Fast Non-blocking $\mathrm{N} \times \mathrm{N}$ Optical Switch Using Diffractive MOEMS

P.-A. Blanche

http://www.optics.arizona.edu/pablanche/

Market driver

- Exponential increase of the data traffic due to cloud computing, mobile devices (tablets, smartphones), social networking.

Source: Cisco VNI Mobile Forecast, 2013

[^0]
Market driver

- Up to 50% energy use in data center is for cooling.
- "Most data centers spend as much in electricity than in hardware". Rodney C. Adkins, IBM Senior Vice President, Strategic Partnerships.

Typical Data Center Energy Consumption
Projection of Datacenter Electricity Use

Microsoft CorpSource: McKinsey Report. Revolutionising Data Center Efficiency"

Power Conversion

Equipment
36\%
Network Harchware,

Info-Tech: "Data Architecture and More Data".

Transition to new architectures

Telecom

Rigid to flexible (SDN)

MUX/DMUX to CDC ROADM

WSS

Datacom
Real to virtual

Packet switch to hybrid

Cross Connect Switch

Switch flavors

WSS

Cross connect

Cross Connect - Leading technology -

- O-MEMS based
- Mirrors on gimbals mount
- Mirror reoriented to redirect the beam

WSS

-Leading technology-

Flexible grid

DLP Switch

On-off switch, no redirection of the light

Other technologies

- Acousto-optic modulator (Bragg gratings)
- Piezo electric transducer
- Liquid lens
- ...

Metrics:

- Number of ports (scalability)
- Power consumption

- Loss (6-9 dB)
- Reconfiguration speed
- Price per port

Metrics table

| Technology | Port |
| :--- | :--- | :--- | :--- | :--- | :--- |
| count | | Loss

Texas Instruments DLP

Speed

Refresh Rate vs Lost of Light Time

Lost of light time: $12 \mu \mathrm{~s}$ Limited by mirror resonance

Redirecting the Light

Digital $=2$ positions
No control of the reflection angle

Use diffraction

Diffraction

Hologram computation Gerchberg-Saxton iterative algorithm

Example: Multiple IN to multiple OUT

DMD illuminated with 2 different sources

2 diffraction patterns

Cross connect schematic

Switch Prototype

-Characterization-

Testbed insertion \& video transmission

Scalability?

DMD resolution: 1024x768
$(786,432)$
1024×768
$(786,432)$

But ...

+1, -1 Orders

\# pixels / 2

Cross talk

Number of output ports

	Number of Accessible Locations $($ XGA $)$	Crosss-talk (dB)
Theory	786,432	-
+ - 1 order (1/2)	393,216	-5.77
$2^{\text {nd }}$ neighbor (1/4)	98,304	-29.76
$3^{\text {rd }}$ neighbor $(1 / 9)$	43,690	-35.06
$4^{\text {th }}$ neighbor $(1 / 16)$	24,576	-41.29

Metrics table

Technology	Port count	Loss	speed	Power
3D MEMS	High	Low	ms	45 W
Micro-actuation	Moderate	Low	ms	128W
LCoS	High	Low	ms	1W
AWG/SOA	High	Moderate	ns	50W
DLP Holographic	Super High	Moderate	$\mu \mathrm{s}$	1W

Binary amplitude modulation

Theory: 10\% Efficiency

Phase modulation

- LCOS

Polarization sensitive

- Piston MEMS
π modulation (775 nm) $10 \mu \mathrm{~m}$ mirrors

Metrics table

Technology	Port count	Loss	speed	Power
3D MEMS	High	Low	ms	45 W
Micro-actuation	Moderate	Low	ms	128W
LCoS	High	Low	ms	1W
AWG/SOA	High	Moderate	ns	50W
DLP Holographic	High	Moderate	$\mu \mathrm{s}$	1W
Piston MEMS	High	Low	$\mu \mathrm{s}$	1W

Texas Instruments piston MOEMS

FLEXURE-BEAM MICROMIRROR SPATIAL LIGHT MODULATOR DEVICES FOR ACQUISITION, TRACKING, AND POINTING

Troy A. Rhoadarmer, Steven C. Gustafson, and Gordon R. Little
Research Institute, University of Dayton
300 College Park
Dayton, OH 45469-0140
and
Tsen-Hwang Lin
Texas Instruments, Inc.
13588 N. Central Expressway
Dallas, TX 75265

Abstract

The new flexure-beam micromirror (FBM) spatial light modulator (SLM) devices developed by Texas Instruments Inc. have characteristics that enable superior acquisition, tracking, and pointing in communications and other applications. FBM devices can have tens of thousands of square micromirror elements, each as small as 20 microns on a side, each spaced relative to

Future works

A commercial high port count reconfigurable optical switch: ROADM, WSS, OXC ... all in one!

[^0]: * Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012-2017. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_pap er_c11-520862.html

