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We localize Cs atoms in wavelength-sized potential wells of an optical lattice, and cool them to
three-dimensional temperature of 700 nK by adiabatic expansion. In the optical lattice we precool t
atoms toø1 mK. We then reduce the trapping potential in a few hundredms, causing the atomic
center-of-mass distribution to expand and the temperature to decrease by an amount which agrees
a simple 3D band theory. These are the lowest 3D kinetic temperatures ever measured.

PACS numbers: 32.80.Pj, 42.50.Vk
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Periodic optical potentials, or optical “lattices,” ar
formed by the light shifts experienced by atoms in th
interference pattern created by multiple laser beam
Studies of one-dimensional (1D) lattices observed ato
localized in individual potential wells with center-of-mas
(c.m.) motion in the quantum regime [1–3]. Recentl
optical lattices have also been demonstrated in two a
three dimensions [4–6]. We report the use of a 3D optic
lattice to simultaneously localize and cool Cs atoms
a temperature ofø1 mK. This temperature is approxi-
mately 2 times lower than the minimum temperatu
of 2.5 mK [7] measured in Cs optical molasses [8
Adiabatic expansion of the atomic c.m. distribution
used to reduce the momentum spread further, result
in a sample of free atoms with a 3D kinetic temperatu
of 700 nK. This corresponds to an rms velocity less th
twice the single photon recoil velocity. A simple ban
theory analysis predicts the adiabatic cooling limit a
a function of lattice periodicity and initial temperature
in good agreement with our experiment. In an earli
experiment, Chenet al. reported 1D adiabatic cooling of
a Li atomic beam passing through a strong standing wa
to a temperature of 12mK (two recoil velocities) [9].

Our 3D optical lattice is formed by the interference o
two pairs of linearly polarized laser beams intersectin
as shown in Fig. 1. The use of only four laser beam
ensures an interference pattern which is unchanged
fluctuations in the phases of the beams, apart from
overall translation [5]. The directions of propagation an
polarization of the lattice beams deviate from the geome
of Fig. 1 by less than 10 mrad, with intensity variation
below 65% across the relevant part of each beam profi
The lattice beams have a typical intensity of 0.5 mWycm2,
and are tuned 25 linewidths below the6S1y2sF  4d !

6P3y2sF 0  5d transition atl  852 nm. The resulting
light field has points of pures1 and s2 polarization,
each forming a centered tetragonal lattice, with a spac
betweens1 and s2 sites of ly2
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along x̂ and ŷ. Polarization gradient laser cooling cause
Cs atoms to become tightly bound at these lattice sites [1
which are the minima of optical potential wells for the
statesF  4, mF  64. Repumping from the6S1y2sF 
3d hyperfine state is provided by a separate laser.

We load the lattice with Cs atoms by superimpos
ing a magneto-optical trap (MOT) on the lattice volume
The MOT initially captures Cs atoms from a chirp-coole
atomic beam, producing a dense (1010 cm–3 [11]) sample
of cold atoms in a volumeø300 mm in diameter. The
MOT magnetic field is then switched off, leaving an op
tical molasses which cools the Cs atoms toø 3 mK. The
molasses laser beams are extinguished, leaving the ato
in the presence of the optical lattice only. The atoms equ
librate in the lattice for 10 to 20 ms, after which adiabati
expansion is accomplished by a decrease in the lattice lig
intensity according toIstd  Is0dys1 1 GAtd2, with a typi-
cal GA  104 s21. The expansion proceeds during an ad
justable timet, and is terminated when atoms are release

FIG. 1. Our optical lattice configuration. The lattice is
formed by two pairs of linearly polarized beams. Thez axis
bisects the angleu formed by each pair. Thex axis is vertical
andu  90±.
© 1995 The American Physical Society
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from the lattice by rapid (,1 ms) extinction of the lattice
light. The 3D velocity distribution of the now free atoms
is determined by measuring their spatial spreading duri
the 100 ms flight time to a 0.5 mm thick horizontal she
of probe light located 5 cm below the lattice volume. Th
vertical velocity distribution (alonĝx) is obtained from the
time dependent fluorescence from atoms falling throu
the probe beam, while the distributions alongŷ and ẑ
are measured by imaging the fluorescence in the horiz
tal plane. We determine the rms momentum spread
each degree of freedom based on a Gaussian fit to the
locity distributions, and assign a “temperature” given b
3kBTy2  fkp2

x l 1 kp2
y l 1 kp2

z lgy2m as a measure of the
kinetic energy of the atoms. At the lowest lattice ligh
intensities the time-of-flight signal contains a backgroun
prior to the arrival of the cold atoms. This we ascribe
atoms that escape from the lattice during the initial equi
bration phase, a phenomenon that, along with the gene
steady state conditions in the optical lattice, is still und
study. With this background included in our fits the time
of-flight distribution is indistinguishable from a Gaussia
within signal to noise [see Fig. 2(a)]. We estimate an u
certainty [12] of63% on kp2

x l, and615% on kp2
y l, kp2

z l.
The larger horizontal uncertainties arise mostly from sy
tematic error due to nonlinearity and inhomogeneity in th
intensified charge coupled device imaging system. Diffe
ences between momentum spreads along the different a
are typically within estimated uncertainties.

As a first, albeit naive, model we assume that atom
localized near the bottom of deep optical potential we
have c.m. motion well approximated by a thermally ex
cited 3D harmonic oscillator. The oscillation frequencie
for atoms in the statesmF  64 are then

vx  vy 
ER

"

s
4"jDjs0

ER
, vz 

s
88
45

vx , (1)

where ER  s"kd2y2m is the photon recoil energy,k 

FIG. 2. (a) Typical time-of-flight spectrum. (b) Reduction in
3D temperature as the lattice light intensity is reduced at
rate GA ø 1 3 104 s21 (filled circles). The solid line is the
reduction in temperature expected for a harmonic oscillator.
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2pyl is the photon wave vector,D is the detuning, and
s0  2V

2
Rys4D2 1 G2d is the saturation parameter for a

single lattice beam. The natural linewidth of the cool-
ing transition isGy2p  5.2 MHz, and VR is the Rabi
frequency defined so thatVR  G at an intensity of
2.2 mWycm2. The thermal excitation of each degree
of freedom is described by a Boltzmann factorfi

B 
exps2"viykBTid, whereTi is the temperature of that de-
gree of freedom. The Boltzmann factor remains constan
if the harmonic oscillator frequency is decreased adiabat
cally, so the oscillator temperature at timet into the
expansion isTistd  Tis0dvistdyvis0d, approaching zero
for t ! `. In our experiment the temperature does no
go to zero, because the true periodic optical potentia
cannot be represented by a single harmonic oscillato
The harmonic oscillator approximation breaks down when
the width of the c.m. distribution becomes comparable
to the spacing between optical potential wells. As we
show below, a more realistic model leads to a nonzer
prediction for the final temperature.

To satisfy adiabaticity one must havej Ùvjyv  ´v,
where ´ ø 1 for all oscillation frequencies. The func-
tional form given above of the decrease in lattice light
intensity is chosen to satisfy adiabaticity with a time in-
dependent́ in the range 0.02 to 0.2. A lower limit on
´ is set by the demand that heating be negligible dur
ing expansion. By operating atD  225G (halfway to
the neighboringF 0  4 hyperfine state), we achieve negli-
gible heating on the time scales used.

The initial state of a trapped atom is characterized
by oscillation frequencies which we calculate using
Eq. (1), and Boltzmann factors determined from the
observed initial momentum spreads. For conditions tha
produce the lowest temperatures, we find Boltzmann
factors of fx

B ø f
y
B ø 0.55 and fz

B ø 0.45, correspond-
ing to rms c.m. spreads of order

p
kx2l ø

p
ky2l ø ly9

and
p

kz2l ø ly12, and a steady state temperature of
ø1.2 mK. Figure 2(b) shows an example of the mea-
sured 3D temperature as defined above, as well a
the prediction of the naive harmonic oscillator model,
following various expansion timest. Our data deviate
noticeably from the harmonic oscillator model as early as
t  100 ms; by t  500 ms, the measured temperature
has clearly reached its final value, and differs from the
harmonic oscillator prediction by more than a factor of 3.

To verify that the rate of expansion is slow enough
to ensure adiabaticity, yet fast enough to avoid heating
we have varied the rateGA at which the lattice light
intensity is reduced. Less than a 10% change in th
final temperature is observed whenGA is varied by an
order of magnitude, from2 3 103 to 2 3 104 s21. This
robustness supports our assumptions of adiabaticity an
negligible heating. Using a fixed rateGA ø 8 3 103 s21,
we have varied the initial conditions, determined by the
initial lattice light intensity. We find that a lower final
temperature results when the initial lattice light intensity
1543
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and temperature is decreased, until a limit is reach
where steady state laser cooling can no longer be achie
at the initial conditions [10].

A more realistic calculation of the final temperatur
expected for adiabatic expansion in a periodic potent
can be accomplished using a simple band theory. (A d
ferent approach was applied by Zaugget al. [13] to the
case of two-level atoms in a 1D lattice.) In the follow
ing we consider both a 1D lattice and a 3D cubic lattic
of spherically symmetric wells to allow a simple exam
nation of the influence of dimensionality. In our ban
theory, the initial condition for adiabatic expansion i
taken to be an atom localized in a single optical pote
tial well, and well approximated by a harmonic oscillato
The nth excited harmonic oscillator stateHn can be ex-
panded in a basis of nonlocal, tight-binding Bloch stat
Bnq of band indexn and quasimomentumq [14], and it
can be shown that allq within a band have the same en
ergy and population. The total population in thenth band
is equal to the population of thenth harmonic oscilla-
tor state. The final state is a free atom, and is expand
in a basis of Bloch states that are simply plane wav
[14]. The tight-binding and free particle band structure
are shown in Fig. 3 for a 1D lattice with spatial fre
quencyQ0. Adiabatic expansion smoothly deforms th
tight-binding bands into free particle bands. The pop
lation of each Bloch state is conserved due to ad
baticity, because a lattice of constant spatial frequen
Q0 conserves quasimomentum. After expansion thenth
free particle band maps onto a pair of momentum i
tervalsn"Q0y2 , jpj , sn 1 1d"Q0y2, corresponding to
the sn 1 1dth Brillouin zone (BZ), within which the mo-

FIG. 3. (a) Tight-binding band structure. (b) Free partic
band structure. (c) Final momentum distribution. Solid an
dotted lines indicate odd and even numbered bands and t
contributions to the final momentum distribution.
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mentum distribution is uniform, as shown in Fig. 3(c).
We assign a temperature by averagingp2y2m over this
momentum distribution

1
2

kBT 
X

n

pn

"Q0

Z
sn11dth BZ

p2

2m
dp

 ER

µ
Q0

k

∂2 1 1 4fB 1 f2
B

12s1 2 fBd2
, (2)

using the initial thermal populationspn  s1 2 fBdfn
B.

In a 3D extension of this model, the distribution of
population in momentum space follows in a similar
fashion from the 3D Brillouin zones. In a 3D cubic lattice
the Brillouin zones are well approximated by spherica
shells. Taking into account degeneracy of the spheric
harmonic oscillator we find

3
2

kBT  ER

µ
Q0

k

∂2 X
n

Ω
s1 2 fBd3fn

Bsn 1 1d sn 1 2d

3
3

40

µ
6
p

∂2y3∑
sn 1 1d5y3 2 n5y3

∏æ
. (3)

Equations (2) and (3) show that the final temperature
completely determined byQ0 andfB.

To compare Eqs. (2) and (3) to our experiment, on
must consider which lattice spatial frequencyQ0 is
appropriate. An atom moving adiabatically from as1

to a s2 site is transferred frommF  4 to mF  24
by coherent Raman coupling. For adiabatic expansio
there is thus no distinction between lattice sites, an
the symmetry becomes simple tetragonal with spatia
frequenciesQx  Qy  k

p
2 and Qz  2k

p
2. Here we

assume a simple cubic lattice with spatial frequenc
Q0  4ky

p
5 (corresponding tou ø 127± in Fig. 1), and

assign a Boltzmann factor, averaged over the 3 degre
of freedom, to each experimental data point. Figure
shows the temperature predicted using Eqs. (2) and (3),

FIG. 4. Final temperature for adiabatic cooling as a functio
of initial Boltzmann factor. The solid line is a 3D calculation
for a cubic lattice, the dashed line is a 1D calculation for a
1D lattice. In both cases the spatial frequency isQ0  4ky

p
5.

The open circles are measurements ofTx by time of flight. All
measurements were taken withGA  8 3 1023 s21.
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well as experimental data points for different Boltzman
factors, corresponding to different initial lattice ligh
intensities. Boltzmann factors for the experimental poin
are computed on the basis of the vertical (alongx̂)
velocity distribution only, and assume equal temperatu
for all degrees of freedom. We note first that there is ve
little difference in the temperature predicted by the 1
and 3D analysis, and second that both models reprod
the minimum observed temperatures reasonably w
given the level of approximation involved. Data point
corresponding to higher initial lattice light intensity, an
therefore larger initial Boltzmann factor, fall below the
predicted limit for adiabatic cooling. This deviation is
caused by dissipative cooling which lowers the Boltzman
factor early in the intensity reduction. A clear signature
this dissipative cooling is that at early times we measu
a temperature directly proportional to the intensity, a
expected for steady state cooling [7]. We also note th
some discrepancy is expected, since theory predicts
slightly non-Boltzmann initial energy distribution [10],
and since the estimated uncertainty in the experimenta
assigned Boltzmann factors is65% [12]. Nevertheless,
for the lowest initial intensities, below which there is n
dissipative cooling, we find good agreement.

With a minimum temperature of 700 nK, adiabati
cooling of Cs atoms in an optical lattice offers an im
provement of nearly a factor of 4 over 3D optical mo
lasses [7]. About a factor of 2 of this improvement i
due to a lower steady state temperature in the optical l
tice, and the rest due to adiabatic expansion. One mi
suppose from Eq. (2) or (3) that a lower final temperatu
can be achieved by decreasingQ0. However, if the ini-
tial potential depth and temperature are held constant,
accompanying change infB leads to a nearly unchanged
final temperature. One route to lower final temperatur
is to lower the initial temperature. This may be achieve
with Raman sideband cooling [15], in a lattice detune
so far from resonance that heating and cooling rates
negligible. If atoms are cooled mostly into the groun
state of the optical potential, Eq. (3) implies that adia
batic cooling in our model cubic lattice would lead to
temperatureERy2kB ø 50 nK. Thus the band theory im-
plies a new fundamental cooling limit. Even if atoms ar
cooled to the ground state (i.e.,T  0 K), it is impos-
sible to release these atoms with a kinetic energy bel
approximatelysQ0ykd2ERy4. An alternate way to achieve
subrecoil temperatures would be to adiabatically expa
the lattice, thereby reducingQ0. In the geometry of Fig. 1
an arbitrarily small spatial frequency in thex-y plane can
be achieved by choosing the proper angleu. Anderson,
Gustavson, and Kasevich have recently demonstrate
lattice configuration withQ0 , k in all directions, and
achieved adiabatic cooling of Li by reduction of the lattic
potential [16].

Optical lattices and adiabatic cooling can be use
to create a colder atomic fountain and may provid
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important improvements in atom interferometers [17] an
atomic clocks [18]. Attempts to achieve high phase
space density, needed for Bose-Einstein condensatio
might similarly benefit from adiabatic cooling. This
might seem paradoxical since adiabatic expansion strict
conserves phase space density; however, localization o
microscopic scale represents phase space density wh
is lost when atoms are released into a macroscop
trap. This is avoided if microscopic localization is first
traded for lower momentum spread by adiabatic cooling
Temperatures below those reported here may be achiev
at the cost of decreased density, by releasing a small clo
of atoms into a weak macroscopic trap [19] which is
turned off after a1

4 oscillation period [20].
We gratefully acknowledge discussions with Ivan

Deutsch and Pierre Meystre. A. K. thanks the Swedis
Natural Science Research Council (NFR) and R. S. th
Niels Stensen Stichting for financial support. This work
was partially supported by the U.S. Office of Nava
Research, and by NSF Contract No. PHY-9312572.

*Present address: University of Konstanz, Fakultät fü
Physik, Postfach 5560, M696. D-78434 Konstanz
Germany.

[1] P. Verkerket al., Phys. Rev. Lett.68, 3861 (1992).
[2] P. S. Jessenet al., Phys. Rev. Lett.69, 49 (1992).
[3] P. Marteet al., Phys. Rev. Lett.71, 1335 (1993).
[4] A. Hemmerich and T. W. Hänsch, Phys. Rev. Lett.70,

1410 (1993).
[5] G. Grynberget al., Phys. Rev. Lett.70, 2249 (1993).
[6] A. Hemmerich, C. Zimmermann, and T. W. Hänsch,

Europhys. Lett.22, 89 (1993).
[7] C. Salomonet al., Europhys. Lett.12, 683 (1990).
[8] Here “optical molasses” refers to a 3D configuration of

three orthogonal pairs of counterpropagating laser beam
with random and fluctuating relative phases.

[9] J. Chenet al., Phys. Rev. Lett.69, 1344 (1992).
[10] Y. Castin and J. Dalibard, Europhys. Lett.14, 761 (1991).
[11] We find that higher densities do not yield the lowes

temperatures.
[12] One standard deviation, combined systematic an

statistical.
[13] T. Zaugget al., Phys. Rev. A49, 3011 (1994).
[14] See, for example, N. W. Ashcroft and N. D. Mermin,

Solid State Physics(Holt-Saunders, Philadelphia, 1976),
Chaps. 9 and 10.

[15] D. J. Heinzen and D. J. Wineland, Phys. Rev. A42, 2977
(1990).

[16] B. P. Anderson, T. L. Gustavson, and M. Kasevich
International Quantum Electronics Conference, Anaheim
California, 1994 (unpublished).

[17] M. Kasevich and S. Chu, Phys. Rev. Lett.67, 181 (1991).
[18] A. Clairon et al., Europhys. Lett.16, 165 (1991).
[19] C. Monroeet al., Phys. Rev. Lett.65, 1571 (1990).
[20] S. Chuet al., Opt. Lett.11, 73 (1986).
1545


