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Abstract 

We develop the theory of the two-dimensional motion of cold atoms in a near-resonant annular laser beam. For a red- 
detuned field the laser beam provides an annular light shift potential and the atomic motion divides into vibrational and 
rotational normal motions analogous to a two-dimensional molecule. In the ground vibrational state we obtain an atom 
optics realization of a two-dimensional rotator. We illustrate the novel physics which may be explored with this system by 
showing that gravity acts analogously to a static electric field applied to a charged rotator. 

1. Introduction 

The planar rotator is a useful paradigm for the novel 
physics that can arise in quasi-two-dimensional (2D) 
physical systems, in which one dimension is frozen out 
using quantum confinement. The planar or 2D rotator 
consists of  a particle which is constrained to move in a 
circular orbit around a fixed center. Silverman [ 1 ] has 
given a comprehensive discussion of the novel physics 
associated with the quantum 2D rotator including the 
symmetry breaking properties in external electromag- 
netic fields, mesoscopic conductivity of 2D rings in 
vector potentials [2], and the relevance of the 2D ro- 
tator to the issue of composite quasi-particles with 
fractional statistics [3,4]. Current experimental real- 
izations of a 2D rotator include a p-electron in ben- 
zene [5], whose spectrum can be interpreted in terms 
of transitions between rotator eigenstates, and meso- 
scopic 2D rings of conducting material [ 6]. 

1 E-mail: jessen@rhea.opt-sci.arizona.edu. 

In this paper we discuss a possible atom optics re- 
alization of a 2D rotator involving a laser cooled two- 
level atom tightly bound by the light shift (optical) po- 
tential [7] supplied by a near-resonant, annular laser 
beam. This configuration is closely related to previ- 
ously demonstrated optical traps for laser cooled atoms 
formed by the light shift potential in a tightly focused 
Gaussian beam [ 8 ]. Here, however, the light field sup- 
plies an annular as opposed to a Gaussian light shift 
potential. Studies of atomic motion in periodic arrays 
of light shift potential wells formed by laser stand- 
ing waves, so-called optical lattices, have recently re- 
vealed a close similarity to the motion of electrons 
in a solid, and now show promise as model systems 
in which to study condensed matter phenomena [9]. 
Similarly, the wavelength sized annular trap proposed 
here approximates a two-dimensional molecular sys- 
tem, with a spectrum of rotational-vibrational eigen- 
states. We expect this "artificial 2D molecule" to pro- 
vide a new, well controlled model system for molec- 
ular physics, with the obvious advantage that the con- 
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fining potential and spectrum of eigenstates is exactly 
calculable. In its ground vibrational state the system 
yields a realization of the 2D rotator. To illustrate the 
novel physics which can be explored using this system 
we show that the external force of gravity acts anal- 
ogously to the Stark effect for a charged rotator with 
an applied electric field [ 1 ]. 

The remainder of this paper is organized as fol- 
lows: Our basic model describing 2D atomic motion 
is given in Section 2 along with a discussion of the 
energy eigenstates of the system. Section 3 introduces 
the idea of artificial 2D molecules, and the ideal limit 
of a rotator incorporating the effects of gravity are dis- 
cussed in Section 4. Finally, our Summary and Con- 
clusions are given in Section 5. 

2. Theoretical model 

In this section we describe our theoretical model. 
First we give the Hamiltonian for our system, and then 
discuss the angular momentum of the system and the 
energy eigenstates. 

2.1. Basic equations 

The basic model consists of a sample of cold atoms 
which are constrained to move in two dimensions 
R•  = (X, Y)  = ( R,O) perpendicular to a travelling- 
wave laser beam of frequency wL propagating along 
the Z-axis. This could be achieved, for example, by us- 
ing a one-dimensional off-resonant optical lattice also 
along the Z-axis [9]. For an optical lattice formed by 
a red-detuned field the atoms will be confined longi- 
tudinally in the light shift potentials around the anti- 
nodes of the standing-wave laser. We assume that any 
new energy scales introduced into the system by the 
travelling-wave laser are small compared to the lon- 
gitudinal vibrational energy, so that the atoms occupy 
the ground vibrational state of their respective lon- 
gitudinal potential wells, thus producing quasi-two- 
dimensional atomic motion at the anti-nodes of the 
optical lattice. 

The transverse profile of the travelling-wave laser 
field is th e TEMpi Laguerre-Gaussian mode with az- 
imuthal variation e ie~ or doughnut mode [ 10,11 ], 
which has a phase singularity at its center with topo- 
logical charge g = + 1, and the field is assumed right 

circularly polarized. Then in cylindrical coordinates 
we write the electric field operator as [ 12] 

E ( R ,  t) = i ,  V 2EoL [ e + f f ( R ,  Z )  

• e i(kLZ+gO+O(Z)-~~ - h.c.] 

= �89 + ( R x ,  Z ) e  -i~ + h.c., ( I ) 

where e+ is the right circular polarization unit vector, 
f and fit are the field creation and annihilation oper- 
ators, [ f ,  f t ]  = 1, a caret being used throughout to 
donate an operator, kL = o)L/c, L is the quantization 
length along Z, and O ( Z )  is the Guoy phase-shift 
[ 10]. Here f ( R ,  Z )  is the normalized transverse field 
profile including the amplitude distribution and phase 
curvature 

f ( R ,  Z )  = 2R e ( i kLRZ/2r (Z )_R2 /w2(Z ) )  ' 
v/-~w( Z ) (2) 

where r ( Z )  is the radius of curvature and w ( Z )  the 
spot size. Also l / r ( 0 )  = 0 and w(0) = w0, so that 
f ( R ,  0) is real at the beam focus [ 10,11 ]. 

In recent work it has been shown that in addition 
to the spin angular momentum of the photon, which 
is equal to -t-h, it is also useful to endow the photon 
with an external orbital angular momentum associated 
with its electric field envelope [ 13-18]. Although not 
strictly applicable in quantum electrodynamics [ 12], 
this notion of separating the photon angular momen- 
tum into spin and orbital components is appropriate 
in the paraxial approximation which applies when the 
focused beam waist is large compared to an optical 
wavelength [ 14,16,19], kLwo >> 1, a condition we as- 
sume is met here. For the field in Eq. (1) the orbital 
angular momentum is h.e [ 13,14,16]. 

The laser field is dipole coupled to the system of 
atoms. For concreteness we consider the J = 2 ~ J = 
3 hyperfine levels of 23Na (3S1/2 ~3P3/2 at 589.59 
nm). Then if the Na atoms are initially prepared by 
optical pumping with resonant right-polarized light, 
we may treat the atoms as two-level systems with ex- 
cited and ground states 

l e ) = l J = 3 , m = 3 ) ,  Ig) = I J = 2 ,  m = 2 ) ,  (3) 

and energy difference Ee - Eg = hWeg. Spontaneous 
emission is neglected throughout under the condition 
of off-resonant excitation so that only stimulated tran- 
sitions between the levels are considered. Then the two 
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levels are coupled only by the incident right-circular 
polarized light, and the dipole selection rules 6J = i 1, 
and ~m-= 0, �9 1 are obeyed for stimulated absorption 
(+1)  and emission ( - 1 )  of right-circular polarized 
photons. 

To describe the dipole interaction between the atoms 
and the travelling-wave laser field we must consider 
that the atoms are confined to two-dimensional planes 
at many longitudinal positions if an optical lattice 
is employed. However, the dipole interaction will be 
strongest within a Rayleigh range ZR = kLw 2 of the 
laser beam focus at Z = 0. (We assume that the spot 
size and Rayleigh range of the standing-wave laser are 
much larger than those of the travelling-wave). Thus 
to investigate the two-dimensional motion of the cold 
atoms we shall consider the plane Z = 0 as repre- 
sentative of the behavior around the laser focus. The 
evolution of the atom-field system is then governed by 
the Schr6dinger equation 

ih-~lC, s(t) ) = [-Ist~.,.(t)), (4) 

and in the rotating-wave and dipole approximations 
the Hamiltonian is [7,20] 

i-Is = hfit gt + p2 /2M + hWegle)(el 

- �89 [d/~+ (k •  O)le)<gl + h.c.]. (5) 

Here P•  is the transverse momentum operator for the 
center-of-mass motion of the atom, R• the center-of- 
mass position operator, M is the atomic mass, and d = 
(e]d. e+ ]g) is the dipole matrix element which we take 
as real without loss of generality. In writing Eq. (5) we 
have assumed that the Z-axis is vertical so that gravi- 
tational effects are uniform over the two-dimensional 
transverse plane. In addition, the Hamiltonian (5) in- 
cludes only stimulated transitions involving the sin- 
gle electromagnetic mode with field profile (2). Thus 
the theory is only valid in the limit of large detunings 
where spontaneous emission can be neglected. 

By observing that the excitation number operator 
= ~t~ + [e) (el is a constant of motion, we introduce 

an interaction picture defined by the unitary transfor- 
mation 

lOs(t)) = e-SR'~ (6) 

In this interaction picture the Schr6dinger equation 
becomes 

ih~l*P(t))  =/~/IC'(t)), 

with the Hamiltonian 

fil = P Z  / 2 M  - h~lle)<e I 
1 2 [d/~+ ( k z ,  0)[e)(g I + h.c.], (8) 

where the laser-atom detuning is A = WL -- Weg. TO 
proceed we write the state vector as a sum over dis- 
connected manifolds 

It ' ( t))  = E ICn(t)), (9) 
71 

where in the coordinate representation 

(R• = ~e,n(R&,t)]e,n - 1) 

+ ~l'g,n (R• t)Ig, n). (10) 

Here the state Ig, n) describes the atom in its ground 
electronic state and the field in a number state with n 
photons, and ]e,n - 1) describes the atom in its ex- 
cited electronic state and the field in a number state 
with (n - 1 ) photons. In the dipole approximation 
the manifolds I~.( t ))  for different values of n do 
not couple in the absence of spontaneous emission 
[7,21 ]. Then substituting the wave function (10) into 
the Schr6dinger equation (7) and projecting onto the 
states ] e , n -  1) and ]g,n) we obtain the following 
coupled equations 

h 2 
ih~O;,n 2 M V 2 ~ e , n _ h A ~ e , n _ 2 d E n  igO - ( R ) e  ~u,, ,  

h 2 i d$ . . . .  ieo- ihO~OS~'n = - ~ V Z O g , n  + -~ , tK)e  q;e,n, 

4 2 5  

(7) 

where 

O 2 1 O 1 8 2 
V~ = ~ + -~-~ + R--S OO---Z, (12) 

is the transverse Laplacian, and we have defined 

8, ( R) = eo~Lw2 e -R'/w5 

(R )e -R2 /w~ ,  (13) = , / / e ' / % , ~  

where 8o,n is the electric field at the peak of the annular 
beam R = w0 / x/2. 

( l l )  
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2.2. Angular momentum of the system 

Here we obtain the external angular momentum op- 
erator associated with the orbital angular momentum 
of the photons and the center-of-mass motion of the 
atom, conservation of the angular momentum associ- 
ated with the photon spin and the internal electronic 
states of the atom being ensured by the dipole selection 
rules [22]. For the present case of two-dimensional 
motion in the (R, O) plane the angular momentum is 
directed along the Z-axis. The external angular mo- 
mentum operator along the Z-axis is then 

7ext = L +  ata, (14) 

where L = -ihO/OO is the orbital angular momentum 
operator for the atoms, and we have used the fact that 
the light field carries an orbital angular momentum 
hs per photon, a ta  being the photon number operator. 
Physically, Jext is the generator of rotations around 
the Z-axis for the external degrees of freedom of the 
combined atom-field system. 

It is straightforward to verify that Jext commutes 
with the Hamiltonian and is therefore a constant of 
motion. In addition, the excitation number operator/V 
commutes with both the Hamiltonian and Jext. Thus 
we have three operators at our disposal which can 
be used as members of a complete set of commuting 
observables [23]. 

2.3. Energy eigenstates 

Eqs. ( 11 ) have energy eigenstates of the form 

( ~ e . n ( e ' t g ' t ) )  =e-iE,,mt/h(Unpq(e)ei(P+g)~ 
~g,n(R,O, t) iVnpq(R)e ipO ) ' 

(15) 

which yields the following coupled equations for the 
eigensolutions 

n 2 ( d  2 l a  (p+e )  2 
EnpqUnpq -- - ' ~  k ~ "~- e dR "~  J Unpq 

dCn(R) 
-- ~AUnpq 2 Unpq' (16) 

EnpqUnpq -~ -- 2---M ~ + R dR -~ Unpq 

dEn(R) 
2 unpq. (17) 

Here p is constrained to be an integer so that the 
wave function is single-valued, and the label q = 
{ql, q2 . . . .  } accounts for the remaining quantum num- 
bers required to specify the eigenstates uniquely. The 
eigensolution (15) is a superposition of the atomic 
ground electronic state with center-of-mass angular 
momentum hp and the excited state with angular mo- 
mentum h(p + g). This superposition is dictated by 
the fact that the center-of-mass angular momentum of 
the atom changes by hs upon absorbing a photon. 

The energy eigenstates (15) are also eigenstates of 
the excitation number operator and external angular 
momentum operator with expectation values 

@ . ( t ) l N l ~ . ( t ) )  = (/V) = n, ( 1 8 )  

and 

(~bn( t)lJextl~bn( t) ) = h( en + p ). (19) 

As expected of the generator of rotations, the eigen- 
values of the external angular momentum in Eq. (19) 
are strictly integer multiples of h. In contrast, the ex- 
pectation value of the orbital angular momentum op- 
erator for the atoms is (L) = h(p + gPe,npq), Pe,npq = 
f 27rRdRlunpq(R)] 2 being the excited state popula- 
tion, which need not be an integer multiple of h when 
the excited state population is non-zero. This observa- 
tion is central to the recent proposal [24] that com- 
posite particles consisting of an atom trapped on an 
electromagnetic vortex (or more generally a field with 
orbital angular momentum) have fractional orbital an- 
gular momentum and should obey fractional statistics, 
i.e. they are anyons [3,4]. However, in this paper we 
consider the limit of large atom-field detunings (see 
Section 3) so that the excited state population is neg- 
ligible, in which case the orbital angular momentum 
assumes values which are integer values of h. A con- 
sistent treatment of the fractional orbital angular mo- 
mentum would entail introducing spontaneous emis- 
sion concomitantly with the excited state population, 
and this is beyond the scope of the present paper. 

The quantum numbers n, p, and q are used to la- 
bel the energy eigenstates in Eq. (15). Clearly, n and 
p are the eigenvalues associated with the operators/~/ 
and (Jext - MN)/h .  If for fixed n and p the eigenen- 
ergies of Eqs. (16) and (17) are non-degenerate, then 
each eigenstate can be labeled by a single integer q. 
In this case the Hamiltonian, external angular momen- 
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turn, and excitation number operator form a complete 
set of commuting operators so that a set of three quan- 
tum numbers is expected for each eigenstate [23]. 

3. Artificial two-dimensional  molecules 

In this section we analyze the energy eigenstates of 
the two-dimensional atomic motion for large detun- 
ings using a harmonic oscillator approximation to the 
radial motion near the minimum of the annular po- 
tential. The atomic motion then naturally divides into 
vibrational and rotational normal motions, completely 
analogous to that of a two-dimensional molecule. 

3.1. Large detuning approximation 

Here we consider the limit of large detunings for 
which 1,41 is assumed much greater than the peak Rabi 
frequency 7"40,, = ds and the atomic recoil fre- 
quency taR = hkZ/2M. In this case, and assuming that 
the atoms are predominantly in their ground electronic 
state, the excited state population may be neglected, 
and the pair of Eqs. ( 11 ) reduces to the scalar equation 

,g d 2 S ~ ( R )  . h2 vZ~Og,, + (20) 
ih Cg~t '" - 2M ~ ~g,n. 

Here we are exclusively interested in the case that the 
atoms are in their ground state since spontaneous emis- 
sion will render unobservable the eigenstates which 
are predominantly in their excited state. Then substi- 
tuting the eigensolution (15) in Eq. (20) we obtain 
the following scalar eigenequation 

h2 ( d  2 1 d p 2 )  
E n p q U n p q  = - 2M ~ + R dR ~ V,pq 

-}- Un( R)unpq, (21) 

with the light shift potential [7] 

d 2 E 2 ( R )  2 
o,n e( l- 2R2 /w~) (22) 

U.( R) - 2~,~ 

The eigenenergies of this scalar equatton are non- 
degenerate for fixed n and p, in which case the eigen- 
solutions may be labeled using q = 0, 1,2 . . . . .  In this 
limit the quantum number q is the number of radial 
nodes in the ground state wave function, and it plays 
the role of a radial vibrational quantum number. From 

Eq. (21) it is likewise clear that p is the rotational 
quantum number for the atom. Finally, n is the num- 
ber of photons in the field. For a coherent state field 
with a large photon number, so that photon number 
fluctuations are negligible, we may safely replace n 
by the mean photon number h. Thus in the following 
discussion we shall drop the explicit n subscript, and 
replace s by s the classical field amplitude. 

Here we consider the case of a red-detuned laser 
field, A < 0, and the annular laser beam then produces 
an annular light-induced potential of the form shown 
by the solid line in Fig. 1. The potential minimum 
occurs at a radius Rmi, = wo/x/2. 

3.2. Harmonic oscillator approximation 

We now approximate the light-induced potential in 
Fig. 1 by a harmonic oscillator around the potential 
minimum 

U( R)  ,~ Urrfin q- �89 R - Brain) 2, (23)  

where U~n = dZC2/4hA is the potential minimum, the 
oscillation frequency is /-22 = 2dZEZ/MhlAlw 2, and 
the corresponding harmonic oscillator ground state 
width is AR = x /~M/2 .  The harmonic oscillator ap- 
proximation is valid if AR << Rmin so that the atomic 
wave function is well localized around the potential 
minimum. Then the term d2v/dR z will be of order 
vo/AR 2, with v0 the characteristic value of the wave 
function around the potential minimum, R-ldv/dR 
will be of order vo/RminAR, and p2u/R2 will be order 

, i i i i i 

- 1 x . . . j /  . . . . .  h a r m o n i c  
a p p r o x i m a t i o n  

I I I J I 

o 1 2 

R/R,nin 
Fig. 1. Light shift potential U(R) for a red-detuned laser field 
showing the potential minimum at R = wo/x/2. The dotted line 
shows the harmonic oscillator approximation to the full potential. 
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2 2 p vo/Rmi n. Thus, the kinetic energy term in Eq. (21) 
is dominated by the second-order derivative and the 
other two terms may be treated as perturbations. The 
leading order approximation to Eq. (21) is then 

h 2 d 2 _ _  u(o) 1 Ad()2fi2.(O) II  . ,(0) 
2M d( 2 pq § ~ . , - - -  ~ ~pq § ,~rmn~pq , 

(24) 

Ep(O), (o) _ q Upq 

where ( = R - Rmin, and in view of the above approxi- 
mations we may extend this variable over the full range 
{ -c~ ,  cr without significant error. Since the dynam- 
ics in the s c variable is reduced to a one-dimensional 
harmonic oscillator the eigensolutions are given by 

1 ) 1/4 1 o-r r Up(0) (~:) -- ~ ~ q~,b, ,', 

(25) 

where Hq(y) are Hermite polynomials, and the 
eigenenergies are given by E (~ = Umin+hS2(q+ 1/2). Pq 
If we now reintroduce the kinetic energy terms pre- 
viously discarded from Eq. (21) as first-order pertur- 
bations, then we obtain the eigenenergies correct to 
first-order as 

h2p 2 

Epq = Umin + hf2 (q + 1) + 2MR2------~n" (26) 

The motion therefore decouples into two normal 
modes: Vibrational motion in the radial ~: variable with 
quantum number q, and rotational motion with quan- 
tum number p. These energies are precisely those of a 
two-dimensionalmolecule. That is, if we consider a di- 
atomic molecule whose motion is confined to be two- 
dimensional then in the Born-Oppenheimer approxi- 
mation we would expect rotational-vibrational energy 
levels given precisely by Eq. (26). 

The theory developed here assumes that the ex- 
cited electronic state is negligibly populated. Under 
the approximations used here the excited state popu- 
lation along the top of the annular beam is given by 
(ds 2, and this should be much less than unity. 
This quantity also dictates the magnitude of the errors 
incurred by ignoring the excited state population. In 
particular, we must ensure that the rotational energies 
in Eq. (26),  obtained in first-order perturbation the- 
ory, are not below these errors. For Eq. (26) to be 
consistent we require 

(h2P2/2MR .) ( dEo'  
1 >> h/2 >> \ 2 h d J  ' (27) 

otherwise the excited state population must be in- 
cluded explicitly to deal with the rotational levels. 
Even if this is satisfied, in order for the lower energy 
rotational states to be spectroscopically resolvable the 
transition frequencies must be greater than the pho- 
ton scattering rate, Ys = ( F/2)( ds 2, where 
F is the inverse spontaneous lifetime of the excited 
state. Thus for a transition with Ap = 1, we require 
Ep+l,q - Ep,q = (2p + 1)hZ/2MR2 n > hys. Further- 
more, if we want the p ~ p + 1 transition to be re- 
solvable from the p + 1 ---, p § 2 transition and so on, 
we have the more stringent condition 

h 2 h i"  (ds  2 
-----T- > hys = (28) 
MRmi n ~ \ 2hA ] 

This is basically a condition on the magnitude of 
the detuning required so that transitions between ro- 
tational states can be resolved individually and from 
each other. 

3.3. Numerical results and discussion 

We have obtained numerical solutions for energy 
eigenstates using both the pair of Eqs. (16) and (17), 
and also the approximate scalar Eq. (21). For the nu- 
merical results presented here for large red-detunings 
the pair of equations and the scalar equation yield the 
same energy eigenvalues to very high accuracy. Here 
we concentrate on the scalar equation. 

To facilitate numerical simulations the radial coor- 
dinate is scaled to the input spot size r /=  R/wo, and the 
energies are scaled to E0 = h2/2Mw~ = (kLwo)-2ER, 
with ER = h2k2/2M the recoil energy. Then Eq. (21) 
becomes 

( d _ ~  2 1 d p ~ )  ~pqUpq = -- § Upq 
rl drl 

§ Krl2e-2~ (29) 

where Epq ---- Epq / Eo ,  and 

2e d2gZ =2e(kLWo)2 (Un~n" ~ 
K = ~0 4h----A- k, ER J "  (30) 

Thus, the solutions of the scalar equation are charac- 
terized by the single parameter K. For the results pre- 
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sented below we set w0 = 10AL, and Umjn = -9.4ER, 
giving K = - 2  x 105. For Na atoms this corresponds 
to a light shift potential well depth of g m i n  = 22.4/zK. 
These values are representative of reasonable beam fo- 
cusing while still being in the paraxial approximation, 
and a moderate light shift potential depth. If  anything, 
this value of K may be considered small. 

In the harmonic oscillator approximation the energy 
eigenvalues of Eq. (29) become 

Umin 
, p q  m ~ -Jr- (q + 1 ) V / 7 - ~ / e  + 2p2, (31) 

where we identify hO/Eo = ~ / e .  In terms of 
the dimensionless spatial variable r/ we have r/mi, = 
Rmi,/wo = 2 -1/2, and At/ = AR/wo = V/77-/4K. 
Thus, the condition Rmin >> AR for the harmonic os- 
cillator approximation to be valid becomes K << - 1, 
and this is well obeyed for the example chosen here 
with K = - 2  x 105. This means that the harmonic os- 
cillator approximation is applicable to those quantum 
states which are localized around the potential mini- 
mum, i.e. those with smaller values of p, q. 

Fig. 2 shows the scaled vibrational energy differ- 
ence epq - evo versus the vibrational quantum num- 
ber q for p = 0 (squares) and p = 20 (crosses). 
From the harmonic oscillator approximation we ex- 
pect epq-epO = qX/"~~/e ,  independent of p, and this 
linear relation is well obeyed in Fig. 2. This is to be 
expected since the vibrational energy is the leading- 

order contribution to the energy. The slope of the en- 
ergy curve (6pq -- e p O ) / q  was found to be in excellent 

agreement with the theoretical prediction V/ -8K/e  = 
767. 

Fig. 3a shows the scaled rotational energy differ- 
ence epq - 6Oq versus the rotational quantum number 
squared p2 for q = 0 (squares) and q = 20 (crosses). 
From the harmonic oscillator approximation we ob- 
tain 6pq - -  60q = 2p 2, independent of q. This rela- 
tion is well obeyed for q = 1, but deviations are ev- 
ident for q = 20. The source of the discrepancy is 
rotational-vibrational coupling and anharmonicity of 
the potential well which are beyond the harmonic os- 
cillator approximation. Nonetheless, from Fig. 3a we 
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Fig. 2. Vibrational energies for K = - 2  x 105: Scaled vibrational 
energy difference 6pq - -  ~:pO versus the vibrational quantum number 
q for p = 0 (squares) and p = 20 (crosses). The predicted slope 

is V / - 8 K / e  = 767, in excellent agreement with the numerics. 
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Fig. 3. Rotational energies for K = - 2  x 105: (a) Scaled rotational 
energy difference epq - eOq versus the rotational quantum number 
squared p2 for q = 0 (squares) and q = 20 (crosses),  and (b) 
slope of the energy curve Xpq = (epq - ~0q)/2P 2 versus q for 
p = 1 (squares) and p = 20 (crosses). 
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see that even for q = 20 the relation between the ro- 
tational energy difference and p2 is still very close to 
linear, so that we consider an expression of the form 
~:pq - -  ~:Oq = 2XpqP 2. Fig. 3b shows 2"pq versus q for 
p = 1 (squares) and p = 20 (crosses). For q = 20 
we have Xl,20 = 1.3 and 2'2o,2o = 1.25, whereas for 
p = 1 we have X1,1 = 1.0 and Xl,20 = 1.3. This 
example illustrates the point that 2"pq  ~ 2"q depends 
mainly on the vibrational quantum number q, which is 
to be expected since the leading-order solutions in the 
harmonic oscillator approximation are the vibrational 
modes (see Eq. (26)) .  Thus, for a given vibrational 
quantum number q the rotational series is still close 
tO that of  an ideal 2D rotator. In particular, we expect 
this approximation to hold until h~ <_ hZp2/2MR~n, 
at which point the perturbation expansion fails since 
the rotational energy is comparable with the vibra- 
tional energy (see Eq. (27)) .  In terms of dimension- 
less quantities this yields p _> ( - K )  1/4 for the failure 
of the rotational series, or p > 20 for K = - 2  x 105. 
Then in dimensional units the rotational-vibrational 
energy eigenvalues are to a good approximation 

h2p 2 
Epq = Umin @ ~ a  (q + �89 + 2"q 2 ' (32) 

2MRmin 

where Xq should be determined numerically in gen- 
eral. 

We now resort to dimensional quantities to discuss 
the various scales for a potential experiment in Na, 
and we set Xq = 1 for illustration. In particular we 
have for the vibrational frequency 

4 - / ' ~ n  v 
v = S'2/2rr = ~ V ~ R, (33) 

for the rotational frequencies 

Epq - EOq _ 2p 2 
27rh (kLWo) 21"zR' (34) 

and for the harmonic oscillator ground state width 

1 ( -gmin "~ -1/4 
AR = ~ \ ER J Rmin, (35) 

with Rmin the radius of  the potential minimum as 
before. For our nominal values of w0 = 10AL and 
U~n/ER = -9 .4 ,  and using VR = WR/27"r = 25 kHz 
for Na, we obtain v = 5 kHz, the frequency splitting 

between the p and p + ! rotational levels is Avp = 
12(2p + 1) Hz, and AR = 0.07Rmin. First we note 
that since AR < Rmin the harmonic oscillator ap- 
proximation is valid. Next, it is clear that the rota- 
tional frequency splitting is very small, on the order 
of a few tens of Hz, making spectroscopy difficult 
at best. However, by using a tighter focused beam, 
say w0 = 2AL, then the frequency splitting becomes 
Avp = 305(2p + 1 ) Hz, which for p = 10 now yields 
6 kHz, which is perhaps realistic for observation. The 
rotational spectrum can in principle be measured by 
using Raman spectroscopy with two fields with their 
orbital angular momentum different by unity. A stim- 
ulated Raman transition involves absorption of a pho- 
ton from one beam followed by stimulated emission 
into the other; if these photons differ only by their or- 
bital angular momentum then the process will transfer 
an orbital angular momentum off to the atom, but no 
linear momentum in the axial or radial directions. The 
selection rules for transitions between different states 
of the center-of-mass motion of the cold atoms then 
allow the two fields to couple two rotational states 
with Ap = 1 [22]. For the rotational transitions to be 
resolvable we need to meet the condition in Eq. (28). 
This can be arranged to give the following criterion 
for the detuning 

A I Umin 
-~ > (kLWo) 2 ER " (36) 

For the parameters used above this gives A = - 4  x 
104F, where F = 9.89 MHz for Na, in which case our 
assumed value of K = - 2  • 105 corresponds to a laser 
power of 20/xW. 

Having calculated the energy spectrum for our two- 
dimensional artificial molecule, we next consider the 
feasibility of probing it experimentally. Assuming that 
atoms can be captured into the annular laser trap in a 
manner analogous to the loading of laser cooled atoms 
into tight focus TEM00 laser traps, it seems reason- 
able that a relatively large number, of order 103 - 104, 
could be trapped [ 8 ]. The rotational-vibrational states 
of the trap might then be probed by pump-probe spec- 
troscopy in a manner similar to the probing of vibra- 
tional states in the microscopic traps of  optical lattices 
[ 25 ]. Perhaps more promising is a detection scheme 
developed by Kasevich [ 26], which probes the atomic 
motion by inducing stimulated Raman transitions be- 
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tween states that differ both with respect to center- 
of-mass and atomic hyperfine ground state. Those 
atoms that undergo a Raman transition between eigen- 
states of the center-of-mass motion also change inter- 
nal states and therefore can be detected with near-unit 
quantum efficiency. This very high efficiency in de- 
tecting transitions between the rotational-vibrational 
states is necessary because, if one assumes that atoms 
can be loaded into our annular trap subject to the same 
restriction as the usual tight-focus traps, then the den- 
sity of rotational-vibrational states is high enough to 
render the mean population of any state much less 
than one. A separate problem is that anharmonicity 
and rotational-vibrational coupling, together with in- 
homogeneous broadening from variation in w0 along 
the beam axis, will tend to broaden resonances in the 
pump-probe spectrum. 

4. Two-d imens iona l  rotator 

In this section we consider the ideal limit in which 
the cold atoms can be confined to their ground vibra- 
tional level. We may then approximate the wave func- 
tion for the ground electronic state as 

~[lg ( R, O, t) ~ voo( R ) ~ (  O, t )e  -ie| (37) 

where v00(R) and E00 are the ground state eigensolu- 
tion and associated energy eigenvalue. Substituting in 
Eq. (20) and projecting with respect to v00(R) yields 
the following equation 

h 2 O2g, 
ih0~ - 21 002 ' (38) 

2 where the moment of inertia I = MRmi n, and 
we set Xq = 1 for the ground vibrational state. 
This equation is easily recognized as that for a 
two-dimensional planar rotator, with eigensolutions 
O(0, t) = (2rr) -1/2ei(pO-Et't/h), and energy eigenval- 
ues Ep = h2p2/21. 

Silverman has given an extensive discussion of the 
physics of two-dimensional planar rotators, ranging 
from broken symmetry properties in external fields to 
their relevance to the issue of fractional statistics [ 1 ]. 
Here we would like to concentrate on one of these 
topics as an illustration of the novel physics which 
can be explored with the two-dimensional atomic ro- 
tator. In particular, we generalize Eq. (38) to allow 

for spatially varying gravitational effects over the ro- 
tator [27]. This can be done by introducing an an- 
gle O between the Z-axis perpendicular to the plane 
of the rotator and the direction of gravity. The rotator 
equation then becomes 

ih O~ h 2 02~F 
Ot - 21 aO ~ +mgRminsin(O)  cos (0)g  t. (39) 

This equation is completely analogous to that describ- 
ing the Stark effect for a charged planar rotator in an 
electric field with the gravitational field playing the 
role of the electric field [ 1 ]. To quantify the types of 
solution Siverman introduces a dimensionless param- 
eter Q which is a measure of the gravitational potential 
energy to rotational energy 

2MgRmin 
Q -  ~ Isin(O)l 

= (kLWo) z Mg~s" sin(O)1. (40) 

When Q < i the rotational kinetic energy term dom- 
inates and the energy spectrum of Eq. (39) is that of 
a two-dimensional rotator to leading-order, as is the 
case when O = 0. When Q >> 1 gravity dominates and 
the atoms are drawn down around the potential mini- 
mum at 0 = 7r (closest to the Earth). In this case the 
spectrum becomes that of a harmonic oscillator as the 
atoms execute small oscillations around the potential 
minimum with frequency 2frye = ~/gl sin(O)l/Rmi n. 
For O = rr/2 and w0 = 10/IL we obtain Q = 1300, 
and va = 0.24 kHz, so that the spectrum will be that 
of a harmonic oscillator. By varying the angle O we 
can clearly go between the two extreme cases for the 
energy spectrum, and Silverman [ 1 ] has described in 
detail how the spectrum changes between the two ex- 
treme limits. Clearly, if the gravitational effects are too 
large they will excite higher radial vibrational levels, 
and the rotator approximation will be invalid. 

Finally, we mention that this system may be used 
to study quantum chaos, if, for example, the angle O 
between the rotator axis and the direction of gravity is 
periodically modulated. This follows since the classi- 
cal limit of Eq. (39) is the simple pendulum equation, 
which is known to show classical chaos when driven 
appropriately. Moore et. al. [28] have recently ex- 
plored quantum chaos using an atom optics realization 
of a quantum &kicked rotor, and our system would 
provide a realization of a driven simple pendulum. 
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5. Summary and conclusions 

In conclusion, we have shown that cold atoms 

trapped in annular shaped light shift potentials have 

the spectrum of artificial 2D molecules with rotational 

and vibrational states. These artificial molecules will 
allow for the experimental investigation of the novel 

selection rules [ 22] for transitions between rotational- 
vibrational states which involve conservation of the 

total orbital angular momentum of the light and atoms, 
and this might provide new insight into the concept of 

orbital angular momentum of light fields [ 13-18].  In 

the limit that the atoms are constrained to their ground 

vibrational state, we have a possible atom optics real- 

ization of a rotator which could be used to study the 

novel physics which arise in 2D systems. In particular, 

we have demonstrated that the effects of gravity in our 
2D rotator are completely analogous to the Stark effect 

for a charged rotator with an applied electric field. The 
experimental realization of the 2D atomic rotator will 
join atomic physics with the physics of 2D systems, 
and this promises new and exciting developments. 
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