− (sin θ sin(2kLz))F̂z/F } − h̄γ F̂ · B

= 4
3U1 +

∑
m

Um cos(2kLz + φm)|F,m〉〈F,m|

− h̄γ F̂ · B, (5)

where

Um = 2

3
U1

√
4 cos2 θ +

(m
F

)2
sin2 θ

and tan φm = m

2F
tan θ.

The optical potential is diagonal in the basis of magnetic
sublevels quantized along z (off-diagonal elements vanish
in the far-off resonance limit as described above). Each
‘diabatic potential’ then represents a simple sinusoid of
different amplitude and phase. These potentials cross at
positions of linear polarization where the fictitious magnetic
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Figure 1. Magneto-optic potentials for the hyperfine ground state
F = 4 in the far-off resonance limit. (a) Counterpropagating
lattice beams create σ+ and σ− polarized standing waves along z,
with a relative spatial phase determined by the angle θ formed by
the linear polarizations, producing sinusoidal potentials for each
magnetic sublevel. An axial magnetic field B‖ provides a dc-bias
of each potential and a transverse magnetic field B⊥ couples them
pairwise. The resulting nine adiabatic potentials and energy bands
in the first Brillouin zone are shown in (b)–(d) for U1 = −83ER,
θ = 80◦, B‖ = 0 mG and: (b) B⊥ = 0 mG (no coupling),
(c) B⊥ = 30 mG (weak coupling), (d) B⊥ = 85 mG (moderate
coupling). Anticrossings in the lowest potentials exhibit a
double-well at each λ/4 lattice site. Negligible band curvature for
lowest bands indicate negligible site-to-site tunnelling. The
transverse magnetic fields split previously degenerate
ground-bands in (b) into a doublet with �E = 8.5 × 10−2ER and
�E = 1.8ER for (c) and (d) respectively.

field of equations (3), (4b) vanish (see figure 1(b)). A
real magnetic field along the quantization axis gives rise
to a uniform Zeeman shift, but does not induce coherence
between these levels. A real magnetic field transverse to
the quantization axis breaks the degeneracy. The resulting
adiabatic potential exhibits a lattice of double-potential wells
(figures 1(c) and (d)) for the lowest few potential curves.

An atom initially trapped with very low energy at one
of the lattice sites experiences the dynamics of the double
wells; tunnelling between different double wells at different
sites separated by λ/4 is strongly suppressed by the large
energy barrier separating them and can be neglected over
the timescale of the on-site dynamics. In that case one can
use a harmonic expansion around the minima. Adding a
true external magnetic field with free-space Lamor frequency
�*L = γB, the potential in the basis of magnetic sublevels
has the approximate form,

Û =
∑
m

1
2Mω

2
m(ẑ +�zm/2)

2|m〉〈m| − h̄ �*L · F̂ , (6a)
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where

h̄ωm = 2
√

2|Um|ER, �zm = λL φm
2π
. (6b)

For the special case of spin- 1
2 (F = 1

2 ), the Hamiltonian
reduces to a familiar expression,

Ĥ =
(
p̂2

2M
+

1

2
Mω2ẑ2

)
− h̄*x

2
σ̂x

+

(
1

2
Mω2�zẑ− h̄*z

2

)
σ̂z, (7)

where ω = ωm=F , and we have neglected a constant
term. This system, consisting of a single-mode harmonic
oscillator coupled to a spin- 1

2 particle, is known alternately
in the condensed matter community as the ‘spin–boson’
problem [8] and in the quantum optics community as the
‘Jaynes–Cummings’ problem [32]. We will return to this
model in section 4.2.

It is useful to view these potentials in terms of total
effective magnetic field—fictitious plus real field. Because
the atomic position is correlated with the internal state
(through the effective magnetic field), precession of the
atomic spin about the external B-field is accompanied
by motion of the atomic centre-of-mass wavepacket.
Our problem thus has a kinship with the mesoscopic
magnetization problem of Chudnovsky [7] discussed in the
introduction. In contrast to the condensed matter problem,
here the oscillation of the atomic magnetization is correlated
with centre-of-mass motion over mesoscopic distances. The
oscillation of magnetization provides a meter through which
we can detect the time-dependent motion of the packet.

2.2. Solutions to the Schrödinger equation

2.2.1. Band structure. We calculate the energy
bandstructure numerically, starting from the Hamiltonian
with the potential given in equation (5). The eigenstates are
Bloch spinors, |.n,q〉 = ∑

m eiqz|u(m)n,q 〉 ⊗ |m〉, where |u(m)n,q 〉
is the periodic wavefunction for magnetic sublevel m, and
q is the quasimomentum [20]. For sufficiently deep wells,
the lower bands show no appreciable curvature, indicating
negligible site-to-site tunnelling (see figures 1(b)–(d)). It
is then appropriate to treat the state at a given lattice site
as a local Wannier-spinor [37], with a harmonic oscillator-
like wavefunction for each component. Without a transverse
magnetic field, the Hamiltonian is diagonal in the magnetic
substate basis and the eigenstates are doubly degenerate,
corresponding to an anti-ferromagnetic symmetry. In the
presence of a finite transverse magnetic field B⊥ the axial-
rotation symmetry is broken and all magnetic substates are
coupled. The resulting eigenstates satisfy the combined
symmetry of parity together with a spin-flip, u(m)n (z) =
±u(−m)n (−z) [29]. The ground band is split, with an energy
difference that gives a ‘tunnelling frequency’*T on the order
of *⊥|〈ψL|ψR〉|, where *⊥ = γB⊥ is the bare Larmor
precession frequency of the transverse field and |〈ψL|ψR〉|
measures the overlap between the wavefunctions localized
in the left and right wells.

In viewing the bandstructure one should not associate a
given energy band with a single adiabatic potential curve.

Indeed, the ground band doublet in figure 1(d) appears
above the barrier of the lowest adiabatic potential, where
one might have expected no doublet at all. This feature
reflects that fact that the BOA, which holds when the internal
state evolves much more rapidily than the external motional
states, breaks down for this system (see Dutta and Raithel in
this issue). Thus, though the adiabatic potentials give us an
indication of how the different internal states are coupled as
a function of position, they do not give us a picture of the
classical force exerted on our atoms. As a consequence, the
distinction between classical and quantum transport in this
system cannot be immediately gleaned from these potential
curves, and one must resort to a more sophisticated analysis.
We will return to this interpretational issue in section 4.2 after
consideration of the preliminary experimental results.

2.2.2. Numerical simulation. The bandstructure
contains some quantitative information about the dynamical
timescales associated with atomic motion in the magneto-
optic potential. However, one must ultimately solve the
time-dependent Schrödinger equation to fully explore the
possibilities for quantum state preparation and control. We
thus turn to numerical techniques. Simulation of wavepacket
motion in complex potentials has been the subject of a recent
study, especially in the context of atomic collisions and
quantum chemistry [38]. Our problem has the interesting and
complicating feature of the entanglement between internal
and external degrees of freedom.

The propagator of the 2F + 1 spinor state, |ψ(t +�t)〉 =
Û (�t; t)|ψ(t)〉, can be approximated for small time steps
by a split step operator procedure, which for a Hamiltonian
Ĥ (t) = T̂ + V̂ (t) [39] has the form

Û (�t; t) ≈ e− i
h̄
Ĥ (t)�t ≈ e− i

h̄
T̂
2 �te− i

h̄
V̂ (t)�te− i

h̄
T̂
2 �t . (8)

This method is accurate through to order (�t)2 and robust
because the propagator is norm preserving. Typically,
one uses a fast Fourier transform to efficiently translate
between position and momentum representations, where
respectively the kinetic and potential energy are usually
diagonal. The potential of equation (5), however, is not
diagonal in the position representation when a transverse
magnetic field is present, but rather tri-diagonal. This
requires a computationally intensive matrix exponentiation
at every time step when the potential varies as a function of
t . A better way to factorize the small time propagator is to
write the exponentials in their Cayley form, which is also
second-order accurate and unitary [40],

Û (�t; t) ≈
(

1 − i
4 T̂ �t

1 + i
4 T̂ �t

)

×
(

1 − i
2 V̂ (t)�t

1 + i
2 V̂ (t)�t

)(
1 − i

4 T̂ �t

1 + i
4 T̂ �t

)
. (9)

The computationally intensive operation at each time step
now involves an inversion of a tri-diagonal matrix for which
efficient algorithms exist [41].

The first simulations we perform show that a spinor
wavepacket, initially in the ground state, can be mapped
through an appropriate dynamic application of magnetic
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Figure 2. Numerical simulation of quantum state preparation
leading to magnetization oscillation and quantum tunnelling. The
lin-θ -lin lattice is constructed with θ = 81◦ and single-beam
light-shift |U1| = 81ER. An initial bias field of Bz = −55 mG
maintains the atom in the pure m = 4 state. A transverse magnetic
field is ramped to Bx = 85 mG in 400 µs. After coherences are
established, the bias field is ramped to zero in 77 µs, mapping the
initial state onto a superposition of the ground band doublet.
Evolution of the average magnetization is plotted during this
procedure. The absolute square of the nine components of the
spinor wavepacket are plotted at different snap shots of the
tunnelling oscillation (a)–(d), with negative m-states dashed.

fields onto a two-dimensional Hilbert space associated with a
tunnelling wavepacket. As detailed further in section 3 below,
atoms are at some point in time prepared in the ground state
of the lowest potential of a lattice with a large axial field
Bz. We then apply a transverse field Bx and ramp the axial
field to zero, in order to produce an initially localized state
in a symmetric double-potential well. Because the energy
eigenstates are now the symmetric and anti-symmetric states,
an initially localized atom will tunnel at a frequency given
by the ground band energy splitting. An implicit assumption
in this procedure is that there is a clean separation between
timescales. The turn-off of Bz must be fast compared with
the ground-band frequency splitting, so as to avoid adiabatic
transformation of the wavepacket into the symmetric state,
but slow compared with the energy difference between the
doublet and the excited states, so as to avoid populating
higher lying energy bands. In practice this condition is
easily met over a wide range of parameters. In figure 2 we
show the result of simulations of this procedure to create
tunnelling wave packets. Strong magnetization oscillations
at the tunnelling frequency are seen together with a time
sequence of the wavepacket spinors associated with these
oscillations.

3. Experiment

3.1. The one-dimensional lin-θ-lin lattice

We have recently performed a series of experiments to
demonstrate the potential for systematic studies of quantum
tunnelling in double-well optical lattices of the type
given in equation (5). Our setup consists of a pair of
counterpropagating laser beams with linear polarizations
forming a fixed but adjustable angle θ (see figure 3(a)). To
provide for time-of-flight analysis of the atomic momentum
distribution, the lattice axis (defined by the beam directions)
is vertical to within a few mRad. The lattice beams are derived
from a single 0.5 W master oscillator–power amplifier
(MOPA) diode laser system detuned 16 GHz (∼3000 �)
below the 6S1/2(F = 4) ↔ 6P3/2(F

′ = 5) laser-cooling
transition in caesium. The intensities and frequencies of
the two beams are independently controlled by acousto-
optic deflectors, whose driving frequencies are synthesized
from a single quartz oscillator. This provides accurate,
programmable control of the lattice depth and acceleration in
the laboratory frame. The external magnetic fieldsBx andBz
are applied by magnet coils controlled by arbitrary waveform
generators. As described in the following, this allows us to
prepare an initial pure state and to coherently manipulate
the tunnelling process through full computer control of the
magneto-optic potential.

Quantum tunnelling is exponentially sensitive to the
double-well barrier, and a well-controlled experiment
therefore requires considerable care in reproducing the
potential of equation (5). The laser beams used to create the
lattice must have uniform intensity so that the single-beam
light shift U1 does not vary across the atomic sample. We
inspect each of the beams independently with a CCD camera
and verify that their intensity profiles are homogeneous
to within roughly 5% RMS. A more difficult problem is
the elimination of spurious magnetic fields, both in the
form of ambient real fields and in the form of spurious
fictitious fields (equation (4)) caused by elliptic lattice beam
polarizations. We cancel the ambient real magnetic field
across the entire volume occupied by the atomic sample,
by applying a compensating field with controlled gradients.
By measuring the Larmor precession rate and dephasing of
the magnetic moments, we estimate that the average value
of the remnant real field is typically less than ∼ 1

4 mG,
with a homogeneity of ∼10 µG across the atomic sample.
Controlling and minimizing the spurious fictitious field is
more challenging. We use high-quality Glan-laser-type
calcite polarizers (crossed-polarizer extinction �10−6) to
define the linear beam polarizations, but birefringence in the
vacuum windows and the lower fold mirror (see figure 3(a))
will potentially introduce ellipticity, and hence a spurious
fictitious Bz. In the one-dimensional lin-θ -lin geometry the
combined polarization errors of the interfering lattice beams
thus results in an energy asymmetry of the double wells. The
corresponding asymmetry of the tunnelling oscillations can
be observed and cancelled with a compensating real field.
By symmetrizing the tunnelling oscillations we are able to
cancel all spurious fields (real and fictitious) to better than
∼1 mG. Residual polarization errors which are not uniform
across the lattice beams are most likely the dominant source
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Figure 3. (a) Optical part of the double-well optical lattice setup.
Both lattice beams originate from a single MOPA source, with
intensity and frequency independently controlled by acousto-optic
deflectors AOD1 and AOD2. A frequency difference of 2kv moves
the lattice at velocity v in the laboratory frame, and provides
computer control of the lattice acceleration. Polarizers P1 and P2
define the beam polarizations and the angle θ between them.
Polarization purity at the atomic sample is limited by residual
birefringence in the fold mirror M1 and the vacuum windows W1
and W2. (b) Stern–Gerlach measurement showing the nine
resolved time-of-flight distributions for the states −4 � m � 4 in
the F = 4 hyperfine ground state of Cs. For the purpose of
illustration the magnetic sublevels were nearly uniformly
populated by Larmor precession in a noisy magnetic field. The
dotted curve is a fit to a sum of nine Gaussians.

of inhomogeneous broadening of the tunnelling resonance,
and result in dephasing of the tunnelling oscillations.

3.2. Quantum state preparation

At the beginning of a tunnelling experiment we prepare atoms
in the lattice in a pure quantum state localized on, e.g., the
left side (z < 0) of the optical double-well potential. This
quantum state preparation is accomplished via a series of
steps that include laser cooling, optical pumping, and state
selection and manipulation in the lattice. Laser cooling
begins with a standard MOT/3D optical molasses setup,
which prepares a cold sample of ∼106 Cs atoms with a
temperature of ∼4µK and a Gaussian density distribution of
∼200 µm RMS radius. The atoms are then transferred to a
near-resonance one-dimensional lin-θ -lin lattice tuned∼17�
below the 6S1/2(F = 4) ↔ 6P3/2(F

′ = 5) transition for a
second cooling stage. During this time a small magnetic field
is applied in order to maximize the population accumulated in
the lowest vibrational state of the lattice potential associated

with them = 4 magnetic sublevel [42]. After 1.5 ms of one-
dimensional cooling the atoms are adiabatically transferred to
the far-off-resonance double-well lattice [43] where they are
optically pumped to the m = 4 potential. Next we decrease
the lattice depth to a point where only the lowest energy band
is bound and accelerate the lattice at 300 m s−2 for 1.5 ms. At
the same time we apply a field Bz = −55 mG, large enough
to lift all degeneracies between potentials for differentm and
confine the centre-of-mass dynamics to the m = 4 potential.
During the acceleration phase, atoms in the ground band
remain trapped in the potential wells of the moving lattice and
acquire a total upward velocity of 0.45 m s−1, while atoms
in higher bands are not trapped and undergo no significant
change in velocity. At later times these two groups of atoms
follow different ballistic trajectories and give rise to two
clearly separated distributions in a time-of-flight spectrum.
Therefore, if we look only at the distribution corresponding
to atoms that follow the lattice during accelleration, we have
effectively prepared a sample in the ground vibrational state
of the (isolated) potential wells of the m = 4 potential [23].
Based on a subsequent measurement of the momentum
distribution and the populations of the magnetic sublevels
we estimate that our state selection procedure prepares atoms
with ∼90% population in this target state. When the state
selection is completed we increase the lattice depth to the
value used for the tunnelling experiment, and change the
accelleration so the lattice frame is in free fall. Finally, to
initiate tunnelling oscillations we evolve the ground state of
the m = 4 potential into a localized state in the double-
potential well, as detailed in section 2.2.2 above. In the
experiment this is accomplished by first ramping Bx from
zero to the desired value in 250 ms, and then ramping Bz to
zero in 70 ms. Our simulations confirm that this sequence
transforms the atomic spinor wavepacket as desired.

3.3. Zeeman microscope

A unique aspect of our magneto-optical double-well system
is the possibility to use the atomic internal state as a ‘meter’
to detect tunnelling. The left/right-localized states in the
double-well potential are Wannier spinors, i.e., localized
wavepackets which are entangled states of internal and
external degrees of freedom. Information about the motional
degrees of freedom can therefore be obtained through a
measurement of the magnetic populations, a technique we
have nicknamed the ‘Zeeman microscope’. If the light field
on the left (right) sides of the barrier is predominantly σ+(σ−)
polarized, then the localized states have predominantly m >
0(m < 0) character. A similar correlation between position
and internal state has been used to observe atom transport
in optical gauge potentials, based on photon redistribution
between the lattice beams as atoms tunnelled between σ+

and σ− sites [25].
To observe tunnelling we track the evolution of the

atomic internal state by Stern–Gerlach measurements of the
atomic populations at different times. This approach is
particularly suitable for laser-cooled atoms, since the narrow
momentum distribution permits us to resolve the magnetic
sublevels of large angular momenta (F = 4 in the case of
caesium) with modest magnetic field gradients. Our Stern–
Gerlach measurement is performed with a straightforward

638



Quantum transport in magneto-optical double-potential wells

modification of the standard time-of-flight technique [44]. As
atoms are released from the lattice and fall under the influence
of gravity to a probe beam located a few cm below the lattice
volume, we apply a magnetic field gradient of ∼13 G cm−1

for a period of 35 ms. The actions of the resulting forcesFm =
−gFµB∇|B| · m are sufficiently different to completely
separate the time-of-flight distributions for different m. An
example is given in figure 3(b), which shows nine distinct
peaks corresponding to the values −4 � m � 4 for theF = 4
ground state of Cs. Variations in the detection efficiency for
differentm occur because some atoms follow trajectories that
miss the probe beam, and because atoms in different states
pass through the probe beam with different velocity. These
effects are easily modelled and accounted for, and fits to the
separate time-of-flight distributions can be used to obtain
accurate measures for the populations and temperatures of
differentm. We have previously used this technique to study
laser cooling in optical lattices [26, 42].

3.4. Coherent dynamics

We have successfully used the Zeeman microscope technique
to observe coherent tunnelling in an optical double-well
potential. Initially we prepare the left-localized state in a
lattice with U1 ≈ 83ER and θ = 80◦ as described above.
This state subsequently undergoes tunnelling oscillations at
a frequency given by the splitting of the ground band doublet.
For a typical Bx = 85 mG we compute the bandstructure of
figure 4(a), which predicts a tunnelling oscillation frequency
*T ≈ 1.7ER ≈ 3600 Hz and period τT ≈ 280 µs.
Based on our simulations we expect that that the dynamics
can, to a good approximation, be restricted to the ground
band doublet. In that case the time-dependent tunnelling
state is approximately |ψ(t)〉 = (|ψS〉 + e−i*T t |ψA〉)/√2,
where |ψS〉, |ψA〉, are the symmetric/antisymmetric Wannier
spinors corresponding to the ground doublet.

Figure 4(c) shows experimental measurements of the
magnetic populations as the atoms oscillate from a left-
localized state to a right-localized state and back, with some
loss of contrast. Under the two-level assumption the best fit
to the observed magnetization correspond to a ∼98% popu-
lation of |ψL〉 at t ≈ 0, ∼77% population of |ψR〉 at t ≈ τT /2
and ∼56% population of |ψL〉 at t ≈ τT . At t ≈ 1

4τT os-
cillation period the distribution is consistent with a delocal-
ized state (|ψS〉 − i|ψA〉)/√2, although our measurement
of the magnetic populations cannot directly distinguish this
delocalized state from an incoherent superposition of left-
and right-localized states. Evidence of coherent dynamics is
provided by the observation of oscillation, which occurs at
roughly the expected period. Also shown are calculations of
the corresponding magnetic populations, based on the lattice
bandstructure. Note that in both experiment and theory the
magnetic population distribution shows a pronounced dip at
m = 0, which is indicative of a tunnelling situation where
the localized wavepackets have minimal probability ampli-
tude within the barrier.

Photon scattering destroys coherence between the
left/right-localized states, though at a somewhat reduced rate
because the dimension of the physical system is less than
the optical wavelength [45]. At the experimental parameters
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Figure 4. (a) Close-up of the lowest three adiabatic potentials and
four exact energy bands of the magneto-optical lattice for the
experimental parameters, U1 = 83ER, θ = 80◦, Bx = 85 mG and
Bz = 0 mG. (b) Magnetic populations derived from the Bloch
spinor states. (c) Experimentally measured magnetic populations.
In both cases the system starts from a left-localized state at t = 0,
and undergoes Rabi oscillations with a period τT ≈ 275 µs.
Distributions are shown at four different times.

of figure 4 we estimate the photon scattering rate to be
∼600 s−1 for an atom localized near one of the double
minima, when averaged over the relevant Clebsch–Gordan
coefficients for the occupied magnetic sublevels. The atom,
therefore, scatters a photon roughly once every six tunnelling
periods, and we expect this to set the timescale for loss
of coherence in the tunnelling oscillations. In practice an
appreciable loss of contrast occurs after a single oscillation.
We ascribe this to dephasing of the tunnelling oscillations,
most likely due to inhomogeneity of the spurious effective
Bz, as discussed above. We are hopeful that this and
other sources of inhomogeneous broadening can be further
suppressed or eliminated in future experiments. Moreover,
our quasi two-level system should be amenable to the spin
echo techniques that have been developed to solve essentially
equivalent problems in nuclear magnetic resonance (NMR)
spectroscopy.

4. Further developments

4.1. Reconstruction of the angular momentum density
matrix

A major shortcoming of our current ‘Zeeman microscope’
is that the measured magnetic populations contain no direct
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information about coherences in the double-well system.
Information about internal state coherences between different
m are of course available in the form of off-diagonal
elements of the density matrix for the ground state angular
momentum. For example, the delocalized states that occur
during tunnelling oscillation can be directly distinguished
from incoherent mixtures by the presence of large coherences
between states m and −m. Clearly then, the systematic
study of coherent dynamics and decoherence in our system
will benefit greatly from extending our simple population
measurement to a complete reconstruction of the angular
momentum density matrix. In a complementary approach,
motional coherences can be measured directly by interference
of the atomic deBroglie waves in the far field [46].

An experiment is now underway in our group to
implement a reconstruction scheme originally proposed
by Newton and Young [31], which relies on repeated
Stern–Gerlach measurements with respect to many different
quantization axes. These measurements can be performed
in a very straightforward manner, by choosing different
directions for an applied bias magnetic field to establish the
quantization axis after atoms are released from the lattice.
The reconstruction algorithm requires that one measures
the 2F + 1 populations for 4F + 1 different directions of
the quantization axis, characterized by polar angles θ and
azimuthal angles ϕ, as illustrated in figure 5(a). If one
chooses a common θ and 4F + 1 evenly separated ϕ in the
interval [0, 2π ] it is possible to derive analytical expressions
for the (2F + 1)2 elements of the density matrix in terms
of the (2F + 1)(4F + 1) measured populations [31]. In
practice it is much easier to relate the measured populations
to the unknown elements of the density matrix by means of a
rectangular matrix whose elements are determined by the set
of angles θ and ϕ, and then invert the problem numerically.
This allows us to choose a less restrictive set of angles
that are more suited to the experimental geometry at hand,
while at the same time keeping the reconstruction scheme
numerically robust. To illustrate that a reasonable degree of
robustness can be accomplished, figures 5(b) and (c) show a
simulation of the reconstruction of a coherent superposition
state (|m = 4〉 + |m = −4〉)/√2 in the F = 4 ground
state manifold of Cs, with realistic errors in the angles and
population measurements.

4.2. Classical versus quantum transport

When is the observed atomic transport to be interpreted
as ‘quantum tunnelling’? By tunnelling, we mean motion
from one localized region to another which is forbidden by
the classical equations of motion. For a scalar potential
in one dimension, a bound state is uniquely defined as a
tunnelling state if its total energy is less than the potential
energy for some region between the classical outer turning
points. For potentials with more than one degree of freedom,
the identification becomes more ambiguous. In particular,
for the magneto-optical lattice at hand, the potential energy
depends not only on the position of the atom, but also on
its internal state in a correlated way. If the BOA held, then
one could recover an effectively scalar problem in which the
dynamics are restricted to a single one-dimensional adiabatic
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Figure 5. Reconstruction of the density matrix for an angular
momentum. (a) The magnetic populations are measured
repeatedly for 4F + 1 different directions of the quantization axis
(black dots), specified by a common polar angle θ and evenly
separated azimuthal angles φ. (b) Density matrix for a state
(|m = 4〉 + |m = −4〉)/√2. (c) Simulated reconstruction of the
density matrix for this state using θ = 83◦, with 1◦ RMS errors on
the angles θ and φ, and 5% RMS errors on the population
measurements.

potential. In contrast, because of the break down of the
BOA, no single potential energy curve as a function of z
uniquely defines the energy barrier presented to the atom
in passing from one spin-polarized well to the other. In
this situation, one cannot generally distinguish classically
allowed from forbidden motion by analysis of the adiabatic
potentials alone. An exception is when the energy is less
than the barrier associated with the lowest adiabatic potential.
In that case, classical motion is certainly forbidden as this
adiabatic state represents the smallest possible potential
energy in that region, and a total energy smaller than this
is classically impossible. For energies above this adiabatic
barrier, however, motion may still be classically forbidden,
or highly unlikely, depending on the particular classical
trajectory associated with the initial state. Furthermore, the
initial conditions in this multidimensional problem are not
uniquely defined by the total energy. Moreover, the coupling
between the internal and external degrees of freedom leads to
nonlinear equations of motion that can be classically chaotic,
making the question of barrier traversal even more intriguing.

The distinction between classical and quantum barrier
crossing for the multistate system has been studied by
numerous authors in condensed matter [8] and chemical
kinetics [1]. In most cases one assumes a system at thermal
equilibrium and with substantial dissipation, in which case
transport between the wells is overdamped. Transitions
then occur as a rate phenomenon, rather than coherent
oscillation. In the resulting model, known as ‘transition rate
theory’ [1], the traversal rate is given by the rate of incidence
of the particles on the barrier times the probability of
traversing. In the context of the small polaron transport in the
molecular-dimer approximation, Holstein calculated both the
classical [47] and the quantum transition rate [48] assuming
diabatic following, which he justified for this system.
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Nonclassical motion then corresponds to energies below the
crossing of the diabatic potentials. Wolynes has used the path
integral influence functional method to characterize adiabatic
versus nonadiabatic transitions in rate reactions [49]. Our
system is essentially at zero temperature with minimal
dissipation (in the ideal case). Tunnelling should thus
proceed as a coherent oscillation rather than a decay process
associated with incoherent hopping. Furthermore, as we will
see below, for most parameter ranges neither the diabatic nor
adiabatic approximation to the dynamics of the internal state
is valid.

We turn then to a classical analysis of the dynamics.
Given the form of the Hamiltonian associated with the
magneto-optical potential far-off resonance, the problem
corresponds to the motion of a massive particle with a
magnetic moment moving in a combination of a scalar
potential (independent of the moment) plus a spatially
inhomogeneous magnetic field. The classical equations of
motion then have the form

ż = p/m,

ṗ = − d

dz
(U0(z)− �µ · Beff(z)),

�̇µ = γ ( �µ× Beff(z)),

(10)

where Beff(z) = Bfict(z)ez + Bxex , with fictitious field
as given in equation (4). These equation follow from the
Heisenberg equations of motion, replacing the quantum
operators by their expectation values and neglecting any
correlations in the operator products.

Unlike the scalar case, specifying the energy does
not uniquely constrain the trajectory. The magnitude of
�µ is conserved, while its direction depends implicitly on
time through the local magnetic field which varies both in
magnitude and direction as the particle moves along the z-
axis. This makes the effective phase space four dimensional
(two external and two internal variables), which can be
mapped onto a canonical pair of action-angle variables
associated with two degrees of freedom [50]. In the
harmonic approximation for F = 1

2 , this is essentially the
Jaynes–Cummings problem of a coupled oscillator and spin,
equation (7). With the rotating wave approximation we gain
an additional conserved quantity, the total excitation, which
together with conservation of energy makes the Hamiltonian
integrable. The full Rabi Hamiltonian does not share this
property, and the classical equations show deterministic
chaos, as explored in the context of the atom–photon
coupling [34] and the small polaron transport problem [50].
The optical lattice offers new opportunities to investigate the
consequences of the classical chaotic dynamics in a regime
that is deeply quantum.

One situation which allows an approximate separation of
the Hamiltonian is the case of the BOA [51]. The potential
energy can be expressed as a function of two variables, z
and θ ′, the angle between the local magnetic field and the
direction of the moment,

Uad(z, θ
′) = U0(z)− µBeff(z) cos θ ′(z), (11)

plotted in figure 6. The quantum mechanical adiabatic poten-
tials associated with the extreme eigenvalues correspond to
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Figure 6. Adiabatic potential energy surface as a function of z and
θ ′, the angle between the magnetic moment and the local direction
of the effective magnetic field in the lin-θ -lin lattice with
U1 = 150ER, polarization angle θ = 68◦ and transverse field
h̄γBx = 33ER. Adiabatic motion proceeds only along constant θ ′.
Along other directions the force must be supplemented by
motional couplings.

cos θ ′ = ±1. Assuming adiabatic following of the moment,
θ ′ becomes an additional constant of motion. Under this cir-
cumstance the energy barrier is well defined. Unfortunately,
this approximation often breaks down in this system even for
initial conditions on the adiabatic surface.

We numerically integrate equations (10) to obtain the
classical trajectories associated with our optical lattice, with
results shown in figure 7. We chose initial conditions with
p = 0, and θ ′ = 0; the initial position determines the
total energy. For initial energy close to the bottom of
the adiabatic double well, the magnetic moment remains
aligned parallel to the magnetic field at all times. The
external motion is regular and follows the adiabatic potential,
remaining on the edge of the potential surface. For larger
initial energies, the motion becomes nonadiabatic due to
the large gradient of the magnetic field. The motion is
highly stochastic, with long periods of localized oscillation,
punctuated by random traversals between the two wells.
A calculation of Lyaponov exponents shows the requisite
exponential sensitivity to initial conditions. In addition, we
plot the parameter w = cos θ , where θ is the true angle
between the moment and the local field (adiabatic following
corresponds to w = 1).

This has important implications for a deeper understand-
ing of atomic transport in our system. Clearly, for energiesE
such thatE < Uad(z = 0, θ ′ = 0), classical motion from one
spin polarized well to the other is forbidden regardless of its
path in spin-space. However, for energies above this barrier,
when the particle does not follow the line θ ′ = constant, the
classical dynamics may still trap the particle in one well over
a substantial timescale. Experimental observation of magne-
tization oscillation between the spin-polarized states over a
much shorter timescale would then correspond to quantum
tunnelling. We are currently pursuing a systematic analy-
sis of the predictions of classical dynamics for the parameter
regime associated with the experiment presented in section 3.
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Figure 7. Numerical solutions to the classical equations of motion in the lin-θ -lin lattice, with parameters given in figure 6. Initial
conditions are chosen with zero momentum and internal state in the adiabatic direction, θ ′ = 0. The height of the adiabatic barrier is at
−308ER. The initial position is set by the choice of total initial energy. The total potential energy is shown as a function of the trajectory
along z for adiabatic following (a) with initial energy −307ER and at a higher initial energy (b) −303ER, where the spin dynamics are not
adiabatic. The corresponding position as a function of time is plotted in (c) and (d) respectively, together with the adiabatic parameter
w = cos θ ′. The nonadiabatic motion is chaotic.

5. Summary

We have presented here a means of exploring the rich
variety of phenomena associated with the dynamics of a
double-potential well in a controllable physical system—
ultra-cold atoms moving in a magneto-optical lattice. Atoms
trapped in oppositely polarized wells are coupled with a
transverse magnetic field. Because of the correlation between
the atomic position and internal state, precession of the
atomic spin is accompanied by motion of the centre-of-
mass wavepacket. Under appropriate conditions the atom
can tunnel through the classically forbidden energy barrier.
The entanglement between atomic spin and centre-of-mass
motion provides a meter through which dynamical tunnelling
and other transport phenomena can be directly observed at
the microscopic level.

Coherent control of both internal and external degrees
of freedom can be achieved in a manner that bears close
resemblance to well-developed techniques in NMR. This
analogy is made strong through the effective magnetic

field picture of the optical potential, valid for alkali atoms
with laser detuning large compared with the excited state
hyperfine splitting. We model this control through numerical
analysis of the bandstructure and solutions to the time-
dependent Schrödinger equation for the ground-electronic
hyperfine spinor. These simulations demonstrate the ability
to perform quantum state preparation and control, and show
strong magnetization oscillations which accompany quantum
tunnelling.

Laboratory experiments employ caesium atoms in a
one-dimensional, far-off resonance, magneto-optical lattice.
Preparation of atoms in localized, pure quantum states in
the double-potential wells is achieved through a combination
of laser cooling, optical pumping and state selection.
We use the entanglement between internal and external
degrees of freedom to provide a meter for tunnelling
dynamics. Measurement of the atomic spin is achieved
through a ‘Zeeman microscope’, a variant of time-of-
flight spectroscopy which allows separation of the narrow
momentum distributions associated with the 2F + 1
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magnetic sublevels. This procedure can be extended to a
complete reconstruction of the spin density matrix through
a series of measurements along different quantization axes,
thereby providing a diagnostic tool for analysing quantum
coherences. Our experimental data clearly exhibits damped
Rabi oscillations between mesoscopically distinct states, and
demonstrates the potential for systematic study of coherent
tunnelling dynamics. The main source of decoherence
is photon scattering, which is modest compared with the
Rabi frequency and too slow to explain the observed
damping. Additional dephasing of the oscillations occur due
to inhomogeneous broadening of the tunnelling resonance,
which is caused by variation in lattice depth, polarization
(fictitious magnetic field) and/or real magnetic field. Spin-
echo techniques should allow us to extract the quantum
coherent behaviour from this signal.

The entanglement between internal and external degrees
of freedom makes our system a fertile arena for exploring
complex dynamics. Whereas the definition of tunnelling
in one dimension by a scalar particle in a static potential
is precisely defined, for a vector particle the distinction
between classical transport and quantum barrier penetration
becomes ambiguous. Due to the extra degrees of freedom,
the classical dynamics associated with our system takes
place in a higher dimensional phase space which exhibits
deterministic chaos when the spin does not adiabatically
follow the direction of the local effective magnetic field.
In the harmonic approximation this system is equivalent
to the classical dynamics of the well-known spin–boson
problem. Under such circumstances one must develop new
criteria to distinguish classical barrier hopping from quantum
tunnelling.

The manifestations of chaos in quantum mechanics and
the emergent complexity at the classical level continues
to be a problem of fundamental interest. Signatures of
chaos at the classical level which appear in the quantum
system have been explored in the spin–boson problem by
many authors. Examples include the statistical properties
of the eigenvalue spectrum (e.g. nonPoissonian spacing
between nearest-neighbour energy levels) [52] and ‘scars’
in the quasiprobabilty distribution [53]. Though these are
signatures of chaos, such analyses do not give a method to
recover the full classical limit. Recently a new approach has
shown that the classical chaos emerges when one includes
a continuous measurement which only weakly perturbs
the system and localizes the trajectories in phase space,
consistent with the uncertainty principle [54]. In the limit
h̄ → 0 the classical Lyapunov exponents are recovered on
these coarse grained trajectories [55]. The magneto-optical
double-potential well thus provides a paradigm to explore
nonlinear dynamics and the quantum–classical transition in
a system which holds promise of well-controlled laboratory
experiments.

Further studies will include the addition of a coherent
drive to our system. Dynamic localization follows when
the ratio of the driving amplitude to frequency satisfies a
well-known resonance condition. The magneto-optic lattice
should allow us to explore this phenomenon over a wide range
of parameters, as we have shown in numerical simulations.
The essence of this effect is contained in the dynamics of a

driven two-level system when the population is maintained
in the ground-band doublet. We can thus turn to the Bloch
sphere picture of spin dynamics to gain a more intuitive
understanding. Of particular interest is the effect of noise
on this system. It has been shown under certain conditions
that noise can stabilize the localization [15]. We are exploring
this phenomenon in the context of both two-level dynamics as
well as the full, multilevel description of our physical system.
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