Fast Optical Switch for Data Communication Applications

- Overview -

- Data communication networks around the world use optical fibers because of the large bandwidth.
- Data routing is done by switch devices that interconnect different fibers.
- "Old way" switch converted the optical signal to electric then back to optic
- Too slow when rate increases \rightarrow bottle neck.
- Very high energy consumption.

- Optical switch -

Function:

- Directly connects any N input fibers to N output fibers (NxN)
- Rate agnostic

Usage:

- Data centers
- ROADM

- Network aggregation

- Market Drivers -

- Exponential increase of the data traffic due to cloud computing, mobile devices (tablets, smartphones), social networking.

Exabytes per Month
78\% CAGR 2011-2016

- Other Portable Devices (2.2\%)
- M2M (4.7\%)
- Home Gateways (4.8\%)
- Non-Smartphones (5.7\%)
- Tablets (10.0\%)
- Laptops and Netbooks (24.2\%)
- Smartphones (48.3\%)

- Optical switch market share -

fiberoptics, inc
polatis

- Current technology -

- O-MEMS based
- Mirrors on gimbals mount
- Mirror reoriented to redirect the beam

- Current technology -

PROS

- Large number of port (320)
- Low insertion loss (3db)
- \$300-\$700 per port

CONS

- Custom made element
- Millisecond response time
- Sensitive to vibration
- Sensitive to input energy
- Sensitive to failure
- Hinge failure (small MTBF)
- Power consumption (45W)
- \$300-\$700 per port

-Our Approach-O-MEMS \rightarrow DMD

- Used in projectors
- Television
- Medical/automotive display
$-12 \mu \mathrm{~s}$ switching time (vs 25 ms)
- Bistable (reduced power)
- Mass produced (cheap)
- Highly reliable (10^{12} flips)
- Large number of elements (1024×720)

How do you steer a beam with a binary device?

-Our Approach II-
 Reflection \rightarrow Diffraction

Holograms:

- Binary pattern
- Calculated by iterative Fourier transform
- Diffract light in deterministic way

Printed hologram

Diffraction

-Our Approach III-
 Reflection \rightarrow Diffraction

- Robust (distributed information)
- Scalable (thousand of ports)
- Handle beam power (distributed energy)
- True non-blocking (all ports accessible)
- Addition/division functions (ROADM)

-Our Approach III-

No exotic parts

-Characterization-

Non-blocking

All ports accessible 9×9 visible / 7x7 IR

Loss map per port

Normalized Loss Legend

-Characterization II-

Testbed insertion \& video transmission

- Tech Comparison-

Vendor	Technology	Port count	Loss	speed	Power	Reliability
Calient	3D MEMS	High	Low	ms	45 W	Low
CrossFiber	3D MEMS	Low (1x8)	Low	ms	1W	Low
Polatis DirectLight	Micro-actuatio n	Moderate	Low	ms	128W	Good
Nistica*	DMD wavelength switch	High	Low	$\mu \mathrm{s}$	1W	High
UA	DMD Hologram	High	High Addressed in next phase	$\mu \mathrm{s}$	1W	High

* The Nistica product is a wavelength switch (not space) using the DMD

Loss budget

50\% Fiber injection

- Analysis of the injection condition
- Solution found (replacing lens)

50\% Diffraction

- Binary amplitude grating 10\% efficiency
- 8 level phase grating 90% efficiency
- Require a piston DMD

- Competitive Advantage -- Commercial Appeal -

Disruptive technology !

- Faster (100x)
- Scalable (1,000s of ports)
- Robust (10^{12} mirror cycles)
- Cheaper per port (<\$100)
- Low power consumption (1 Watt)

- Commercial significance -

- Bill-Of-Material \rightarrow manufacturing cost $<\$ 100 /$ port
- Preliminary Data Sheets
- Assessment of Packaging and Integration Options
- Interaction with
- Texas Instrument
- Fujitsu
- Nistica
- UCSD

Next steps

Metrics	Current	Phase 1	Phase 2
Ports count	7×7	30×30	128×128
OSNR [db]	>8	>10	>100
Insertion loss [db]	36	16	5
Homogeneity [db]	5	3	1
Repeatability [db]	N.A.	0.5	0.1
Cross talk [db]	<-73	<-100	<-100
Speed [$\mu \mathrm{c}$]	50	12	5

