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Considering that  high performance electronic computation has become extremely efficient,  for  an
optical  hardware accelerator  to  be relevant,  it  must  solve  a  type  or  a  set  of  problems where  its
electronic counterpart is still struggling in term of size, energy, or time. We have identified one such
challenge as the minimization of large scale Ising Hamiltonians when the number of particles is on the
order of a million. Here we discuss an algorithmic approach based on probabilistic inference using
graphical model and message passing.

A graphical model is a probabilistic network where the state of the nodes depends on a structural
component (the node connections or edges), and a parametric component (the initial conditions). It is
a powerful method that can be adapted to solve a large variety of problems and has found application
in numerous cases. The complexity of the graph scales with the number edges, and the probability
vector size. We found that dedicated electronic systems can easily solve densely connected graphs
with tens of thousand of nodes. Therefore, the optical solutions under consideration must be able to
scale above that lower bound, which puts size and power consumption constraints on the type of
hardware used in the implementation.

Among the different algorithms used in
graphical model, we selected message
passing  which  is  schematically
represented  in  figure  1  for  the  belief
update  of  node  n.  This  algorithm
involves vector matrix multiplications
(VMM) that address the interaction of
node  n with  every  other  node,
followed by a vector dot product (.Π)
that  aggregates  all  the  vectors,  and
finally  a  normalization  function  that
rescales the vector into the probability
domain.

In  the  implementation  we  have
selected  for  its  most  promising
scalability, the nodes are encoded as different wavelengths (represented by different colors in figure
1), and the probability vector is distributed in space. This can be understood by the fact that there are
many more nodes than elements in the vector, and wavelength multiplexing is a powerful way to
compress the information.

Considering optical VMM has already been described in the literature, we are focusing our effort on
the dot product and normalization which are operation that are not easily computed in the optical
domain.  We replaced  the  dot  product  function  by  its  log-sum-exponent  mathematical  equivalent,
which can be achieved by two photon absorption (TPA) followed by a fan in, and a saturable absorber

Figure  1:  Schematic  representation  of  the  message  passing
algorithm to update the probability vector of node n. When nodes
are not connected, the matrix of the VMM connecting them is null.
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(SA) respectively. The advantage of these mechanisms is  that  they are passive and don’t  require
additional power.

However, TPA and SA are not perfect logarithm and exponential functions, but close approximations:

(1)

(2)

If  we include the  fan in  operation for  summation,  we obtain the  following equation for  the  dot
product:

,
(3)

where A, B and C are coefficients that reflect either gain or attenuation in the system.

We have simulated the effect of the TPA and SA discrepancies on the convergence of the graph model
using 100 nodes, and have demonstrated that the TPA and SA functions can fulfill the requirements of
the message passing algorithm. The redundancy in densely connected graph actually helps to ensure
the convergence. 

In figure 2 we see that, when some of the
edges are dropped at random from a fully
connected  graph  (density  100%),  the
algorithm  starts  having  trouble
converging  only  when  the  density  drop
below  20%,  even  for  perfect  logarithm
and exponential functions (0% error, blue
line). The other lines have been simulated
with  increasing  error  injected  in  the
computation  of  the  logarithm  and
exponential as it could be expected from
SA  and  TPA  devices.  For  10%  error
(green  line),  the  algorithm  starts
converging  to  the  "wrong"  ground  state
when  the  connection  density  is  beneath
30%.

Our first  physical implementation of the multiplication function between two optical sources used
silicon waveguides for TPA and carbon nanotubes in a fiber taper for SA. An EDFA amplifier was
used to provide gain before the SA. This initial result has shown that, although we can achieve an
RMS error below 1% for the value of the product, the dynamic range was limited to 0.41dB. For our
scaled up system we will  use nano-scale  low power  devices.  These devices  must  also fulfill  the
requirements of equation 3 without requiring excessive gain in the system.
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Figure 2: Algorithm failure rate according to connection density
for a 100 node graph. Different curves has been calculated with
increasing amount of error in the exp and log functions.
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