# Fast Non-blocking N×N Optical Switch Using Diffractive MOEMS

#### P.-A. Blanche

http://www.optics.arizona.edu/pablanche/





#### Market driver

 Exponential increase of the data traffic due to cloud computing, mobile devices (tablets, smartphones), social networking.



\* Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white\_pap er\_c11-520862.html

#### Market driver

- Up to 50% energy use in data center is for cooling.
- "Most data centers spend as much in electricity than in hardware". Rodney C. Adkins, IBM Senior Vice President, Strategic Partnerships.



### Transition to new architectures

#### <u>Telecom</u>

Ring to mesh



Rigid to flexible (SDN)



#### MUX/DMUX to CDC ROADM



<u>WSS</u>

#### <u>Datacom</u>

Real to virtual



Cross Connect Switch

#### Switch flavors



#### Cross Connect - Leading technology -

- O-MEMS based
- Mirrors on gimbals mount
- Mirror reoriented to redirect the beam









#### **DLP** Switch



On-off switch, no redirection of the light

## Other technologies

- Acousto-optic modulator (Bragg gratings)
- Piezo electric transducer
- Liquid lens
- ...

#### Metrics:

- Number of ports (scalability)
- Power consumption
- Loss (6-9 dB)
- Reconfiguration speed
- Price per port



### Metrics table

| Technology      |                                           | Port<br>count     | Loss | speed | Power | Reliability |
|-----------------|-------------------------------------------|-------------------|------|-------|-------|-------------|
| 3D MEMS         |                                           | High              | Low  | ms    | 45 W  | Low         |
| Micro-actuation |                                           | Moderate          | Low  | ms    | 128W  | Good        |
| LCoS            | Bu gree gree gree gree gree gree gree gre | <sup>/</sup> High | Low  | ms    | 1W    | High        |
| DMD<br>(on-off) |                                           | High              | Low  | μs    | 1W    | High        |

#### Texas Instruments DLP









#### Speed Refresh Rate vs Lost of Light Time



### Redirecting the Light



### Diffraction



#### Hologram computation Gerchberg-Saxton iterative algorithm



#### Example: Multiple IN to multiple OUT

# DMD illuminated with 2 different sources



2 diffraction patterns







#### Cross connect schematic

![](_page_16_Figure_1.jpeg)

Subaperture HOE

### Switch Prototype

![](_page_17_Picture_1.jpeg)

#### -Characterization-

#### Testbed insertion & video transmission ✓

![](_page_18_Picture_2.jpeg)

### Scalability ?

![](_page_19_Figure_1.jpeg)

DMD resolution: 1024x768 1024x768 (786,432)

#### But ...

#### +1, -1 Orders

![](_page_20_Picture_1.jpeg)

#### # pixels / 2

#### Cross talk

![](_page_21_Figure_1.jpeg)

#### Number of output ports

|                          |        | Number of<br>Accessible Location<br>(XGA) | ons (dB) |  |
|--------------------------|--------|-------------------------------------------|----------|--|
| Theory                   |        | 786,432                                   | _        |  |
| +/- 1 order              | (1/2)  | 393,216                                   | -5.77    |  |
| 2 <sup>nd</sup> neighbor | (1/4)  | 98,304                                    | -29.76   |  |
| 3 <sup>rd</sup> neighbor | (1/9)  | 43,690                                    | -35.06   |  |
| 4 <sup>th</sup> neighbor | (1/16) | 24,576                                    | -41.29   |  |

#### Metrics table

| Technology      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Port count | Loss     | speed | Power |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|-------|
| 3D MEMS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | High       | Low      | ms    | 45 W  |
| Micro-actuation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Moderate   | Low      | ms    | 128W  |
| LCoS            | Am dam dam dam dam dam dam dam dam dam da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High       | Low      | ms    | 1W    |
| AWG/SOA         | The second | High       | Moderate | ns    | 50W   |
| DLP Holographic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Super High | Moderate | μs    | 1W    |

### **Binary amplitude modulation**

![](_page_24_Picture_1.jpeg)

### Theory: 10% Efficiency

![](_page_25_Figure_1.jpeg)

#### Phase modulation

![](_page_26_Figure_1.jpeg)

### Metrics table

| Technology         |          | Port<br>count | Loss     | speed | Power |
|--------------------|----------|---------------|----------|-------|-------|
| 3D MEMS            |          | High          | Low      | ms    | 45 W  |
| Micro-actuation    |          | Moderate      | Low      | ms    | 128W  |
| LCoS               |          | High          | Low      | ms    | 1W    |
| AWG/SOA            | reget WS | High          | Moderate | ns    | 50W   |
| DLP<br>Holographic |          | High          | Moderate | μs    | 1W    |
| Piston MEMS        |          | High          | Low      | μs    | 1W    |

### **Texas Instruments piston MOEMS**

#### FLEXURE-BEAM MICROMIRROR SPATIAL LIGHT MODULATOR DEVICES FOR ACQUISITION, TRACKING, AND POINTING

Troy A. Rhoadarmer, Steven C. Gustafson, and Gordon R. Little Research Institute, University of Dayton 300 College Park Dayton, OH 45469-0140

and

Tsen-Hwang Lin Texas Instruments, Inc. 13588 N. Central Expressway Dallas, TX 75265

#### ABSTRACT

The new flexure-beam micromirror (FBM) spatial light modulator (SLM) devices developed by Texas Instruments Inc. have characteristics that enable superior acquisition, tracking, and pointing in communications and other applications. FBM devices can have tens of thousands of square micromirror elements, each as small as 20 microns on a side, each spaced relative to

#### Future works

![](_page_29_Picture_1.jpeg)

A commercial high port count reconfigurable optical switch: ROADM, WSS, OXC ... all in one!