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Abstract: Phase unwrapping algorithms have widely been studied and implemented with efforts
aimed at unwrapping wrapped phase signals. However, the presence of noise and unreliable
fringe quality poses a major obstacle for the retrieval of reliable phase signals. While many
techniques have been implemented to deal with the aforementioned issues, most algorithms are
application dependent or difficult to implement. Here we present a simple yet effective global
phase unwrapping algorithm, that does not resort to Least-Squares Minimization, making use of
Fast-Fourier Transform (FFT) based spectral differentiation, Signal Dependent Rank Ordered
Mean (SD-ROM) filtering, and Fuzzy Logic Edge Detection (FLED). The proposed algorithm
was tested using simulated, noisy, wrapped phaseograms and has shown to improve image and
fringe quality, as well as overall retrieved phase reliability.
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1. Introduction

Phase unwrapping is a technique that has widely been explored in literature for the post-processing
of recovered wrapped interferograms, phaseograms, and signals. This technique is widely used
in a variety of fields including medical imaging with - magnetic resonance imaging, [1] and
interference-based, label-free, digital holographic microscopy, [2] topological surveying - with
interferometry synthetic aperture radar (InSAR) images, [3] image reconstruction with fringe
projection profilometry, [4,5] and more recently, an interferometry based radar emulation system,
[6] where the imaging modalities ultimately produce wrapped signals. The wrapped signals
of interest typically lay in the interval of [−π, π]. This property has been exploited by region,
path following, or global phase unwrapping algorithms with efforts aimed at recovering the
unwrapped signals of interest. However, unwrapping phaseogram that are corrupted by noise
or phase-based residues, due to faulty image acquisition techniques, sensors, or noisy media,
has proven to be a major obstacle for reliable phase retrieval and been the subject of many
recent publications [7–11]. Presently, a search for robust, efficient, and application-independent
phase unwrapping algorithms that handle a high degree of noise and defective fringe patterns
is necessary for reliable phase retrieval. Discussed below is the implementation of a global
phase unwrapping algorithm whose efforts are aimed at minimizing the difference between the
true phase and unwrapped phase gradients using spectral differentiation techniques. This article
presents modifications to the techniques introduced by Schofield et al., 2003, and subsequently
Shi et al., 2010, that improve phase unwrapping of both simulated and experimental wrapped
phases. Furthermore, the proposed phase unwrapping algorithm utilizes Signal Dependent Rank
Ordered Mean (SD-ROM) filtering and Fuzzy Logic Edge Detection (FLED) routines that can be
easily implemented and are robust enough to handle images with very low SNRs and high noise
variation.
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2. Methods

2.1. Problem formulation

The aim of phase unwrapping algorithms is to efficiently and accurately unwrap wrapped
phaseogram. Consider the true phase of an image ϕ(x, y), and its wrapped phase ϕw(x, y), both
dependent on the spatial domain, where pixels (x, y) ∈ N. The relationship between the true
phase and the wrapped phase of an image can be described via [Eq. (1)]:

ϕ(x, y) = ϕw(x, y) + 2πk(x, y); k ∈ Z; (1)

where it is assumed that ϕw(x, y) is wrapped in the following manner ϕw(x, y) = Ŵ[ϕ(x, y)], Ŵ
being the wrapping operator: Ŵ = mod{[π + ϕ(x, y)], 2π} − π.

The proposed phase unwrapping algorithm relies on the assumption that the desired unwrapped
and the wrapped phaseograms have the same, smooth, local phase differences; i.e. the phase
gradients in the intervals [−π, π] are equal. Therefore, the goal of phase unwrapping is to
determine the integer values of k(x, y). This can be accomplished by evaluating the change in the
local phase gradients of both the wrapped and unwrapped phaseograms using the forward ∇2

⊥

and inverse ∇−2
⊥ two-dimensional Laplacian operators:

k(x, y) =
1

2π
∇−2
⊥ [∇2

⊥ϕ(x, y) − ∇2
⊥ϕw(x, y)] (2)

2.2. Laplacian solution

The use of spectral differentiation methods, such as Fast-Fourier Transform (FFT) differentiation,
can reduce the computational complexity associated with solving [Eq. (2)]. Recall that f (x) =∫ ∞

−∞
F(ξ)e2πiξxdx and in turn f ′(x) =

∫ ∞

−∞
2πiξF(ξ)e2πiξxdx, via the shifting theorem. Using this

identity one can rewrite the Laplacian operators in the following manner:

∇2
⊥f (x, y) = −

4π2

N × M
F −1{(p2 + q2)F [f (x, y)]} (3)

∇−2
⊥ g(x, y) = −

N × M
4π2 F −1{(

F [g(x, y)]
(p2 + q2)

} (4)

where (x, y) ∈ N and (p, q) ∈ N are the real and the Fourier space pixel coordinates, and N×M is
the interferogram’s area [12]. Note that to obtain k(x, y) the unwrapped phase must be known a
priori, see [Eq. (2)]. However, by defining the complex quantity eiφw(x,y) and considering that
eiφw(x,y) = eiφ(x,y)+2πk(x,y) = eiφ(x,y), one can define the following:

P(x, y) = eiφw(x,y) (5)

∇−2
⊥ ϕ(x, y) = Im{

1
P(x, y)

∇2
⊥P(x, y)} (6)

Combining [Eqs. (3)–(6)], one arrives at the following solution to for the phase unwrapping
problem:

ϕ(x, y) = ∇−2
⊥ [Im{

1
P(x, y)

∇2
⊥P(x, y)} − ∇2

⊥ϕw(x, y)] + ϕw(x, y) (7)

Where, k(x, y) =
1

2π
∇−2
⊥ [Im{

1
P(x, y)

∇2
⊥P(x, y)} − ∇2

⊥ϕw(x, y)] (8)
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2.3. Phase unwrapping - prior art

Schofield et al., 2003, propose combining [Eqs. (2)–(4) and (6)] to generate an unwrapped phase
estimate:

ϕest(x, y) = F −1(
F {cosϕw(x, y)F −1[(p2 + q2)F (sinϕw(x, y))]}

(p2 + q2)
)

− F −1(
F {sinϕw(x, y)F −1[(p2 + q2)F (cosϕw(x, y))]}

(p2 + q2)
)

(9)

Where, (p, q) are the Fourier space pixel coordinates and [Eq. (6)] is rewritten as:

∇2
⊥ϕ(x, y) = cos(ϕw(x, y)∇2

⊥sin(ϕw(x, y))) − sin(ϕw(x, y)∇2
⊥cos(ϕw(x, y))) (10)

Schofield et al., 2003 suggests that phase unwrapping is an iterative process; where

ϕ
′

est(x, y) = ϕw(x, y) + 2πround(
ϕest(x, y) − ϕw(x, y)

2π
(11)

Note that when using FFT-based spectral differentiation techniques such as [Eqs. (3) and
(6)–(8)], it is important that the wrapped phaseogram be periodic in-order to be differentiable
within Fourier space. Several boundary conditions have been studied and implemented in
literature. Schofield et al., 2003, suggest adding symmetric extensions of the N x M wrapped
phaseogram to meet the Neumann boundary condition necessary for phase retrieval, generating a
2N x 2M matrix, seen in Fig. 1; where the unwrapped retrieved phase solution should be derived
from the third quadrant [13].

Shi et al., 2010, propose a technique similar to that of Schofield et. al., 2003, combining
[Eqs. (2)-(4) and (10)] to generate an unwrapped phase estimate, however, they use the Discrete-
Cosine Transform (DCT) to compute the forward and reverse Laplacian operators. Their estimated
phase is presented as follows:

ϕest(x, y) = DCT −1(
DCT {cosϕw(x, y)DCT −1[(p2 + q2)DCT(sinϕw(x, y))]}

(p2 + q2)
)

− DCT −1(
DCT {sinϕw(x, y)DCT −1[(p2 + q2)DCT(cosϕw(x, y))]}

(p2 + q2)
)

(12)

Shi et al., 2010, also suggest that phase unwrapping is an iterative process; where

ϕ
′

est(x, y) = ϕw(x, y) + 2πround(
ϕest(x, y) − ϕw(x, y)

2π
(13)

However, they do not add symmetric extensions of the N x M wrapped phaseogram to solve
combining [Eq. (3), Eqs. (4), and (6)], claiming that the Neumann boundary conditions are
satisfied by virtue of using the DCT technique [14].

2.4. Phase unwrapping modifications

As mentioned previously, the current spectral differentiation-based phase unwrapping techniques
are assumed to provide estimates of the true unwrapped phase ϕ(x, y). Both [Eqs. (9) and (12)]
run through an iterative rounding process described in [Eqs. (11) and (13)] in an effort to converge
upon ϕ(x, y). However, the implementation of these iterative algorithms tend to fail after the
first iteration [15]. Here we propose a novel approach to accurately perform Laplacian phase
unwrapping, keeping in line with most of the work presented by Schofield et al., 2003. The first
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Fig. 1. Illustration of 2N x 2M matrix configuration used by Schofield et al., 2003, to
meet the Newman boundary condition. The original wrapped and unwrapped phaseograms,
denoted by the white background, are in the third quadrant.

amendment we propose is aimed at the (p, q) matrix indices in the Fourier domain; instead of
using pixel coordinates we propose using the corresponding Fourier space values:

xm = {
−N
2

,
N
2

, N}; ym = {
−M
2

,
M
2

, M} (14)

ξm = {
−1

2∆xn
,

1
2∆xn

, N}; ηm = {
−1

2∆ym
,

1
2∆ym

, M} (15)

The modified Fourier space coordinates are denoted as (ξn, ηm), bounded on the interval
( −1

2∆xn
, 1

2∆xn
), and ( −1

2∆ym
, 1

2∆ym
), with N × M number of indices, hence the notation (ξn, ηm). Thus,

generating the following matrix (ξ2n , η2
m)) to replace (p2 + q2) in [Eqs. (3), Eq. (4)].

∇2
⊥f (x, y) = −

4π2

N × M
F −1{(ξ2n , η2

m)F [f (x, y)]} (16)

∇−2
⊥ g(x, y) = −

N × M
4π2 F −1{(

F [g(x, y)]
(ξ2n , η2

m)
} (17)

k(x, y) =
1

2π
∇−2
⊥ [Im{

1
P(x, y)

∇2
⊥P(x, y)} − ∇2

⊥ϕw(x, y)] (18)

These modifications are more consistent with the spectral differentiation techniques, where
f ′(x) =

∫ ∞

−∞
2πiξF(ξ)e2πiξxdx.

Using the spectral differentiation techniques presented in [Eqs. (16) and (17)] one can
approximate the˜︁k(x, y) wrapping integers via [Eq. (18)]. These values are considered equal, if
not close to, the expected k(x, y) values required to solve [Eq. (1)]. However, the presence of
discontinuities that cannot be accounted for via the applied Neumann boundary conditions tends
to generate minor scaling effects in˜︁k(x, y) motivating the use of the rounding operators found in
[Eqs. (11) and (13)]. However, use of either [Eqs. (11) or (13)] can produce unwanted rounding
errors in the recovered phaseogram when˜︁k(x, y) is sufficiently close to n± 0.5, n ∈ Z. The scaling
issue can be properly accounted for by exploiting the relationship between the wrapped and
unwrapped phaseogram denoted in [Eq. (1)]. Being that˜︁k(x, y) must be an integer value, note that
sin(πk(x, y)) = 0 for all k(x, y). Therefore, if there is residual scaling after recovery of the˜︁k(x, y)
term, a scaling factor can be applied to correct the˜︁k(x, y) term and retrieve the expected k(x, y)
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value by minimizing the number of pixels whose sin(πk(x, y)) values are non-zero. The global
scaling factor, si,min, can be determined by finding the local minimum of the following function:

N∑︂
x=1

M∑︂
y=1

|sin(πsi˜︁k(x, y)|; i ∈ R (19)

k(x, y) = si,min ·˜︁k(x, y) (20)
Note the periodic nature of the sin(πsk(x, y)), wherein scaling s ≈ 2 yields ≈ sin(πsk(x, y)),

therefore the local scaling minima should be found in the region si ≈ [−2, 2]. Most scaling values,
in both the simulated and experimental data, were found to be within si,min = [0.8, 1.3].

Thus, the final unwrapped phase can be obtained via the following:

ϕ(x, y) = ϕw + si,min ·
1

2π
∇−2
⊥ [Im{

1
P(x, y)

∇2
⊥P(x, y)} − ∇2

⊥ϕw(x, y)] (21)

making use of [Eqs. (1), (6), (16–18), and (20)].

2.5. Phase unwrapping image processing

2.5.1. Noise reduction

Images and signals are often corrupted by noise due to faulty image acquisition techniques/sensors.
Although noisy phaseograms can be handled by the spectral differentiation techniques proposed
above, the degree of noise often becomes a limiting factor in calculating the Laplacian of a
wrapped phase, especially when the wrapped phase contains clusters of impulse noise near or at
the [−π, π] boundary. Widely available filters such as the 2-D Wiener filter provide a satisfactory
approach for the removal of noise from images; [16] however, such filters modify pixel values
whether or not they are corrupt. For most cases improvement on the local phase gradient can be
observed, hence the wide implementation of the 2D Wiener filter in phase unwrapping algorithms,
however when clusters of impulses like noise are present in the wrapped phaseogram the filters
can ultimately distort or blur surrounding features, leading to unreliable wrapped phases and
phase gradients. To circumvent this problem, it is important to first remove corrupted impulse
like pixels and subsequently apply a global filter. The SD-ROM filter provides such capabilities
[17].

2.5.2. SD-ROM Filter

Briefly, the SD-ROM filter is an efficient non-linear filter that suppresses impulse corrupted
images whilst preserving uncorrupted pixels. Consider x(n), the luminescence value of a noisy
image [0, 255]; where (n) refers to the pixel location (x, y) in the wrapped noisy phaseogram.
Within x(n), is a 3 × 3 window of pixels. The pixels surrounding x(n) are denoted as w(n), where
w(n) consists of pixels wi(n) = [w1(n), w2(n), w3(n), · · · , w8(n)]; where wi(n), i = [1, 8], i ∈ Z,
corresponds to a left to right, top to bottom mapping of the pixels surrounding x(n), see Fig. 2.
The pixels found in w(n) can be rank-ordered ri(n) = [r1(n), r2(n), r3(n), · · · , r8(n)]; in ascending
order such that r1(n) ≤ r2(n) ≤ r3(n) ≤, · · · , ≤ r8(n). Thereafter, the rank-ordered mean of the
window w(n) can be found, where m(n) = r4(n)+r5(n)

2 . Finally, the rank-ordered differences within
the window w(n) can be found; where, d(n) = [d1(n), d2(n), d3(n), d4(n)]. The values pertaining
to dj(n), j = [1, 4], j ∈ Z; are designated with the following rule:

dj(n) =

{︄
rj(n) − x(n) for x(n) ≤ m(n)
x(n) − r9−j(n) for x(n)>m(n)

The SD-ROM filter detects impulse noise using four thresholding values, namely Tj, j =
[1, 4], j ∈ Z. If dj(n)>Tj then the pixel x(n) is considered corrupt. Note that T1<T2<T3<T4. The
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algorithm performs well for values of T1 = 8, T2 = 20, T3 = 40, T4 = 50, however, the thresholding
values can be modified on a case by case basis for a-priori knowledge of the impulse magnitude,
suggested thresholds limits are as follows: T1 ≤ 15, 15 ≤ T2 ≤ 25, 30 ≤ T3 ≤ 50, 40 ≤ T4 ≤ 60.
If the pixel is corrupt the pixel value x(n) is changed to y(n) = m(n). This algorithm can also be
implemented recursively, where the window w(n) slides through the images (left to right, top to
bottom) replacing corrupt x(n) for y(n). In the recursive use of the SD-ROM filter, previously
modified pixels y(n) contribute to the rank, mean, and and rank ordered difference values see
Fig. 2. In this article, we implemented the non-recursive SD-ROM filter.

Note that if the wrapped phaseogram contains non-impulse noise or the impulse noise has been
removed, the 2-D Wiener filter can be utilized to smooth the phase gradients present in the signal.
It is recommended to first use the SD-ROM filter to remove impulse clusters and then use a 2D
Wiener filter to reduce non-impulse like noise in the wrapped phaseogram, see [Eqs. (22–23)].

ϕ
y
w(x, y) = SDROM(ϕw(x, y)) (22)

ϕNF
w (x, y) = 2D-Wiener(ϕy

w(x, y)); Filter Size [11, 11] (23)

Fig. 2. (a) A schematic of the non-recursive SD-ROM analysis window w(n). (b) A
schematic of the recursive SD-ROM sliding analysis window w(n).

2.5.3. Quality map

Global phase unwrapping algorithms, specifically those using spectral methods, are robust enough
to deal with phaseograms containing a significant amount of noise. However, quality maps are
often implemented to remove unwanted pixels from highly distorted wrapped phaseogram in
an effort to improve the accuracy and efficiency of phase unwrapping algorithms. Furthermore,
quality maps can significantly improve phase unwrapping when the noise itself has been wrapped
[18,19]. The measure of pixel "quality" R(x, y) is determined by the variance of the pixel’s phase
derivative.

R(x, y) =

√︂∑︁x+n/2
i=x−n/2

∑︁y+m/2
j=y−m/2(∆

x
i,j − ∆

−x
i,j )

2

n × m
+

√︂∑︁x+n/2
i=x−n/2

∑︁y+m/2
j=y−m/2(∆

y
i,j − ∆

−y
i,j )

2

n × m
(24)

Where, n and m correspond to the window size with center pixels (x, y); the terms ∆x
i,j and ∆y

i,j
are the partial derivatives of the phase. The terms ∆−x

i,j and ∆−x
i,j are the averages of the partial

derivatives in the n × m window. One can retrieve a quality based phase binary mask by applying
a moderate threshold, where pixels with quality >T are kept.

Q(x, y) =

{︄
0 for R(x, y)<T
1 for R(x, y) ≥ T

(25)

Here T, is to be considered a threshold value between R(x, y) = 0 and max(R(x, y)). It is noted
that for this study the thresholding value of 0.9 was used. Implementation of the quality based
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phase mask is shown below:
ϕQ

w(x, y) = ϕw(x, y) · Q(x, y) (26)

Note, it is suggested that the PDV filtered wrapped phaseogram Q(x, y) · P(x, y) be used before
the SD-ROM and 2-D Wiener filter if a high degree of noise is present or if a wrapped signal is
present within a wrapped noisy background, see Fig. 8(a).

2.5.4. Fuzzy Logic Edge detection

For special cases where the fringes of a wrapped phaseogram are highly corrupted and noise
processing cannot produce reliable fringes, unwrapping the phaseogram and obtaining a reliable
k(x, y) becomes difficult. However, upon unwrapping, a reliable boundary between regions with
differing k(x, y) is possible. This condition makes it possible to reconstruct the boundary of the
noisy wrapped phaseogram by estimating the location of the corrupted [−π, π] boundaries. Here
it is suggested that the 2π∆xk(x, y) and 2π∆yk(x, y) at the boundaries between successive k(x, y)
should differ greatly from the gradients within a single k(x, y) region; where regions inside the
k(x, y) ≈ 0 and gradients at successive k(x, y) boundaries should ideally be 2π (or at minimum
>0 when˜︁k(x, y) ≠ k(x, y)).

Using this condition, and taking advantage of MATLAB’s Fuzzy Logic App, one can estimate
the location of the wrapped phase [−π, π] discontinuities (FLED). The following parameters were
utilized to estimate the wrapped phase discontinuity locations. For pixels where 2π∆xk(x, y) or
2π∆yk(x, y) are zero, the Fuzzy Logic Routine associates a value of 1 with the pixel, indicative of
non-edge-like surfaces. For pixels where 2π∆xk(x, y) or 2π∆yk(x, y) are ≫ zero, the Fuzzy Logic
Routine associates a value of 0, indicative of edge-like-surfaces. For pixels who’s 2π∆xk(x, y) or
2π∆yk(x, y) are not sufficiently close to either 2π or 0, the Fuzzy Logic routine then determines
the probability of a pixel lying with an edge by utilizing a weighted value function. Parameters
Sx and Sy are used to determine the number of standard deviations away from 2π∆xk(x, y) or
2π∆yk(x, y) that should be considered non-edge-like boundaries, triangle functions then determine
the weighted values of pixels that lie within Sx and Sy and their likelihood of convergence towards
an edge-like boundary. The parameters utilized in this article are shown in Fig. 3.

Once the weighted value function I(x, y) is recovered, a binary mask can be created in
accordance with the fuzzy logic parameters; where:

B(x, y) =

{︄
0 for I(x, y)<0.5
1 for I(x, y) ≥ 0.5

(27)

Pixel value reassignment along the mask can also be computed; where,

F(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−π for I(x, y) ≥ 0.5; ϕw(x, y)<0
0 for I(x, y)<0.5
π for I(x, y) ≥ 0.5; ϕw(x, y)>0

(28)

Upon finding the binary mask and the boundary condition values, the wrapped phase noise-free
wrapped phase is updated:

ϕ
′

w(x, y) = ϕNF
w (x, y) · B(x, y) + F(x, y) (29)
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Fig. 3. Generalized Fuzzy Logic Scheme: k(x, y) serves as the input for the Fuzzy Logic
Edge detector. 2π∆xk(x, y) and 2π∆yk(x, y) are the relevant values associated with k(x,y) that
inform the classification of edge-like pixels and non-edge-like pixels; they are subsequently
classified and weighted to produce I(x, y).
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2.6. Performance assessment

The performance of the phase unwrapping algorithms was carried out using the the standard
deviation of the resolved phase error, given by

σϵ =
√︁

E[ϵ2] − E[ϵ]2

where ϵ = ϕi − ϕr are the phase difference between the simulated ideal phase ϕi and the recovered
phase map ϕr [16]. We also evaluated the execution time of the FFT, [12] DCT, [14] and proposed
scaled and FLED FFT based Laplacian phase unwrapping algorithms on a MacBook Pro running
Catalina 10.15.7 (2.2 GHz Quad-Core Intel i7 processor, 16 GB RAM) and MATLAB R2019b.

3. Results and discussion

3.1. Noise removal

To assess the degree of noise that was successfully removed via the SD-ROM and with 2D Wiener
treatments, the gradient maps of the wrapped phaseogram were inspected. As proposed in the
Methods section of the paper, the gradients of the wrapped phaseogram are expected to be zero,
or near zero within the [−π, π] boundaries. Presented in Fig. 4 are the wrapped phaseogram, the
noise reduction treatment, and the gradients at regions featuring both high degrees of noise and
fringe density.

Fig. 4 presents the results associated with the noise-reducing treatments, the input wrapped
phaseogram contained σ = 0.5222 standard deviations of added speckle noise. The local phase
gradients ∆ϕw(x, y) in Fig. 3(a) present a high degree of discontinuity within the (−π, π) reaching
values that are similar to those expected near or at the wrapping boundary, this feature makes
it particularly difficult to unwrap the phaseogram using the spectral differentiation method
proposed by [Eqs. (11) and (13)], see Fig. 5 for results. The local phase gradients ∆ϕw(x, y) of the
wrapped phaseogram upon 2D Wiener filtration Fig. 3(b) generated feature smooth, near-zero,
phase gradients within the (−π, π) region and present the expected gradient values at or near
the [−π, π] boundary. However, when compared to the local phase gradients of the SD-ROM
filtered phaseogram Fig. 3(c) the 2D-Wiener filter appears to miss impulse like noise near or at
the [−π, π] boundaries. This phenomenon can be detrimental to the relative phase unwrapping
process, as corrupted wrapped boundaries can lead to unreliable k(x, y) values necessary for
phase unwrapping. It is noted that the SD-ROM filter alone fails to remove non-impulse like
corrupted data, where the local phase gradients within the (−π, π) region displays some degree of
discontinuous behavior. The proposed SD-ROM + 2D-Wiener filtering mechanism in Fig. 3(d)
presents a superior local phase gradient ∆ϕw(x, y) mapping, where both impulse and non-impulse
like noise has been removed from both the inner (−π, π) and [−π, π] boundaries. It is noted that
similar results were obtained from a variety of wrapped noisy phaseogram, see Fig. 7. This
particular wrapped, noisy phaseogram Fig. 4(a) was used to accentuate noise removal from
regions containing high noise and wrapped fringe densities.

3.2. Phase unwrapping

Being that the presented phase unwrapping algorithms are in part largely based on work described
by Schofield et al., 2003, and subsequently Shi et al., 2010, we have decided to compare the
spectral differentiation technique established via [Eq. (21)] to their phase unwrapping techniques.
Note, Schofield et al., 2003, first presented the Laplacian-spectral differentiation-based solution
for wrapped signals. Shi et al., 2010, built on Sheffield’s proposed solution by demonstrating
that the solution was valid not only for the FFT but also for the discrete cosine transform (DCT).
However, in both works, the authors suggested rounding the k(x, y) value(s) to the nearest integer
value to obtain the final unwrapped phaseogram. The discretization of k(x, y) is correct, however,
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Fig. 4. Data presented herein is from a simulated noisy phaseogram containing σ = 0.5222
standard deviations of added speckle noise. The first column labeled ϕw(x, y) contains a
four 1024 × 1024 images of wrapped phaseograms with (a) no treatment, (b) 2D Wiener
filtering using an [11,11] window size, (c) SD-ROM filter, and (d) the SD-ROM, 2D Wiener
filtering combination. The red square highlights the regions of interest presented in column
two. The second column labeled ∆ϕw(x, y) contains 300 x 324 images of the gradients of
the wrapped phaseograms with images (a-d) containing the same treatment as their column
one counterparts.
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Fig. 5. Data presented herein is from a simulated noisy phaseogram containing aσ = 0.5222
standard deviations of added speckle noise. The first column labeled Ideal Phaseogram
contains a four 1024 × 1024 images of wrapped noise-free phaseogram with (a) the wrapped
phaseogram, (b) the unwrapped solution via the Schofield FFT method, (c) the unwrapped
solution via the Shi DCT method, (d) the proposed k(x, y) scaling method, and (e) the
ideal unwrapped phase. The second column contains a noisy wrapped phaseogram with
σ = 0.5222 simulated noise, the noise is not removed from the wrapped phaseogram and is
processed with the phase unwrapping treatments mentioned in column one (b-d). Similarly,
the third column contains a noisy wrapped phase that has been processed using the SD-ROM
and 2D Wiener filtering combination; the filtered wrapped phaseogram is them processed
with the phase unwrapping treatments mentioned in columns one and two (b-d).
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Fig. 6. The schematic demonstrates the data utilized and created by the Fuzzy Logic Edge
Detection routine. The relevant input data comes from taking the local x- and y- directional
gradients of the scaled s × 2π˜︁k(x, y) recovered phase wrapping intervals. The Fuzzy Logic
Edge Detection routine weighs whether or not to designate a pixel as an edge based on the
input thresholding parameters. Thereafter a Weighted-Gradient Based output matrix locates
regions with high likelihoods of forming [−π, π] conditions.

because of the inherent scaling effects incurred by the spectral differentiation technique, k(x, y)
cannot simply be rounded to the nearest integer as the image will incur unwanted rounding
error in the unwrapped phase signal when k(x, y) approaches n ± 0.5; n ∈ Z. Apart from the
several modifications mentioned for pre-processing and post-processing wrapped/unwrapped
phaseogram the major difference between Schofield and Shi’s phase retrieval technique and the
one proposed in this article is the k(x, y) estimation technique, where we propose the use of
sin(π˜︁k(x, y)) presented in [Eq. (22)]. This proposal is based on the assumption that the wrapped
signal varies from the unwrapped phase signal by 2πk(x, y), where k(x, y) is an integer value,
the function sin(π˜︁k(x, y)) will be zero for all k(x, y) given that the unwrapped˜︁k(x, y) values are
equal to the expected k(x, y). However, in the case, that scaling is synthetically introduced into
the wrapped phaseogram, sin(π˜︁k(x, y)) will be expected to be non-zero. [Eqs. (22–23)] propose
finding the scaling value by minimizing the global number of non-zero pixels in the sin(π˜︁k(x, y))
identity. Presented in Fig. 5 are the unwrapping results via Shi, Schofield, and the proposed
scaling method, again described by [Eqs. (22–23)].

Three treatments were used to compare the performance of each phase unwrapping algorithm
and their proposed k(x, y) estimation techniques, these included evaluating each phase unwrapping
algorithm for ideal wrapped phase, noisy wrapped phase, and noise filtered wrapped phaseogram.
The noisy wrapped phaseogram used for comparison contained σ = 0.5222 standard deviations
of added speckle noise and had areas of relatively high fringe densities. It is noted that the scaling
k(x, y) phase unwrapping technique presented via Algorithm I: Noise-Free Phase Unwrapping
and Algorithm II: Noisy Phase Unwrapping, does not make use of the proposed Fuzzy Logic
Edge Detection technique described by [Eqs. (27–29)] as the purpose is to solely compare the
phase unwrapping performance.
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Fig. 7. Data presented herein is from a simulated noisy phaseogram containing varying
degrees of noise, denoted by σn. The first column labeled Wrapped Noisy Phaseogram
contains four 1024 × 1024 images of wrapped noisy phaseograms. The second column
labeled Unwrapped Noisy Phaseogram contains four 1024x1024 images of the unwrapped
noisy phaseograms using Algorithm II, where the FLED routine was implemented. The third
column labeled Ideal Phaseogram contains four 1024x1024 images of the ideal unwrapped
phaseograms.
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Notice that both the Schofield and Shi algorithms struggle to unwrap the ideal wrapped
interferogram, with notable jumps and dips in phase, coming from the rounded k(x, y) values,
whilst the proposed algorithm does not. The noisy and noise filtered wrapped phaseogram are
challenging to unwrap because of the discontinuous local phase gradients ∆ϕw(x, y)) as well as
the corrupt wrap boundaries, however, all three algorithms perform better with the SD-ROM, 2D
Wiener filter; notably the proposed scaling k(x, y) qualitatively outperforms the Schofield and
Shi algorithms in all three tests. See Table 1 for an assessment of execution time and standard
deviation of the resolved phase error.

Table 1. Ideal and filtered noisy phase unwrapping execution time and error.

Ideal Filtered Noisy

Approach t σϵ t σϵ

FFT [12] 0.796 s 2.4190 5.492 s 4.2658

DCT [14] 0.533 s 6.5691 5.647 s 4.7497

Scaled FFT 1.968 s 1.8457 6.835 s 4.1338

3.3. Fuzzy Logic Edge detection

As mentioned in the Methods section of the paper, the local phase gradients 2π∆xk(x, y) and
2π∆yk(x, y) in between and at [−π, π] boundaries are important to successfully unwrapping
of wrapped phaseogram using the Laplacian spectral differentiation approach described via
[Eq. (21)]. Notably, the Laplacian spectral differentiation technique relies on the assumption
that the wrapped and unwrapped local phase gradients are equal within the (−π, π) and that
the [−π, π] boundaries occur where the signal has been wrapped with the subsequent region
differs by a factor of ±2πk(x, y); however, due to noise corruption and increased fringe density,
such boundaries can be difficult to process. Thus, the Fuzzy Logic Edge Detection (FLED)
routine was added to Algorithm II and III, in an effort to both amplify the existing [−π, π] pixel
regions as well as approximate the location of corrupted [−π, π] boundaries, via a local gradient
thresholding technique.

Described via [Eqs. (27–29)] and Fig. 3, the FLED routine uses the local gradient values of
the recovered-scaled k(x, y) matrix. Note that the k(x, y) matrix has unique properties stemming
from the relationship between ϕ(x, y) and ϕw(x, y), namely that k(x, y) ∈ Z; where the local phase
gradients within (−π, π) are zero, for the exception of the boundaries where wrapping occurs,
here the local phase gradients should be equal to 2π. Using these parameters, and the recovered,
scaled s × 2π˜︁k(x, y) parameter can allow us to estimate boundary conditions based on local phase
gradients that exceed 0.

For this article seven thresholding values were chosen to detect edges in a variety of noisy
wrapped phaseogram; these values remained unchanged. For regions where 2π∆xk(x, y) or
2π∆yk(x, y) are zero, the Fuzzy Logic Routine associates a value of 1, high likelihood of non-
edge-like boundary. Measuring the likelihood of edge-like boundaries is associated with a value
of zero. Zero membership was determined by specifying the values Sx = 0.1 and Sy = 0.1 around
0, these values specify the standard deviation for the zero membership function for the gradient
inputs 2π∆xk(x, y) and 2π∆yk(x, y); where if the input gradient matrices are within 0.1 standard
deviations of 0, they are weighted closer to 1 than to 0. The exact weighting schematic can be
seen in Fig. 6. It is noted that the Fuzzy Logic Edge Detection thresholding values remained
fixed for the entire study and the data presented in Fig. 7 and Fig. 8.

Using the Fuzzy Logic Edge Detection routine established via MATLAB’s Fuzzy Logic
application, various noisy phaseograms with varying degrees of fringe densities and noise, σn,
were unwrapped using Algorithm II.



Research Article Vol. 4, No. 2 / 15 February 2021 / OSA Continuum 647

Fig. 8. Data presented herein were obtained experimentally in a recent RF emulator study
conducted in our lab. Briefly, phase information was retrieved from optical signals scattered
by the object of interest, using a Twyman-Green interferometer configuration. The retrieved
wrapped phaseogram (a) contains a very high degree of noise. Here PDV filtering (b),
along with the SD-ROM, 2D Wiener filtering (c), was implemented to generate a noise
filtered phaseogram wrapped phaseogram. The recovered unwrapped phaseogram (d) was
re-wrapped (e) and compared to the original denoised wrapped phaseogram (f). (g) Contains
an SEM of the experimental model utilized.
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The use of the modified spectral differentiation technique developed in [Eq. (21)], in combination
with SD-ROM filtering [Eqs. (22–23)] and the FLED [Eqs. (27–29)] routine displayed reliable
phase retrieval across a variety phaseogram with varying noise profiles and fringe densities.
However, it is noted that there some of the retrieved phaseograms displayed minor scaling issues,
particularly Figs. 7(a) and 7(c). As observed, the scaling effects occurred in regions with very
high noise and fringe density. Modifications to the FLED parameters are highly encouraged in
such situations; where variable FLED parameters should be applied on a case by case basis if
wrapped phaseogram present very high noise and or fringe densities. For a comparison of the of
execution time and standard deviation of the resolved phase error between the FFT, DCT, and
the proposed FLED phase unwrapping algorithms see Table 2. All three algorithms utilized the
SD-ROM and 2D Wiener filter as a denoising mechanism.

Note that the execution time of the FLED FFT technique is substantially greater than the FFT
and DCT and phase unwrapping algorithms. The increase in execution time comes solely from
the implementation of the FLED algorithm; where, as observed in Table 1, the execution time of
the proposed scaled Laplacian technique is comparable to those presented by the FFT and DCT
techniques. Alterations to MATLAB’s Fuzzy Logic Application could drastically decrease run
time.

Table 2. Noisy phase unwrapping execution time and error.

FFT DCT FLED FFT

Phaseogram σn t σϵ t σϵ t σϵ

(a) 0.5222 4.759 s 4.269 4.485 s 4.750 41.191 s 2.555

(b) 0.4933 4.758 s 1.535 4.476 s 2.476 39.550 s 0.696

(c) 0.6202 4.792 s 7.132 4.520 s 6.252 41.000 s 3.287

(d) 0.6510 5.123 s 5.398 4.496 s 15.594 43.365 s 1.311

Algorithm III was designed for unwrapped phaseograms containing very high levels of noise
coming from the imaging source, experimental setup, or background noise phase wrapping
as demonstrated by Fig. 8(a) [6]. Algorithm III was tested with data acquired from an RF
emulator study [6]. As seen in Fig. 8 the acquired wrapped data had a very high degree of noise.
The unwrapped result was re-wrapped using the wrapping operator discussed, see Eq. (1), and
thereafter compared to the original denoised wrapped phaseogram. The results concur with the
original data, where fringe density and direction are maintained. Furthermore, the re-wrapped
results demonstrate greater fringe continuity when compared to the original wrapped data. As
demonstrated, Algorithm III handles the phase unwrapping, denoising, and edge detection
routine for the very high noise wrapped phaseogram shown in Fig. 8. It is noted, as before, that
the thresholding parameters established for the Fuzzy Logic Edge Detection routine remained
unchanged. Although the following is speculative and outside of the scope of the study, the
FLED routine may be able to provide "better" phase unwrapping results on a case by case basis
with the modification of the thresholding parameters.

4. Conclusion

Phase unwrapping in the presence of noise and unreliable fringes can pose a difficult problem for
global phase unwrapping algorithms; however, in utilizing a directed approach that aims to tackle
both problems simultaneously, phase unwrapping such signals can be reliably accomplished.
In this article we have presented a three-pronged approach to successfully unwrap 2D signals;
namely, i) SD-ROM based denoising, ii) reliable k(x, y) estimation, iii) FLED based fringe quality
improvement. The proposed algorithm has relatively low computation and implementation
complexity and has many variable parameters in both the denoising and FLED routines, making it
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well suited for a variety of complex phase unwrapping cases. Further work with complex wrapped
phaseograms is suggested to test the working limits of the proposed algorithm. Furthermore,
although not in the scope of the present article, the following additions are suggested for
improvement on the current algorithm: (i) pixel by pixel k(x, y) scaling, see [Eqs. (19–20)], in
combination with a merit function to optimize phase retrieval and (ii) implementation the robust
FLED technique not only for edge detection but also for gradient quality detection and estimation
at the [-π, π] boundaries, as well as optimization of MATLAB’s Fuzzy Logic App to decrease
overall execution time.
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