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Abstract

We study experimentally, numerically, and analytically the phase dynamics and syn-
chronization of two nonlinear optoelectronic oscillators with weak time-delayed mu-
tual coupling and strong time-delayed feedback. Three distinct phase dynamic behav-
iors are observed and analyzed experimentally: in-phase locking, anti-phase locking,
and multi-timescale oscillations. In parameter space, the system alternates between
these behaviors as a function of the ratio of the coupling delay to feedback delay.
We construct a delay differential equations model that simulates the experimental
system studied and shows that the observed dynamics can be reproduced numerically
for various ranges of parameters. Analytically, we implement a model of Kuramoto
phase oscillators and study its solutions and stability. We show that considering just
phase-oscillations in our system is sufficient to account for the phase-locking behavior
of the two weakly coupled oscillators.





Introduction

My thesis is a study of the phase dynamics and synchronization of delay-coupled
nonlinear oscillators. The motivation behind the study of such systems rests in their
importance in various fields of science, such as brain dynamics [1, 2], laser arrays [3],
population dynamics [4], and optical systems [5, 6]. On a practical level, these systems
have numerous potential applications in chaos communication [7, 8], cryptographic
key exchange [9], and random number generation [10], to name a few.

While two uncoupled oscillators exhibit uncorrelated behavior, they can become
correlated when coupled in the right way, a phenomenon referred to as synchronization
or phase-locking. A special case is isochronous synchronization or in-phase oscilla-
tions, when the phase shift between the two correlated nonlinearity output signals is
zero and they behave identically.

In particular, this thesis focuses on the phase dynamics and synchronization of two
nonlinear oscillators with strong feedback, coupled with mismatched weak coupling
delays. The underlying topology of the system studied is shown in Fig. 1, where
the discs represent identical nonlinear oscillators and the connecting lines represent
signals (or information) being transfered between them. The delay parameters τ
represent the propagation time along these communication channels. The exchanged
signals are amplified by factors γ, which we refer to as coupling strengths. Another
important property of our dynamics is that propagating signals are bandpass filtered,
which means that their oscillation frequencies are limited by our experimental devices.
The interplay of these parameters give rise to very rich dynamics, ranging from steady
state solutions and periodic oscillations to chaos.
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α1 α2Figure 1: Schematic representation of the network motif studied in this thesis, two
coupled nonlinearities with self-feedback.

Our previous research on such systems has focused on the case of equal coupling
delays [11], where we are able to predict the emergence of synchronization dynamics
using the analytical method of the master stability function (MST). Naturally, the
ensuing question we were interested in is the case of mismatched delays. The MST
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method is difficult to implement in this case due to the lack of symmetry of the
system. Furthermore, while searching for complementary analysis methods, we found
the few papers published on the subject [12, 13] difficult to discuss analytically or
reproduce experimentally.

Consequently, for unequal delays, we focus on the case of weak-coupling, in regimes
close to the onset of periodic oscillations which are easier to analyze. The goals
of this thesis are to test whether synchronization is possible when delays are not
matched, to study the conditions under which it occurs, and to explain and generalize
the behavior of the particular network structure studied to general networks using
theoretical analysis and modeling.

Since the observed dynamics are very sensitive to the chosen system parameters,
we devote a large portion of our discussion to designing and running an experiment
with high precision parameter control that allows us to scan relatively large parameter
ranges. Chapters 1-2 detail the experimental apparatus, the different control methods
used, and the observed dynamics. In chapter 3, we derive a model for our system
and use numerical analysis to deepen our understanding of the experimental results.
In chapter 4, we introduce the theoretical phase-model of Kuramoto oscillators and
show that the solutions to this model explain the observed dynamics.



Chapter 1

The Experimental Apparatus:
Components and Connections

Chapter I is an introduction to the experimental apparatus used in this thesis. In
the first part of the chapter, I will discuss the optoelectronic devices used to perform
the experiment. The second part of the chapter explains the methods used to imple-
ment the delayed coupled networks that are of interests to us, including initial setup,
parameter control and selection, and data acquisition.

1.1 Components

1.1.1 Mach-Zehnder Modulator

Figure 1.1: Image depicting the Mach-Zehnder Modulator (left) and graphical rep-
resentation (right). Note the optical input and output ports, and the RF and DC
electrical inputs ports in the MZM.

The central device of our system, providing the nonlinear transformation that is
responsible for many of the interesting dynamical behaviors in our experimental sys-
tem, is the LiNbO3 Mach-Zehnder modulator (MZM). The JDSU Z5 MZM is designed
for use in telecommunication circuits and operates on the principle of a Mach-Zehnder
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Figure 1.2: (a) Experimental data (blue dots) and theoretical prediction (black) of the
transfer function of an MZM. Notice that the MZM is biased at the half-transmission
point of the transmission curve (φ = −π/4) (b) Representation of the MZM structure
detailing the applied voltage in one of the two paths that the beams travel through.

interferometer. As shown in Fig. 1.2 (b), the incoming light is split into two paths in
a ratio depending on the light’s polarization1. The device exploits the electro-optic
effect: a voltage is applied in one of the arms of the LiNbO3 crystal, increasing the
index of refraction of the material. Due to the greater index of refraction, light travels
at a slower speed in the respective arm of the device. Consequently, a relative phase
shift between the two beams proportional to the applied voltage is introduced and
when the two beams recombine and interfere, the intensity of the resulting signal is
modified.

In order to understand the dynamical behavior of the MZM, we can quantify
the interference effect by referring to electromagnetic theory. In our case, the two
interfering beams travel in the same direction, have identical polarizations (obtained
with the polarizer) and equal amplitudes. For simplicity, consider two plane waves
polarized in the x-direction and traveling in the z-direction with a relative phase shift
of θ. In complex notation, the plane waves are mathematically described by

Ẽ1 = Eei(kz−ωt)x̂ and Ẽ2 = Eei(kz−ωt+θ)x̂. (1.1)

When the two electric field interfere, the result is a new plane wave

Ẽ3 = Ẽ1 + Ẽ2 = E(1 + eiθ)ei(kz−ωt)x̂. (1.2)

Using the identity relating the electric field of a plane wave and its intensity [14],
we obtain for the intensity of the combined beams

I =
1

2
ε0cRe

[
Ẽ3Ẽ3

∗]
(1.3)

=
1

2
ε0c[2E

2(1 + cos θ)] (1.4)

= 2ε0cE
2 sin2(θ/2 + π/2). (1.5)

1Polarization can be varied using polarization controllers as described in subsection 1.1.3.
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Next, we convert Eq. (1.5), describing the behavior of the MZM, to a form that
is easily comparable to our system. To that end, we consider how variables E and θ
translate to parameters in our experimental setup.

Since laser power is attenuated by the MZM, the irradiance of the output is
directly proportional to the input, within a factor of the MZ gain Iout = γIin. Also,
as discussed above, the phase shift θ is proportional to the voltage applied to the
crystal, which in our case is a combination of RF (Vin) and DC (VDC) signals,

θ = 2b(Vin + VDC). (1.6)

Here b is a parameter of the system given by b = π
2Vπ

, where Vπ is the DC half-wave
voltage. To generalize our result, we add another phase factor φ′, which gives

Iout = γIin sin2(bVin + bVDC + φ′). (1.7)

Writing the equation with a single phase term φ = bVDC + φ′, we obtain

Iout = γIin sin2(bVin + φ). (1.8)

In our experiments, VDC is fixed and determines the location of the nonlinearity
bias point and Vin provides RF modulation. While the JDSU Z5 MZM performs very
well experimentally (such as exemplified in the experimental data shown Fig. 1.2(a)),
it is important to be aware of some of its limitations. Up to 50 % of input power is lost
in the modulator, which can increase the need for amplification in the experimental
apparatus. The modulators are temperature-sensitive and we have observed drifting
in the biasing of the DC port, which makes their parameters very sensitive and difficult
to accurately control.

1.1.2 Laser Diode

Figure 1.3: Image depicting the fiber coupled laser diode (left) and graphical repre-
sentation (right). Note the two electrical connectors to the constant temperature and
constant current electronic controllers on the left side of the image.

The optical power in our system is provided by a fiber coupled Sumitomo Electric
SLT5411-CC laser diode with optical isolator. This continuous-wave semiconductor
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Figure 1.4: Experimental results relating output optical intensity to input current for
a Sumitomo SLT5411-CC diode. Blue dots represent data points and the black line
is the best fit for the lasing regime.

laser operates at wavelengths of 1.5 µm and powers of up to 50 mW. As depicted in
Figure 1.3, the laser is held at constant temperature and constant current by electronic
controllers. While the temperature control stabilizes the frequency of the beam, the
current control allows us to vary the intensity of the output. The temperature control
is rarely varied since the frequency is held constant in our experiments, but the current
control is a valuable mean of varying the gain of the experimental apparatus.

In order to understand the behavior of the laser, we have to discuss the physics
of lasers. Consider a laser consisting of a cavity with a mirror on one end, a partially
transparent mirror at the other end, and a semiconductor gain medium in between.
The atoms in the gain medium have two states available: a ground state and an
excited state. Atoms can be excited from the ground state to the excited state
or they can drop from the excited state to the ground state by either spontaneous
emission or stimulated emission, both processes emitting photons of equal energy.

When no pump power is added to the system, the huge majority of the atoms are
residing in the ground state and no stimulated emission of photons takes place. In
order to generate photons, we pump energy into the gain medium and thus raise the
atoms to the excited state. When atoms transition back to the ground state, they
emit photons. Although some of the created photons are absorbed by the walls of the
cavity, many of them bounce around in the cavity and stimulate the excited atoms
to emit more photons in a continuous process. As a macroscopic light-field builds up
in the cavity, the laser begins to emit light. More details about the process and a
quantitative study of the laser diode can be found in Chris May’s thesis [8].

When the number of atoms emitting photons through stimulated emission bal-
ances the rate at which atoms are pumped into the excited state, the system reaches
equilibrium, often referred to as continuous wave (cw)-lasing. In the lasing state, the
cavity outputs a coherent, monochromatic beam of constant intensity. In this regime,
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the output light intensity is proportional to the rate at which energy is pumped into
the system. We can then explain the linear relationship between current and intensity
observed experimentally and depicted in Fig. 1.4.

1.1.3 Polarization Controller

Figure 1.5: Image depicting the polarization controller (left) and graphical represen-
tation (right). The three paddles control the orientation of a quarter-wave plate, a
half-wave plate and a quarter-wave plate and are used to obtain the suitable polar-
ization for the MZM input.

When light leaves the laser diode, it has some polarization that is dependent on
the orientation of the coupled fiber. However, as we have discussed in Section 1.1.1,
it is ideal to be able to adjust the polarization of the input light such that the MZM
splits the input equally in the two paths, making our analysis in section 1.1.1 valid.

The ThorLabs FPC 560 polarization controller allows us to control the polarization
of the light, being able to transform an arbitrary polarization into another arbitrary
polarization. It contains three paddles with fiber wound around a cylinder inside of
them. The winding results in a well controlled stress of the fiber and thus changes the
index of refraction of the fiber in the direction of the stress. Since light polarized in
the direction of the stress travels at a different speed than the light polarized in the
direction perpendicular to the direction of stress, controlling the number of windings
in a paddle allows one to obtain specific relative phase shifts of the output. The
paddles are designed to correspond to λ

4
, λ

2
, λ

4
wave plates, allowing us to vary the

polarization of the beam.
Assuming an arbitrary elliptical incident polarization, the first quarter-wave plate

is oriented to transform the incident elliptical polarization into linear polarization,
then a half-wave plate changes the orientation of the linear polarization, and the
second quarter-wave plate transforms the rotated linear polarization into the desired
arbitrary elliptical output polarization [15].
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Figure 1.6: Image depicting the adjustable optical attenuator (left) and graphical
representation (right). The amplitude of the incoming optical signal can be controlled
by using the attached numerical dial.

1.1.4 Optical Attenuator

The ThorLabs VOA-50-APC variable optical attenuator provides a versatile method
of controlling the gain of the optical circuit without disconnecting the optoelectronic
circuit. The device offers attenuation rates of the power level of an optical signal of
up to -50 dB. The attenuators have been equipped with a mechanical dial such as
presented in Fig. 1.6. More details about the setup can be found in Greg Hoth’s 2010
thesis [16].

The dial directly controls the level of attenuation. The calibration is done by
finding the maximum output of the attenuator, scanning the dial range in increments
until intensity is reduced to zero and measuring the transmitted intensity as a function
of the dial position. We can define an attenuation factor α = Iout

Imax
, where Iout is the

intensity of the output and Imax is the maximum intensity of the output for a fixed

360 380 400 420 440 460 480 500
0.0

0.2

0.4

0.6

0.8

1.0

Dial

A
tte

nu
at

io
n

Α

Figure 1.7: Experimentally measured attenuation curve for Thor Labs VOA-50-APC
variable optical attenuator.
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input. Figure 1.7 depicts an experimentally measured attenuation curve.

1.1.5 Adjustable Optical Fiber Delay Line

Figure 1.8: Image depicting the adjustable optical delay line (left) and graphical
representation (right). The device allows for the delay to be varied within a range of
0-600 ps without disconnecting the apparatus.

The Newport F-VDL-1-6-FA-P variable delay line offers a versatile solution to
finely controlling delay times in our circuit. While splicing2 offers a good solution for
the adjustment of large (order of ns) delays, very fine adjustments of up to tens of
picoseconds3 are impossible to obtain using this method.

The adjustable optical fiber delay line is controlled by a mechanical dial over a
range of 600 ps and can be adjusted very precisely with the use of the provided Vernier
scale. The device functions by finely rotating a crystal with high index of refraction.
The distance light travels in the crystal changes with the incident angle and thus the
time delay in the circuit is varied.

1.1.6 Optical Splitter and Circulator

The Newport F-CPL-B12355 optical splitter is a relatively straight-forward device.
Equipped with three ports, it can split an incoming light beam (Iin) into two equal
intensity (Iin/2) beams. The device also works the reverse way, by adding up two
input optical signals in a 1:1 ratio.

The device is build such that the two ingoing fibers are physically joined and the
beam resulting from the superposition of the input beams is collected in the output
fiber line. Loses are generally very low (less than 2% in intensity) and the splitting
ratio is very close to the 50/50 ideal value.

The Thorlabs 6015-3-APC optical circulator is a three-port device designed such
that light entering into one of the ports is routed to the next port in a circular

2Splicing is the technique of joining two fibers together to form a continuous optical waveguide
by melting the fiber ends together with an electric arc.

3A delay of 10 ps corresponds to 2.2 mm of optical fiber length.
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Figure 1.9: Graphical representation of the optical splitter (left) and circulator (right).

manner. Thus, the signal entering port 1 is redirected to port 2 and the signal from
port 2 is redirected to port 3. The optical circulator is useful when trying to achieve
bi-directional transmission over a single optical fiber. The reasons for designing our
system such that beams travel bi-directionally will become clear when we present our
experimental design.

1.1.7 Electrical Photodetector, Splitter and Amplifier

Figure 1.10: Image depicting the three electronic devices in our apparatus. From
right to left: photodetector, splitter and amplifier (left) and graphical representation
(right). The purpose of the electronic part of the circuit is to convert optical signals
to electric signals viewable on an oscilloscope and to amplify the signals in order to
compensate for losses.

The electronic components of our system fulfill three very important roles: (1) to
convert the optical signal into an electric signal suitable for detection (photodetector),
(2) to allow for the measurement of network dynamics by splitting the signal into two
equal power signals, one that is measured by an oscilloscope and one that can be
returned to the system (splitter) and (3) to amplify the signal to compensate for the
signal losses (amplifier). The devices used are a MITEQ DR125-G photodetector with
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maximum input power of 3mW, a Picosecond Pulse Labs Model 5331 6dB electrical
splitter and a JDSU H 301 power amplifier with a gain of gMD = −23.

Another very important feature of these electronic components is that they provide
bandpass filtering in the system. The filtering occurs because of the finite response
time of the electrical components (low-pass filter) and the fact that they are AC
coupled (high-pass filter). The bandwidth limits for each component are presented in
Table 1.1. The presence of filtering is extremely important for the dynamical behavior
of our system, as will be discussed in Chapter 3.

Table 1.1: Bandwidth limits of the electrical devices in our system.

Electric Device low-frequency cutoff high-frequency cutoff

Photodetector 30 kHz 13 GHz
Splitter 0 18 GHz
Amplifier 75 kHz 10 GHz

There are some issues that we should be aware of with the electric devices. First,
both the amplifier and photodetector are inverting devices. While this fact does
not affect the behavior of our system per se, it is important to acknowledge this
detail when measuring certain outputs. For example, when measuring the output of
the photodetector, the signal observed is the inversion of the actual optical signal
in the circuit. Another issue to be aware of is that the gains of the photodetector
and amplifier are constant for low input power, but the components slowly start to
saturate at high powers.

1.1.8 Connections

All optical devices are fiber coupled with single mode fiber and FC/APC (Angled
Physical Contact) connectors. These connectors can be screwed together using a
mechanical plug. Losses in such connections are usually small (< 5%), but should be
taken into account for the more sensitive experiments. Back-reflection in the optical
connection is minimized by the design of the connectors: they are polished at an
angle that minimizes back-reflection.

The electronic devices are connected with wide-bandwidth SMA type connectors
that should not affect our dynamics very much. All electric outputs are terminated
at 50 Ω in order to prevent back-reflection.
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1.2 Data Acquisition: Observing the network dy-

namics

The main instrument used to observe the dynamics of our experimental network is an
Agilent Infiniium DSO81264A fast real time oscilloscope running at sampling rates of
up to 40 Gbit/s and detecting frequencies of up to 12 GHz. The oscilloscope is ideal
for observing the fast time-series of our signal due to its high bandwidth, comparable
to the bandwidth of our electrical filtering. Measuring signals in different parts of
our system allows us to determine and compare different dynamics of nodes in our
delay-coupled network by analyzing the raw time-series data.

The Picosecond 12050 pattern generator is a second important tool that helps in
many of the stages of the experimental system buildup and adjustment. While any
signal can be used to adjust the required laser power, attenuation, and MZ bias point
(as described in section 1.5); the delay is hard to match without a signal with a very
short rise-time. The 12.5 Gbps ultra-fast function generator outputs signals with a 25
ps rise time, allowing us to measure delay mismatches of up to 10 ps. The adjustable
pulse train allows us to select the appropriate shape for our experiment.

1.3 The network architecture
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Figure 1.11: Coupling architecture (top) and schematic of the experiment consisting
of two coupled optoelectronic oscillators (bottom): LD, laser diodes; PC, polarization
controllers; MZM, Mach Zehnder modulators; C, circulators; α, optical attenuators;
τ , adjustable delay lines; D, photodetectors; S, electronic splitters; MD, modulator
drivers.

Our experimental apparatus is obtained by connecting the individual components
discussed above to form to a particular network architecture. The network involves
two delay coupled optoelectronic oscillators in a chain configuration, each of them
with delayed self-feedback. Each node in our network represents the nonlinearity of
our system, the MZM, which is coupled back to itself and to the other system nodes
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Figure 1.12: Schematic representation of the setup used to measure and match the
free parameters of our system. Note the two interrupted optical fiber connections
in the self-feedback loops. In this case, the two coupling strengths and delays in the
cross-coupling links can be measured and compared. Using this method, but breaking
different parts of the circuit, any parameters in the system can be compared.

with optical fiber. For experimental convenience, control network components are
added such that system parameters can be matched or varied with maximum ease.
The complete experimental setup and coupling network are presented in Figure 1.11.

1.4 Experimental techniques

The main focus of this section is to describe the experimental procedures used to
control the system’s dynamics. There are four very important parameters that can
be adjusted experimentally: the attenuation, laser current, delay and the bias point of
the MZM. In order to accomplish this, we disconnect parts of our system as depicted
in Figure 1.12, input a square wave signal at the power amplifiers MD1 and MD2 and
observe the two outputs V1 and V2 on the oscilloscope. This versatile setup allows
us to set all four free parameters of our system.

1.4.1 Laser Current and Attenuation

Both laser current and attenuation are parameters affecting gain. As observed in
Figure 1.11, varying the value of the laser current for each diode will vary both the
gain in the corresponding self-feedback loop and the cross-coupling strength4. The
attenuators are placed in the cross-coupling link, so that the level of attenuation α
will only affect the gain in the respective link.

In our case, for symmetry reasons, we want to keep the self-feedback strengths
equal (γ11 = γ22 = γf ) and let coupling strengths be equal (γ21 = γ12 = γc), but
variable. A good setup for accomplishing these requirements is depicted in Fig. 1.12.
By disconnecting either elements in the coupling loop or in the feedback loops, we
can have the detectors record the signal propagating through the feedback loop or
coupling links respectively, allowing us to measure and set the loop gain.

4For example, the current of laser 1 controls γ11 and γ21
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First, we match the two lasers such that γ11 = γ22 = γf . Then, we match the two
coupling feedbacks γ21 = γ12 = γc using the two attenuators. Using this procedure,
we can scan the range of γc relevant to our experiment.

1.4.2 Delay

Since delay is the focus parameter of this thesis, being able to control and measure it
with high accuracy and precision is very important. Our goals are (1) to match the
two feedback delays τ11 = τ22 = τf and the two coupling delays τ21 = τ12 = τc, and
(2) be able to easily vary τc such that the dynamics of the system can be observed
for different ratios of delays τc/τf .

For accomplishing condition (1), we again use the setup depicted in Fig. 1.12.
The signal generator provides a pulse signal input and we simultaneously observe the
system outputs on the oscilloscope. Since the lengths of all the BNC cables used
are equal, we can compare the times it takes the pulse to travel around each loop
and measure the delay difference. By connecting and disconnecting the system as
discussed in the earlier subsection, both the coupling delays and feedback delays are
matched. An absolute value of each delay can be obtained as well by connecting
another BNC cable (same length) to the input splitter and observing the two outputs
on the screen.

For large delay mismatches (> 600 ps), we splice cables and insert them into the
system to make up for delay difference. For small mismatches (< 600 ps), we use the
variable delay lines to adjust the delay. Using this procedure, delays can be matched
with 10 ps accuracy.

We also want be able to easily vary τc (condition 2) such that the dynamics of
the system can be observed for different ratios of delays τc/τf . This is where the
circulators come in handy. In the case of coupling delays, they allow us to transfer
optical signal through the same optical fiber bidirectionally. Thus, once delays are
matched, we can vary the coupling delay τc just by adding another length of fiber
to the bidirectional link, which will increase the delay for both coupling links by the
same value.

1.4.3 Bias Point of the MZM

For all experiments discussed in this thesis, we bias the MZM to the half-transmission
point with a DC-Voltage corresponding to either φ = −π/4 or φ = π/4. We choose
these bias points because the output function of the MZM derived in Eq. (1.8)
simplifies greatly in this case [11].

It is important to note that when the bias point is set to π/4, the small-signal
round trip gain is positive and when the bias point is set to −π/4, the round trip
gain is negative. This is of course only true for small signals that cannot explore more
than the local slope of the nonlinearity. In our experiment, the distinction between
round trip positive and round trip negative gain will prove to be important and will
give rise to distinct dynamical behaviors.

The procedure of selecting the ±π/4 bias points is the following. First, we find
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the maximum intensity of the MZM for a specific signal by varying the DC bias and
measuring the output with an inverting photodetector. Then, we adjust the intensity
to the point where the output intensity is half the maximum intensity. By probing
the region around the bias point, we can decide whether we are on the positive or
negative slope. If the output intensity is a monotonically increasing function of the
bias voltage, the bias point is π/4. If the output intensity is a decreasing function of
the bias voltage, the bias point is −π/4.

1.5 Final Thoughts

To summarize, we will be studying the dynamical behavior of a system of two delay-
coupled optoelectronic oscillators with self-feedback. Four parameters of the system
can be varied: the delay, the laser current, the bias point of the MZ, and the at-
tenuation. Since delay is the parameter of primary interest in this thesis, we will
experimentally measure the phase-locking behavior of the two optoelectronic oscilla-
tors in the periodic regime for various coupling delays τc.





Chapter 2

Experimental Results

In this second chapter, we put to work the designed experimental setup presented in
the first chapter. I will start by discussing the motivation behind choosing a specific
dynamical regime for our experimental runs, continue by discussing three types of
observed dynamical behavior and finish with a discussion of the results in parameter
space.

2.1 Discussion of the Chosen Dynamical Regime

Systems of coupled optoelectronic systems exhibit rich dynamical behavior [8, 16–18].
Due to the interplay of the nonlinearity present in our system, filtering effects and
the coupling delay, chaotic behavior is observed for large feedback coupling strengths.
For lower feedback coupling strengths, many other complex dynamical regimes are
observed in our system.

Since the two loop system is, in essence, formed by two identical single loop sys-
tems that are coupled weakly, discussing the dynamical regimes of a one loop system
accounts for much of the dynamical behavior of the two coupled oscillators. For the
single loop system, the various dynamics can be observed by varying the feedback
strength while keeping all other parameters fixed. The system exhibits behavior com-
patible with a classical bifurcation diagram as discussed in Chris May’s thesis [8] and
presented in Fig. 2.1. As expected, for very weak feedback strengths, the system
is in a single steady state, where the power input into the system is insufficient for
oscillatory dynamics. As we increase the feedback strength, we observe sinusoidal
oscillations created by the interplay of the feedback delay and strong feedback. The
amplitude of these oscillations scale nonlinearly with feedback strength [16, 19], but
they soon start losing their sinusoidal shape and become square waves. As the feed-
back is increased even more, the system begins to exhibit chaotic behavior, first in
the form of chaotic breathers [18] and later as high-dimensional chaos.

After describing the behavior of systems with equal coupling delays in the high-
dimensional chaotic regime with the use of the Master Stability Function (MST) [11],
we chose to focus my thesis work on the case where delays are not matched. This
system presents new analysis challenges, as the MST method is difficult to adapt for
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Figure 2.1: Experimentally measured bifurcation diagram of a single loop feedback
system. The graph shows a histogram of the observed oscillation amplitudes and
is color coded to reflect the normalized distribution of specific oscillatory amplitude,
blue representing 0 and red representing 1. Complex transition dynamics, from steady
state to periodic oscillations, chaotic breathers and high-dimensional chaos are shown
in panels A-F. (Adapted from [8]).

unequal delays. Therefore, we have decided to focus on studying the dynamics of our
system in the weakly coupled periodic oscillatory regime, when the cross-coupling
strengths in the system are low compared to the self-feedback strength and the self-
feedback strength is sufficiently low such that chaos is avoided and periodic dynamics
are seen. Specifically, we will be studying the synchronization behaviors of two delay-
coupled oscillators. Our goal is to understand the mechanisms and conditions that
lead to synchronization in our system.

2.2 Observing the Network Dynamics

2.2.1 Running The Experiment

The system is designed so that it is easy for us to observe and compare the dynamics
of the two nodes of our network. Using the procedures of section 1.5., we start with
the system with the coupling delays matched to τc = 98.37 ns and feedback delays
matched to τf = 54.65 ns. The attenuators and laser powers are set such that the
coupling loops are at equal gains and the observed dynamics are in the periodic
regime. We bias each MZM to either π/4 or −π/4, as desired. By disconnecting the
system at the coupling loop1, we are able to observe the dynamics of the individual

1For example, disconnect the coupling variable delay from the circulator.
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Figure 2.2: Examples of experimentally measured time series (a), (c) and V1 vs V2
plots (b), (d) for the two oscillators: Oscillator 1 (blue line), Oscillator 2 (green line).
(a),(b) In-phase oscillations and (c),(d) Anti-phase oscillations are exemplified in the
figures. The MZMs are biased at −π/4 for a negative round trip gain.

oscillators separately. If all the parameters are matched, we observe two identical
sinusoidal waves with equal amplitudes and periods that are not phase-locked. The
two waves wander along the screen and the phase difference between the two signals
varies linearly with time.

2.2.2 Types of Correlated Oscillations

While the case of positive round-trip gain (φ = π/4) and negative round-trip gain
(φ = −π/4) both exhibit oscillatory dynamics, it is important to notice that their
oscillation frequencies are very different. When the MZMs are biased at π/4, the
frequency of oscillations is observed to be 217 kHz. In contrast, when biased at −π/4,
the frequency of oscillations is 44 MHz. By comparing our oscillations period with the
delay, it is clear that the dynamics of the oscillators for the negative round trip gain
with period 22.3 ns is on the timescale of the delay τf = 54.65 ns, while for positive
round trip gain, the timescale of the dynamics with period 4.6 µs is much greater
than the timescale of the delay τf = 54.65 ns. Therefore, we expect that coupling
the two oscillators with delays comparative in length to the self-feedback delay will
produce very different synchronization dynamics for the positive and negative gain
cases. Therefore, we study the cases when the MZMs are biased at φ = π/4 and
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Figure 2.3: Examples of experimentally measured multiple-timescale behavior for
Oscillator 1 (blue line) and Oscillator 2 (green line) with the MZMs biased at −π/4
for a negative round trip gain. (Inset) The same time-series are plotted on a zoomed
in time axis (ns range), where very fast GHz range oscillations are observed.

φ = −π/4 separately. Since we are interested in the phase behavior of the two weakly
coupled oscillators, we can reconnect the system and observe the resulting dynamics.

For the case when φ = −π/4, the two coupled nominally identical oscillators
synchronize either in-phase or anti-phase, or they exhibit unsynchronized behavior.
In the parameter range experimentally probed, three types of network dynamics are
observed: in-phase oscillations, anti-phase oscillations, and mutiple-timescale oscil-
lations. The latter corresponds to cases where the dynamics consists of very fast
oscillations that sometimes emerge on top of the previously observed slower dynam-
ics.

In-phase oscillations occur when the wave-trains of the two oscillators align. Anti-
phase oscillations occur when the wave-trains of the two oscillators are correlated, but
with a π phase difference. Figure 2.2 presents acquired data exemplifying the two
behaviors for negative round trip gain. In the first plot, the two MZMs oscillate in
a correlated fashion, with matched phases and amplitudes. This is exemplified in
Fig. 2.2 (b), where we have plotted the voltage of oscillator 1 versus the voltage
of oscillator 2. In this case, the diagonal line with slope 1 indicates that the two
measured signals are identical at any moment in time. The same analysis is done in
Fig. 2.2 (d) for the case of anti-phase oscillations, where the diagonal line with slope
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Figure 2.4: Example of experimentally measured time series (a) and V1 vs V2 plot (b)
for the two oscillators: Oscillator 1 (blue line), Oscillator 2 (green line). The results
are consistent with in-phase oscillations. The MZM is biased at +π

4
for a positive

round trip gain.

-1 indicates that the two measured signals are opposite to each other.
Multiple-timescale dynamics occur when new oscillations at a much faster timescale

than the ones observed in the synchronization regimes emerge. Experimentally,
multiple-timescale behavior is observed as distortions of the original periodic sig-
nal. Various examples of observed multiple-timescale dynamics are shown in Fig.
2.3. In Fig. 2.3 (a) and (d), we solely observe very fast oscillations with frequencies
on the order of 2 GHz. In this case, the weak coupling between the oscillators in-
troduces instability to the in-phase and anti-phase solutions observed earlier, which
are replaced by in-phase and anti-phase very fast oscillations. Figures 2.3 (b) and (c)
present cases when weakly coupling the two oscillators does not entirely eliminate the
single loop oscillatory dynamics. The new, very fast oscillations are superimposed
on previous dynamics, which can be either in-phase or anti-phase depending on the
system parameters chosen. While studying in detail the multiple-timescale dynamics
presents difficulties due to the variety of the oscillatory regimes available, we see that
the two oscillators do no exhibit phase-locking at the timescale associated with the
self-feedback delay τf .

For the case when the MZMs are biased at φ = π/4, the two oscillators are always
observed to synchronize in phase for the parameter range experimentally probed, with
the oscillation regime pictured in Fig. 2.4. Plotting the voltage of oscillator 1 versus
the voltage of oscillator 2 results in a diagonal line with slope 1, showing the in-phase
behavior of the two oscillators. As mentioned in the previous section, the period of
the observed dynamics is 4.6 µs, much greater than the timescale of the feedback
delay τf = 54.65 ns.
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Figure 2.5: Parameter space results depicting phase locking behavior for the case
when our oscillators are biased at φ− π/4. The two nodes can oscillate in-phase (©),
anti-phase (×) or in the multiple-timescale regime (∗). Locking bands are observed
at τc/τ0 = {4.5; 5.5; 6.5; 7.5} for in-phase locking and at τc/τ0 = {4; 5; 6; 7; 8} for
anti-phase locking.

2.3 Results in Parameter Space and Discussion

As noted earlier, we are interested in the role of delay and coupling strength in the
locking behavior of systems of coupled oscillators. Therefore, we scan the parameter
space by varying the coupling delay and strength with fixed feedback delay τf =
54.65 ns and strength, and we look for synchronization dynamics. As before, the
experiments show two different synchronization dynamics for the cases when we bias
the MZMs to φ = π/4 and φ = −π/4.

2.3.1 Negative Round Trip Gain

For the case of negative round trip gain (φ = −π/4), the experimental results obtained
are shown in the parameter space plot of Fig. 2.5. We plot on the horizontal axis
the cross-coupling strength (γc) as a percentage of the feedback strength (γf ). On
the vertical axis, we plot the ratio of the coupling delay (τc) to the natural period
of the observed uncoupled oscillations τ0 =22.3 ns. To each experimentally probed
location on the parameter plot, we assign a symbol representing one of the types of
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Figure 2.6: Diagrams showing the time evolution of the phase difference between the
two oscillators for the case of uncoupled oscillators (a) and very weak coupling (b).
Plot (a) displays totally uncorrelated behavior, with each the two oscillators oscillat-
ing independently of the other, while plot (b) shows very weakly coupled dynamics,
where the two oscillators tend to synchronize (the horizontal plateaus), but are kicked
back to the uncoupled mode by noise and parameter mismatch (the constant positive
slope).

dynamical behavior observed and presented in section 2.2.2. Therefore, we observe in-
phase oscillations (©), anti-phase oscillations (×) and multiple-timescale oscillations
(∗). The experimental results suggest a very robust system, where all of the observed
dynamics falls into one of the categories discussed in section 2.2.2. We do not observe
cases where the system oscillates between synchronization and multiple-timescale
dynamics. As a general rule, we consider very fast dynamics on GHz scale as indicators
of multiple-timescale behavior and always put a red asterisk (∗) in parameter plot for
those cases.

While the experimental data is not sufficient for obtaining a fine resolution de-
scription of the system parameter space, the main features are clearly distinguishable.
We observe the presence of horizontal alternating in-phase, anti-phase locking and
multiple-timescale oscillations bands. The horizontal bands show that the observed
dynamical regimes vary with coupling delay τc, while they seem to be independent of
coupling strength γc. Closely examining the correlation between the synchronization
bands and the delay ratios on the vertical axis, we observe that two MZMs oscillate
in-phase when the ratio of the coupling delay to the natural delay parameters is a
half-integer number

τc
τ0

=
2k + 1

2
(in-phase), (2.1)

where k ∈ Z. Similarly, anti-phase oscillations occur when the ratio of the coupling
delay to the self-feedback delay is an integer

τc
τ0

= k (anti-phase), (2.2)

where k ∈ Z. Multiple-timescale bands are observed in the regions between the
locking bands.
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Figure 2.7: Parameter space results depicting phase locking behavior for the case
when our oscillators are biased at φ = π/4. The two nodes are always observed to
oscillate in-phase (©).

In the range experimentally probed, i.e. 0.2 < γc/γf < 0.6, the results show that
the strength of the coupling feedback does not affect the locking dynamics of the
system in a major fashion. However, since the noise and mismatch in the system
introduce instability to the locked oscillatory solutions, very small coupling strengths
(γc/γf < 20%) are found to be insufficient for maintaining phase-locked dynamics
between the two nodes. In these cases, we observe phase slipping, characterized by
a tendency of the oscillators to switch between the coupled and uncoupled states or,
for extremely weak coupling, be uncorrelated. The two behaviors are shown in Fig.
2.6. In plotting the two graphs, we assume that the two waveforms remain similar,
calculate the phase of each oscillator as a function of time and then plot the differ-
ence of the two phases. Of course, in the case of stronger coupling, the variations in
amplitude induce waveform mismatches and this kind of analysis breaks down, but
we will not worry about that at the moment. To interpret the figures, note that, if
phase-locked, the phase difference would be a constant and we would plot a horizontal
line. When uncoupled, as shown in Fig. 2.6 (a), the two oscillators have a linearly
increasing phase difference, indicative of the two oscillators’ independent slightly mis-
matched natural oscillation frequencies. The phase slipping regime, shown in Fig 2.6
(b) is a mixture of the two, with regions where the oscillators synchronize (hori-
zontal plateaus) and regions where the oscillators return to the uncoupled behavior
(increasing phase difference).
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2.3.2 Positive Round Trip Gain

When the MZMs are biased for the positive round-trip gain at φ = π/4, we always
observe in-phase locking when scanning the parameter space in the same region as
for the φ = −π/4 case. In this case, the ratio of coupling delay τc to natural period
τ0 does not affect the synchronization dynamics. As discussed in section 2.2.2, the
large time-scale of oscillations with a period of 4.6 µs suggests that the system delays
τc and τf do not influence the observed dynamics. As for the negative gain case,
for small coupling strengths (γc/γf < 10%), the oscillators decouple and we again
observe phase slipping behaviors. Unlike in the φ = −π/4 case, an analysis of the
phase slipping behavior is difficult because of the large timescale of the oscillations.
The limited number of oscillations available for data acquisition makes the phase
analysis presented in section 2.3.1. very hard to perform.





Chapter 3

Theoretical Model and Numerics

This chapter presents numerical work used to study our system. We begin by devel-
oping a model for the system of coupled oscillators with feedback and then use this
model for numerical simulations.

3.1 Single oscillator with self-feedback

A good starting point for the theoretical treatment of our systems is the single oscil-
lator with feedback system [17, 20]. In this system, the broadband amplifier is the
main device responsible for the dynamical behavior. It is characterized by a high
cutoff frequency ωH , low cutoff frequency ωL, and gain p. The most convenient way
to describe the frequency domain behavior of the filter is the second order bandpass
filter shown in Fig. 3.1 with the transfer function

H(ω) =
p(

1 + 1
iω/ωL

)
(1 + iω/ωH)

. (3.1)
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Figure 3.1: Gain (absolute value of transfer function) of the bandpass filter modeling
the dynamical behavior in our system measured in dB. Note the logarithmic frequency
axis.
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Figure 3.2: (left) Diagram of the single oscillator with self-feedback, indicating the
parameters that affect the observed dynamics and coupling architecture. (right)
Schematic of the single oscillator with self-feedback.

In order to go forward, we refer to the architecture of our system, presented in
detail with parameters that affect the observed dynamics in Fig. 3.2. Succinctly, the
photodetector is characterized by the low cut off frequency ωL, high cut off frequency
ωH and gain p; as discussed in chapter 1, the commercial MZM is characterized by the
equation I = a sin2(bV + φ), where V is the voltage input of the MZM and a, b and
φ are parameters of the device; the amplifier introduces an additional gain factor g.
Three parameters, the intensity input to the photodetector I(t), the voltage output
of the detector (V (t)), and the feedback delay τ , will prove to be important in our
derivation.

Now, having defined the relevant quantities in our system, we will be developing
a model that allows us to numerically compute the measured signal V (t). Using the
definition of the transfer function

H(ω) =
V (ω)

I(ω)
, (3.2)

where V (ω) and I(ω) are, respectively, the Fourier transforms of the output voltage
V (t) and optical intensity input I(t) to the photodiode, we obtain

V (ω)

I(ω)
=

p(
1 + 1

iω/ωL

)
(1 + iω/ωH)

. (3.3)

Expanding Eq. (3.3), we obtain(
1 +

ωL
ωH

)
V (ω) +

iωV (ω)

ωH
+
ωL
iω
V (ω) = pI(ω). (3.4)

Now, we transform Eq. (3.4) to the time domain by using the inverse Fourier substi-
tutions iω → d

dt
and 1

iω
→
∫ t
0
dt to obtain:(

1 +
ωL
ωH

)
V (t) +

1

ωH

d

dt
V (t) + ωL

∫ t

0

V (u)du = pI(t). (3.5)
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We need to write I(t) as a function of the parameters of the system. Looking at
Fig. 3.2, we can see that I(t) is the output of the MZM reduced by the gain factor
α. Thus, we obtain I(t) = αa sin2(bvin + φ), where vin is a dimensionless quantity
proportional to the signal in the electronic feedback driving the MZM. The signal
propagates around the loop in time τ that is proportional to the length of the delay
cable τ = nL

c
, where n is the index of refraction of the optical fiber, L is the length of

the fiber and c is the speed of light in vacuum. Since vin is just the output signal of
the MZM a period ago, we have vin = 1

2
gV (t− τ), with factors 1/2 and g due to the

splitter and amplifier, respectively. Then, we obtain for the intensity of the optical
signal I(t) = αa sin2(1

2
bgV (t− τ) + φ). Plugging this into Eq. (3.5), we obtain:

(
1 +

ωL
ωH

)
V (t) +

1

ωH

d

dt
V (t) + ωL

∫ t

0

V (u)du = pαa sin2(
1

2
bgV (t− τ) + φ). (3.6)

It is mathematically convenient to write Eq. (3.6) into a system of two first order
delay differential equations (DDEs). To do this, first define the dimensionless variable
x = 1

2
bgV and parameter β = 1

2
ωH

ωH+ωL
bgpa. Then Eq. (3.6) becomes

ẋ

ωH + ωL
= −x− ωHωL

ωH + ωL

∫ t

0

x(u)du+ βα sin2(x(t− τ) + φ). (3.7)

Now if we define a new variable

y = − ωHωL
ωH + ωL

∫ t

0

x(u)du, (3.8)

we observe that its time derivative is just

ẏ = − ωHωL
ωH + ωL

x (3.9)

If we also introduce dimensionless time t̄ = t(ωH + ωL), Eq. (3.7) and Eq. (3.9) can
be written as

y′ =− rx (3.10a)

x′ =− x+ y + βα sin2(x(t̄− τ̄) + φ) (3.10b)

where the prime denotes differentiation with respect to the dimensionless time t̄,
r = ωLωH

(ωL+ωH)2
, and τ̄ = τ(ωH + ωL).

3.2 Coupled oscillators with feedback

Now we can run the same argument for the system we are studying, the two coupled
oscillators with feedback. As before, we assume that the two photodetectors in our
system are the sources of band pass filtering and that the transfer function of each
photodetector is given by Eq. (3.1). In Fig. 3.3, the schematic of the cross coupled
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Figure 3.3: Diagram of the single cross-coupled system with self-feedback, indicating
the parameters that affect the observed dynamics and coupling architecture.

system with feedback is shown with each component labeled with its characteristic
parameters.

Following the same argument as for the single loop system, we obtain for the
voltage V1: (

1 +
ωL
ωH

)
V1(t) +

1

ωH

d

dt
V1(t) + ωL

∫ t

0

V1(u)du = pI1(t), (3.11)

where I1(t) is the intensity input of photodetector 1. Following the diagram shown
in Fig. 3.3, we can immediately see that

I1(t) = p

[
α2a2 sin2

(
1

2
b2g2V2(t− τ12) + φ2

)
+ a1 sin2

(
1

2
b1g1V1(t− τ11) + φ1

)]
.

(3.12)
Since the system is symmetric, the equation for V2 can be obtained just by switching
indices: (

1 +
ωL
ωH

)
V2(t) +

1

ωH

d

dt
V2(t) + ωL

∫ t

0

V2(u)du = pI2(t), (3.13)

with I2 obtained in a similar way to I1

I2(t) = p

[
α1a1 sin2

(
1

2
b1g1V1(t− τ21) + φ1

)
+ a2 sin2

(
1

2
b2g2V2(t− τ22) + φ2

)]
.

(3.14)
Since the two oscillators have been experimentally observed to behave identically,

we can eliminate the indices a1 = a2 = a, b1 = b2 = b. Now, in order to obtain a more
tractable form of Eq. (3.11) and (3.13), we introduce the dimensionless variables
x1 = 1

2
b1g1V1 and x2 = 1

2
b2g2V2, we define β1 = 1

2
ωH

ωH+ωL
pabg1 and, β2 = 1

2
ωH

ωH+ωL
pabg2
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and switch to dimensionless time t̄ = t(ωH +ωL). Equations (3.11) and (3.13) become

x1 + x′1 +
ωHωL
ωH + ωL

∫ t

0

x1(u)du = β1[α2 sin2(x2(t̄− τ̄12) + φ2) + sin2(x1(t̄− τ̄11) + φ1)]

(3.15a)

x2 + x′2 +
ωHωL
ωH + ωL

∫ t

0

x2(u)du = β2[α1 sin2(x1(t̄− τ̄21) + φ1) + sin2(x2(t̄− τ̄22) + φ2)]

(3.15b)

where the prime denotes differentiation with respect to the new dimensionless time.
Finally, defining variables y1, y2 and r as

y1 = − ωHωL
ωH + ωL

∫ t

0

x1(u)du (3.16a)

y2 = − ωHωL
ωH + ωL

∫ t

0

x2(u)du (3.16b)

r =
ωLωH

(ωL + ωH)2
, (3.16c)

we can write our model as

y′1 = −rx1 (3.17a)

x′1 = −x1 + y1 + β1[α2 sin2(x2(t̄− τ̄12) + φ1) + sin2(x1(t̄− τ̄11) + φ2))] (3.17b)

y′2 = −rx2 (3.17c)

x′2 = −x2 + y2 + β2[α1 sin2(x1(t̄− τ̄21) + φ2) + sin2(x2(t̄− τ̄22) + φ1))]. (3.17d)

In this form of the equations governing the dynamics our system, we can observe
the symmetry of the solution and give parameters physical significance. The gains
in the feedback loops for oscillators 1 and 2 are β1 and β2 respectively and the gains
in the coupling loops are β1α2 and β2α1. Since in our case we match the two pairs
of parameters, these parameters relate to the experimentally measured ones as γc =
β1α2 = β2α1 and γf = β1 = β2. Similarly, we fix the delay parameters such that
τ11 = τ22 = τf and τ12 = τ21 = τc. With these changes Eq. (3.17) become

y′1 = −rx1 (3.18a)

x′1 = −x1 + y1 + γc sin2(x2(t̄− τ̄c) + φ1) + γf sin2(x1(t̄− τ̄f ) + φ2)) (3.18b)

y′2 = −rx2 (3.18c)

x′2 = −x2 + y2 + γc sin2(x1(t̄− τ̄c) + φ2) + γf sin2(x2(t̄− τ̄f ) + φ1)). (3.18d)

These delay differential equations are a good model for our system. By studying sym-
metries, perturbations about simple solutions and their linear stability, we are able
to infer much about the experimental systems they model. As is the case for many
nonlinear delay differential equations, the equations cannot be solved analytically in
closed form, but they can be solved numerically using an integrator algorithm. The
advantage of numerics is that we are able to scan large ranges of parameters without
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being limited by experimental concerns. However, it is important to remember that
numerics do not exactly model the experiment, since details such as noise, asym-
metries, and small parameter deviations cannot be accounted for in our simplified
model.

3.3 Verifying the model: Numerical Work

Having developed a model for our system, a natural next step is to test its per-
formance. Numerous previous results have demonstrated its validity [11, 16] when
general dynamical behavior is studied. Next, we implement a routine for numerically
solving this system.

3.3.1 RADAR5

All numerical simulations presented in this thesis were performed in RADAR5, an
implicit Runge-Kutta differential equation solver of order 5. The RADAR5 package is
a set of Fortran 90 subroutines developed by Nicola Guglielmi and Ernst Hairer at the
University of Geneva. With the help of Lauren Shareshian [11], we have implemented
and used the latest version RADAR5 2.1.

The RADAR5 package is designed for solving general initial value problems for
delay differential equations of the form

My′(t) =f(t, y(t), y (α1(t, y(t))), ..., y(αm(t, y(t))))

y(t0) =y0, y(t) = g(t) for t < t0,
(3.19)

where M is a constant d × d matrix and αi(t, y(t)) ≤ t for t ≥ t0 for all i. Since
matrix M can be singular, the above formulation includes all kinds of differential delay
equations. RADAR5 uses collocation methods based on RADAU5 [21] to solve the
nonlinear differential equations. The code is versatile and can be adapted to many
different kind of problems.

The main quality of RADAR5 is that, when compiled with the Intel provided
Fortran compiler iFort, performs very fast integration, allowing us to run simulations
over the whole bandwidth of our system1 in reasonably short real times of tens of
seconds.

3.3.2 Simulation Setup

For numerical purposes, the non-dimensional parameters of our system were set to
values corresponding to the physical values of the system. To improve the speed of
our simulations, we reduced the broadband filtering of our system to the range of
1 MHz - 1 GHz. Since the frequencies of the experimentally observed synchronized
dynamics fall well within this range, we expect no major effect of this limitation to
the observed dynamics.

1This task is very difficult to accomplish with more basic algorithms, as discussed by Greg Hoth
in his thesis [16].
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Finally, we need to specify an initial state for our system. Since we are not
interested in the transient behavior of our system, the exact choice of the initial value
is not extremely important. However, in the case of multiple-timescale oscillations,
we found that the initial state can ”kick” the two oscillators into either in-phase
or anti-phase dynamical regimes. The phenomena where several stable asymptotic
solutions coexist and the chosen initial conditions determine which solution the system
approaches asymptotically is called multistability. Thus, we have implemented a
random initial state generator for these cases. By running the code with the same
parameters a large number of times (20 in the simulations presented in this thesis),
we are able to discern between the cases when the two oscillators always tend towards
the same locked solution, either in-phase or out-of-phase and the cases where they
”jump” between in-phase and anti-phase behaviors. After computing solutions to the
DDEs in Fortran using RADAR5, the data was imported, analyzed and plotted in
Octave and MATLAB.

3.4 Numerical Results

We ran our simulations over the parameter ranges of interest. We found it convenient
to use τf = 10 ns, with τc varying from 0.1 ns to 30.0 ns in steps of 0.1 ns, nondi-
mensionalized γf=0.6 and γc varying from 0.03 to 0.6 in steps of 0.03. For negative
round trip gain case, when φ1 = φ2 = −π/4, the numerical results are presented in
Fig. 3.4.

3.4.1 Negative Round Trip Gain

For the case of negative round-trip gain, when φ = −π/4, we measure the natural
period associated with the sinusoidal oscillation of the weakly coupled nonlinearities
to be τ0 = 20 ns. The fact that the oscillation period τ0 is exactly two times the length
of the feedback delay τf is in accordance with linear stability analysis described by
L. Illing and D. J. Gauthier [22]. They show that in the case of negative round-trip
gain, stable solutions to the system are found in cases when the oscillatory period is
an even multiple of the feedback delay.

As seen in Fig. 3.4, when oscillators are biased at −π/4, the numerical model
reproduces closely the experimental results presented in Figure 2.5. The same hori-
zontal synchronization bands are observed as in the experimental case with multiple-
timescale dynamical regions in between. The two nodes oscillate in-phase when the
system delays follow the relationship

τc/τ0 =
2k + 1

2
(in-phase), (3.20)

for k ∈ Z and anti-phase when the delays follow

τc/τ0 = k (anti-phase), (3.21)

for k ∈ Z.
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Figure 3.4: Numerics depicting phase locking behavior in parameter space for the case
when our oscillators are biased at −π/4. The two nodes can oscillate in phase (©),
anti phase (×) or in the multiple-timescale regime (∗). In-phase locking is observed
when τc/τ0 is a half-integer and anti-phase locking is observed when τc/τ0 is an integer
number.

The outliers in our results can be explained by referring to similar considerations
as those discussed in the experimental sections. Depending on the initial condition of
the nodes, there are many different attractors in phase space that the two oscillators
can end up in. Based on our coordinates in the parameter plot, it is possible that one
of the in-phase or anti-phase solutions has a larger basin of attraction than the other,
while not necessarily being the only one available. Under these conditions, considering
the relatively small number of random initial condition iterations for each data point
(20), it is possible that we are missing the other solution for some parameter regions.
If this situation occurs, we would record a synchronized solution in the parameter
plot, instead of a multi-timescale solution. Another factor that can lead to skewed
data is the analysis method used for the raw data output of our numerical integrator.
Here, the condition we implement for in-phase or anti-phase synchrony is that the
two measured outputs do not differ by more than 1 % at any point. We believe that
this condition might be too strict for some cases.

Unlike in the case of experimental results, the two oscillators phase lock even
for very low coupling strength (γc/γf < 1%). This behavior is explained by the
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lack of noise and mismatch, making synchronization possible even for very small
coupling strengths. In contrast, the presence of noise and parameter mismatch in the
experiment tends to destabilize the phase-locking dynamics of the two oscillators.

3.4.2 Positive Round Trip Gain

For the case when the oscillators are biased at π/4, the numerical solution method
presents several difficulties. Firstly, the large timescale of the slow oscillations ob-
served experimentally requires long integration times and computationally intensive
data analysis. Secondly, the solution observed experimentally is hard to simulate
numerically, due to the simplified model used for the bandpass filtering. As discussed
in Greg Hoth’s thesis [16], the experimental broadband filter presents fine character-
istics that are not captured in our simplified model. Due to the interplay of these
limitations, reaching a numerically stable dynamical regime similar to ones observed
experimentally is difficult.

Therefore, while we have observed in-phase locking behavior for φ = π/4, in con-
cordance with the experiment, for limited parameter choice, running the simulations
over large ranges of values in parameter space is too numerically intensive for the
time constraints of this thesis.





Chapter 4

Theory and Insight: Deciphering
the Observed Dynamics

In this chapter, we discuss theories that account for the various dynamics observed ex-
perimentally and numerically. In the case of negative round trip gain (φ = −π/4), the
low coupling feedback gain of the system warrants the use of delay-coupled Kuramoto
phase oscillators as a simple model that explains the emergence of phase-locking bands
in the parameter space. In the case of the positive round trip gain (φ = π/4), we
argue that the periodic oscillations observed are the result of filtering in our system
and that synchronization is always expected in this case.

4.1 Negative round trip gain: A model

4.1.1 Kuramoto oscillators

Since we are discussing the case when our identical oscillators are coupled with low
coupling strengths, we expect that the amplitude of the oscillations is unaffected by
the weak coupling. Therefore, we can consider the two nodes as individual phase
oscillators. A good mathematical model that can offer insight into the dynamical
behavior of our system under these conditions is the Kuramoto model. Proposed
by Yoshiki Kuramoto in his seminal 1975 paper [23, 24], the model can be a good
approximation for several important classes of weakly coupled oscillators [25, 26].

In the Kuramoto model, the dynamics of a general system of delay coupled-phase
oscillators is described by:

θ′i(t) = ω0i +
K

k

N∑
j=1

Aij sin[θj(t− τij)− θi(t)], (4.1)

where ω0i is the natural frequency of node i, θi is the phase variable of node i in
the system, K is the coupling strength, i is the index of each oscillator, k is the
number of signals each oscillator receives, N is the number of oscillators, τij is the
delay corresponding to the time-lagged input signal from oscillator j to oscillator i,
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and A is the adjacency matrix, describing the topology of our network: if oscillator
j sends signal to i then Aij = 1 and otherwise Aij = 0.

4.1.2 A Stability Criterion

For studying the stability of solutions to the Kuramoto equations in the general case,
we follow M. Earl and S. Strogatz who offer an elegant solution for general systems
of periodic phase oscillators, in the case when each oscillator receives signal from k
others [27] and no self-feedback is available. They show that the in-phase solutions
are stable if and only if Kf ′(−Ωτ) > 0, where Ω is the collective synchronization
frequency. The condition is derived in general form, when the coupling function f is
a general well-behaved function.

The derivation starts with the general model

θ̇i(t) = ω0 +
K

k

N∑
j=1

Aijf [θj(t− τ)− θi(t)], (4.2)

where the used parameters are identical to the ones defined above in Eq. (4.1), the
only differences being that we replace the sine with the general function f and take
the case of matched coupling delays τij = τ and identical oscillators natural frequency
ω0i = ω0. We can think of the adjacency matrix Aij as encoding the network topology,
since row i represents the connection to oscillator i from oscillator j. Since we have
the condition that each oscillator receives signal from k others, each row in this matrix
sums to k.

Now, the in-phase synchronized solution is given by

θi(t) = Ωt. (4.3)

By substituting Eq. (4.3) in Eq. (4.2), we observe that the synchronization frequency
Ω is a solution to equation

Ω = ω0 +Kf(−Ωτ). (4.4)

To perform linear stability analysis, we add a small perturbation to the solutions

θi(t) = Ωt+ εφi(t), (4.5)

where 0 < ε� 1. Substituting in the original equation and simplifying, we obtain to
first order

φ̇i(t) =
K

k
f ′(−Ωτ)

N∑
j=1

Aij[φj(t− τ)− φi(t)]. (4.6)

We assume that Kf ′(−Ωτ) 6= 0, condition that allows us to look at the linear
term in the perturbation, such that we avoid having to study higher order terms.
Now, to study the time behavior of the φ variable, we substitute φi(t) = vie

λt into
Eq. (4.6) and obtain
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viλe
λt =

K

k
f ′(−Ωτ)

N∑
j=1

Aij[vje
λ(t−τ) − vieλt]. (4.7)

Simplifying and massaging the equation gives

N∑
j=1

Aijvj =
keλτ [λ+Kf ′(−Ωτ)]

Kf ′(−Ωτ)
vi. (4.8)

and we can see that letting

σ =
keλτ [λ+Kf ′(−Ωτ)]

Kf ′(−Ωτ)
(4.9)

transforms Eq. (4.8) in an eigenvalue problem, where σ is an eigenvalue of A

Av = σv. (4.10)

Here v = (v1, ..., vN) is the eigenvector associated with eigenvalue σ. While we cannot
calculate the other eigenvalues of matrix A without knowing more about the structure
of A, we can use Gerschgorin’s circle theorem [28] to bound their values. The theorem
states that every eigenvalue of matrix A lies in at least one of the circles C1, ..., Cn,
where circle Ci has its center at the Aii diagonal entry of matrix A and its radius
is equal to the absolute sum along the rest of the row:

∑
j 6=i |Aij|. In our case, this

means that all of the circles are identical, with center at aii = 0 due to the lack of self-
feedback in the system and radius k due to the fact that each oscillator receives signal
from other k oscillators. Therefore, the theorem imposes that all of the eigenvalues
of matrix A are within the defined circle and thus satisfy

|σ| ≤ k. (4.11)

Now, we can rewrite Eq. (4.9) with σ = |σ|eiθ, β = (|σ|/b), with 0 ≤ β ≤ 1, and
α = Kf ′(−Ωτ)

αβeiθ = eλτ (λ+ α). (4.12)

For our solutions to exhibit local stability, we require that the real part of our
eigenvalues is smaller than zero, i.e. Re(λ) < 0.

Proposition 1. For all λ, Re(λ) < 0 if and only if α > 0.
Now, write λ in the explicit complex form λ = a + ib and write Eq. (4.12) in

terms of real and imaginary parts to obtain

αβ cos(θ − τb)e−τa = a+ α, (4.13)

αβ sin(θ − τb)e−τa = b (4.14)

If we square and add the two equations, we obtain

α2β2e−2τa = (a+ α)2 + b2. (4.15)
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We will show that Re(λ) = a < 0 only if α > 0 by proving the contrapositive. We
assume that α < 0 and will prove that there exists at least one solution with a ≥ 0.
Thus, observing that ρ = −β cos(θ− τb) ∈ [−1, 1] and that α = −|α|, we can rewrite
Eq. (4.13) as

ρ|α|e−τa = r − |α|. (4.16)

For the case when ρ ∈ [0, 1], Eq. (4.16) becomes

a = (1 + |ρ|e−τa)|α|. (4.17)

It is easy to see that in this case the right hand side is always positive and thus a > 0.
Now, for the case when ρ ∈ [−1, 0), Eq. (4.16) is

a = (1− |ρ|e−τa)|α|. (4.18)

When we plot the equation, it is easy to see graphically in Fig. 4.1 that there
always exists a solution to Eq. (4.18) with a > 0. With this and the previous results
in hand, we have proven the direct portion of Proposition 1.

a

(1 - Ρ e-Τa
L Α

Figure 4.1: Graphical method showing the existence of a solution to Eq. (4.18). We
plot variable a on the horizontal axis and the left hand side and right hand side of
Eq. (4.18). The intersection points represent solutions to the equation. As we can
see, a>0 in this case.

For the reverse direction of Proposition 1 we prove that a < 0 if α > 0. We assume
to the contrary that α > 0 and that there exists λ satisfying Eq. (4.12) such that
a ≥ 0. Then α = |α|, a = |a| and Eq. (4.15) can be written as

β2e−2τ |a| = 1 + (a2 + b2 + 2|a||α|)/α2, (4.19)

Since β ∈ [0, 1] and a ≥ 0, the left hand side of the equation β2e−2τ |a| ∈ [0, 1]. But
the right hand side is greater than or equal to 1 with equality for a = b = 0, i.e.
λ = 0. But for λ = 0, we obtain that σ = k, with associated eigenvector (1,1,1,...,1).
This corresponds to the case when the phase of each oscillator is changed by the
same constant amount and reflects the fact that the system is neutrally stable to
perturbations of the same constant amount. Since the network is connected, the
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Figure 4.2: Sketch of the simplified system of two coupled oscillators with feedback.
Only phase oscillations are considered and the oscillators are considered as oscillating
at frequency ω0, generated by the self-feedback delay τf .

eigenspace is one-dimensional [28] and the neutrally stable perturbation is the only
solution. For all other perturbations, λ 6= 0 and we obtain a contradiction between
the right side of Eq. (4.19) which is > 1, and and left side of Eq. (4.19) which is ≤ 1.
This shows the reverse direction of Proposition 1 and thus completes the proof.

The important results that are obtained from this analysis is that the in-phase
solutions are stable if and only if

Kf ′(−ΩT ) > 0. (4.20)

4.1.3 Solutions to the Kuramoto equations and stability

We apply the general equations for networks of Kuramoto phase oscillators (Eq. (4.1))
and stability condition (Eq. (4.20)) to our system by using a method first proposed
by D’Huys et al. [29]. For our system of two coupled nodes with feedback, we can
think of the matched feedback delay as introducing an identical natural oscillation
frequency ω01 = ω02 = ω0 for the two oscillators. When uncoupled, both oscillators
oscillate with frequency ω0. We are interested in the phase behavior of the oscillators
when they are coupled as shown in Fig. 4.2. Therefore, for our system, the Kuramoto
phase equations are

θ′1(t) = ω0 +
K

2
sin[θ2(t− τc)− θ1(t)], (4.21a)

θ′2(t) = ω0 +
K

2
sin[θ1(t− τc)− θ2(t)]. (4.21b)

Now, we can rescale variables

κ =
K

2ω0

, Tc = ω0τc, t→ ω0t. (4.22)

We then have two coupled dimensionless delay-differential equations describing the
phase dynamics

θ̇1 = 1 + κ sin[θ2(t− Tc)− θ1(t)], (4.23a)

θ̇2 = 1 + κ sin[θ1(t− Tc)− θ2(t)], (4.23b)
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Figure 4.3: Numerical solution of the locking frequencies for the system of two mu-
tually coupled oscillators. Intersections with black curve represent stable in-phase
solutions, with dashed curves stable anti-phase states and with dotted lines unstable
frequencies. The parameters used to obtain the plot were κ = −0.4 and Tc = 9.

where the dot denotes the derivative with respect to the nondimensionalized time.
Due to the delay coupling, multiple solutions with different locking frequencies

are possible. For the in-phase solutions: θ1(t) = θ2(t) = ωt. Then the system of
equations reduces to solving

ω = 1− κ sin(ωTc). (4.24)

For the anti-phase solutions we have θ1(t) = θ2(t) + π = ωt. Plugging into Eq.
(4.23), we obtain

ω = 1 + κ sin(ωTc). (4.25)

Applying the stability condition derived in Eq. (4.20) to our system, we have that
Ω = ω0ω and f is the sine function. The stability criterion shows that the in-phase
solution is stable if and only if

κ cos(ωτc) > 0. (4.26)

Analogously, we see that for the anti-phase solution the sign of κ changes. Therefore,
the anti-phase solution is stable if and only if

κ cos(ωτc) < 0. (4.27)

For given parameters κ and Tc, we can easily obtain numerical solutions to these
equations. Figure 4.3 depicts a graphical method of solving these nonlinear equations.
Here, we plot the left hand side of Eq. (4.24) and Eq. (4.25) with a black thick line,
the right hand side of Eq. (4.24) with a full black curve in the stable region and the
right hand side of Eq. (4.25) with a dashed curve. The unstable regions for both
equations are represented by dotted lines. Therefore, the graphical intersection of the
thick line with the full black line represents stable in-phase solutions, the intersection
of the thick line with the dashed curve represents stable anti-phase solutions and the
intersection of the thick line with the dotted line represents unstable solutions.
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Figure 4.4: Stable regions in parameter space for the coupled Kuramoto phase oscil-
lators. The coupling is repulsive κ < 0, consistent with the φ = −π/4 negative round
trip gain regime. The plot displays stable in-phase solutions (black), stable anti-phase
solutions (white) and multistability, when the two states coexist (gray). (Inset) The
same stability regions plotted for small coupling feedback. We observe stable in-phase
bands at half-integer τc/τ0 values and anti-phase bands at integer τc/τ0 values.

4.1.4 Back to Parameter Space

The solutions of Eq. (4.24) are Eq. (4.25) are plotted in in parameter space, together
with the regions where they are stable or unstable given by the stability conditions
in Eq. (4.26) and Eq. (4.27). The results of this analysis are summarized in Fig.
4.4, where the delay axis has been rescaled to represent the ratio of coupling delay
to the natural period τc/τ0, where τ0 = 2π/ω0. Stable in-phase solutions are shown
in black, stable anti-phase solutions are shown in white and regions of multistability,
where the two states coexist, are shown in gray. As we can observe in the inset of
the figure, for low coupling κ � 1, the theory predicts the occurrence of locked in-
phase oscillation bands at half-integer values of the ratio of coupling delay to natural
delay τc/τ0, locked anti-phase oscillation bands at integer values of τc/τ0 and the
existence of multistability in the intermediate regions. This is the same behavior
we have observed in the experimental and numerical analysis in Fig. 2.5 and Fig.
3.4 respectively, where the multi-timescale dynamics correspond to multistability for
phase oscillations.

A careful inspection of Fig. 4.4 shows that, even in the case of very weak cou-
pling, there are noticeable differences between the numerically and experimentally
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observed dynamics and our theory. Theory predicts that the width of the synchro-
nization regions varies significantly with gain, variations that are not reflected in our
experimental and numerical results. While the Kuramoto phase model accounts for
the observed phase dynamics in our system, the effects of amplitude oscillations are
completely ignored. Therefore, the task of mapping our coupling strength factor γc in
our DDE model in Eq. (3.18) to the Kuramoto coupling factor K is a daunting task.
Without this important correspondence, the effect of varying coupling strengths on
the phase locking dynamics on our system is impossible to characterize. However,
since this thesis focuses on the the role of delay in such systems, the fact that we
are observing the same bands of phase-locked dynamics and multistability as in the
experiment and numerics is enough to warrant the practicality of this model.

4.2 Positive round trip gain

As observed experimentally and numerically, the case when the oscillators are biased
at φ = π/4, resulting in a positive round trip gain, is distinct from the negative
round trip gain case. Experimentally, we observe oscillations on a very slow timescale
with a frequency of 217 KHz, corresponding to a period that is 80 times larger the
feedback delay. In this case, we have always observed in-phase locking for strong
enough coupling (γc/γf > 10%). These results suggest that, for low coupling, the
oscillations are not the result of the destabilizing effect of the feedback delay. As
suggested by Peil et al. [17], the slow timescale dynamics are internally generated by
system dynamics with an oscillation period related to the timescale of the high pass
filtering in the system, 1/ωL.

To analyze these results, we again employ the Kuramoto model for phase oscilla-
tors. Since the dynamics are on a timescale that is two orders of magnitude larger
than the coupling delay τc, we can neglect the delay. The Kuramoto equations become

θ′1(t) = ω0 +
K

2
sin[θ2(t)− θ1(t)], (4.28a)

θ′2(t) = ω0 +
K

2
sin[θ1(t)− θ2(t)]. (4.28b)

Now, if we let ∆(t) = θ1(t) − θ2(t) and take the difference of Eq. (4.28a) and
(4.28b) we obtain

∆′(t) = −K sin[∆(t)], (4.29)

where ∆ is defined on [0, 2π]. The solution to Eq. (4.29) is just

∆(t) = arctan(e−Kt). (4.30)

It is now clear that for large t, ∆ → 0 and the long time behavior is for the two
oscillators to exhibit in-phase synchronization, as observed experimentally.

Another, perhaps more intuitive solution is presented graphically in Fig. 4.5. Here,
we have plotted the phase difference ∆ on the horizontal axis and the instantaneous
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Figure 4.5: Plot showing the time evolution of parameter ∆. Time evolution of phase
difference ∆′ is plotted on the vertical axis and phase difference ∆ is plotted on
the horizontal axis. As shown by the arrows, the system always tends towards the
synchronized solution ∆ = 0.

change in phase difference ∆′ on the vertical axis. For the case when ∆ > 0, the slope
of the ∆ function is negative, i.e. ∆′ < 0, and so the phase difference decreases in
time until ∆′ = 0, such that ∆→ 0 for large t. Similarly, for the case when ∆ < 0, the
slope of the ∆ function is positive, i.e. ∆′ > 0, and so the phase difference increases
in time until ∆′ = 0, such that ∆→ 0 for large t. Therefore, the long-term behavior
of the two systems is always to oscillate in-phase.

In conclusion, both methods explain the observed experimental and numerical
phase-locking behavior in the case when the nonlinearity is biased at π/4, where the
two oscillators always synchronize in-phase.





Conclusion

In this thesis, we have shown through experiments, numerics, and analytic methods
that synchronization of two weakly coupled optoelectronic oscillators with unequal
delay can be achieved for sufficiently strong coupling. In the regime close to the
oscillation onset and with the nonlinearities biased at -π/4, we observed in-phase
oscillations when the coupling delay τc is a half-integer multiple of the period τ0 asso-
ciated with the natural oscillations arising in the system and anti-phase oscillations
when the coupling delay τc is an integer multiple of the natural delay τ0. When biased
at π/4, the two nonlinearities are always observed to oscillate in-phase. For very weak
coupling, the system exhibits phase slipping behavior.

The results of this thesis have significance in the larger picture of studying network
dynamics. We show that synchronization is possible in the case of unequal coupling
delays and determine the conditions under which synchronization occurs and charac-
terize its properties. These results have possible practical applications in many fields
studying complex systems such as communications, neuroscience or group dynamics.

While successful in observing consistent results for the synchronization dynamics
of our system experimentally, numerically and analytically, there are a few details of
this work that need further work. For example, we would like to obtain a rigorous
numerical analysis of our system for the case of positive round trip gain and also
ensure that all our simulations are performed at parameters corresponding to the
experimental setup. Such a result would require higher computational power and
optimization of the algorithms used.

On the theoretical analysis side, we would like to develop a model that includes
amplitude oscillations and try to generalize our results to more complex networks
of many coupled optoelectronic oscillators. Finally, we hope that the insight gained
from studying phase-locking dynamics in the periodic oscillations regime will help us
understand and analyze more complex dynamical regimes, such as chaos, for the case
of varying delays.
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