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Introduction 

This tutorial explains how to program a simple geometric ray tracing program in MATLAB, which can be 

written in any other programming language like C or Python and extended to add elements and 

complexity. The main purpose is that the student understands what a ray tracing software like Zemax or 

Code V does, and that the analysis can be performed even if there’s no access to any of those software. 

The code consists of a main program and a function for a plano-convex lens that in turn consists of another 

two functions, one for the refraction at a spherical surface and a second one for refraction at a plane 

surface, as explained in figure 1. Building the program in functions makes easier to debug and understand 

since the code is simpler, and since each surface is a different function, different elements can be easily 

constructed. 

By using a for-loop, it is possible to compute many different rays at the same time, which are stored in 

the rows of a matrix. That matrix has all the information necessary to perform different analyses. The 

inputs for the plano-convex lens function are the height of the ray, refractive index, thickness of lens, 

radius of spherical surface, and resolution for computations in the z-axis. The output is a ray matrix and 

some vectors related to the z-axis that make easier the visualization of the results. 

Finally, two examples of what can be analyzed with the ray matrix are given, that consists of a few extra 

lines of code. It is important to notice that even if we choose to do paraxial optics for simplicity for a first-

order approximation of an optical system, an exact ray trace is also simple and gives us substantially more 

information, for instance, spherical aberration and ray fan plots. 

 

 

 

 

 

 

 

 

 

 

 

Main program: 

System analysis 

Function: 

Plano convex lens  

Function: 

Refraction at spherical surface  
Function: 

Refraction at plane surface 

Figure 1. Structure of the geometric ray tracing program for a plano-convex lens. 



Refraction at plane interface 

The refraction at an interface is described by the Snell’s law: 

𝑛 sin 𝜃 =  𝑛′ sin 𝜃′ 

 

 

 

 

The Matlab function for refraction at a plane interface takes as input height y of the ray at the interface, 

slope 𝑢 =  tan 𝜃, thickness of the lens, index of refraction n, and vector z, which is used to plot the ray in 

air (back of lens). In our case, the ray travels from the medium to air. 

function [ray_air] = plane_refract_ray(y,slope,thickness,n,z) 

  

    theta1 = atan(slope); 

    theta2 = asin(n*sin(theta1));  

    slope2 = tan(theta2); 

    ray_air = (z-thickness)*slope2 + y;  

  

end 

 

 

 

 

 

 

 

 

Figure 2. Refraction at a plane interface described by Snell’s law. 



Refraction at spherical interface 

We need to compute the slope 𝑢 =  tan 𝜃 inside the lens, using the geometry in figure 3. 

 

 

 

It is easy to see that: 

sin 𝜙 =
𝑦

𝑟
 

By Snell’s law: 

𝑛 sin 𝜙′ = sin 𝜙 →  sin 𝜙′ =  
sin 𝜙

𝑛
  

Finally, after some simple geometry: 

𝜃 =  𝜙′ −  𝜙 

For the Matlab function, input variables are height y, radius r, thickness of the lens, index of refraction n 

and step size Δz. Outputs are the ray inside the lens, slope and z axis. In this case, the ray travels from air 

to the medium. 

function [ray,slope,z] = sphere_refract_ray(y,radius,thickness,n,dz) 

  

    sag = radius - sqrt(radius^2 - y^2); %lens sag at y 

    z = sag:dz:thickness;  

    sin_phi1 = y/radius; 

    sin_phi2 =  sin_phi1/n; 

    phi1 = asin(sin_phi1); 

    phi2 = asin(sin_phi2); 

    theta = phi2-phi1; 

    slope = tan(theta); 

    ray = slope*(z-sag) + y; % Ray in lens 

     

end 

 

Figure 3. Refraction of incoming ray at spherical interface. 



Plano-convex lens 

 

 

In order to construct the rays through the lens, we have to use the two functions described above, in the 

correct order. The paraxial focal length is computed for visualization purposes. The function for the plano-

convex lens takes as input the index of refraction of the lens, radius of first surface, thickness of lens, step 

size Δz and height y. The results for all rays are stored in a matrix, where each row is one ray. 

function [raymatrix,z_front,z_optaxis,zmax] = plano_convex(n,radius,thickness,dz,y) 

  

    power = (n-1)/radius; %lens power 

    f = 1/power; %paraxial focal length  

  

    zmax = floor(f+.1*f); %end of z-axis  

    z_front = 0:dz:thickness-dz; %z-axis back of plane surface 

    z_back = thickness:dz:zmax-dz; %z-axis front of plane surface 

    z_optaxis = [z_front,z_back]; %total optical axis 

  

    y(y==0)=10^-10;  

    raymatrix = zeros(length(y),length(z_optaxis)); 

     

    %Ray tracing 

    for i = 1:length(y) 

         

        %Refraction at spherical surface 

        [ray_lens, slope, x_lens] = sphere_refract_ray(y(i),radius,thickness,n,dz);  

  

        %Refraction at plane surface 

        [ray_air] = plane_refract_ray(ray_lens(end),slope,thickness,n,z_back);  

  

        %Incoming ray 

        x_front_air = 0:dz:x_lens(1)-dz; 

        ray_front_air = y(i)*ones(1,length(x_front_air));  

  

        %Create matrix of rays (adjust length if necessary) 

        if length(ray_lens)+length(ray_air)+length(x_front_air) <= length(z_optaxis) 

            raymatrix(i,:) = [ray_front_air,ray_lens,ray_air]; 

        else 

            raymatrix(i,:) = [ray_front_air, ray_lens(1:length(ray_lens)-1), ray_air]; 

        end 

  

    end 

end 

 

Figure 4. Geometry of the plano-convex lens solved in this tutorial. 



Main program 

The main program is where all the analysis is performed using the information of the height of each ray 

at all points obtained with the plano-convex lens function. It’s here where the programmer can decide 

what to visualize and the analyses to perform. The example shown here is for a plano-convex lens of radius 

R = 20 mm, center thickness = 2 mm and index of refraction n = 1.5168. The next few lines of code are the 

initialization variables and the visualization of the system. 

n = 1.5168; %Index of refraction of lens 

radius = 20; %Radius of spherical surface 

thickness = 2; %Central thickness of lens 

dz = 0.01; %Step size for computation purposes 

aperture = 5; 

number_rays = 11; 

dy = (2*aperture + 1)/number_rays; 

y = -aperture:dy:aperture; %Field of view 

  

%Ray matrix 

[raymatrix,x_front,x_optaxis,zmax] = plano_convex(n,radius,thickness,dz,y); 

 

%Figure 

front_lens = sqrt(radius^2 - (x_front-radius).^2); 

figure(1) 

plot(x_optaxis,raymatrix','r') %Rays 

hold on 

% Lens back surface  

line([thickness thickness], [max(front_lens) -max(front_lens)],'color','b') 

plot(x_front,front_lens,'b',x_front,-front_lens,'b') %Lens front surface 

plot(x_optaxis,zeros(1,length(x_optaxis)),'k--') %Optical axis 

hold off 

axis([-thickness zmax -max(front_lens) max(front_lens)]) 

 

 

 

 

 
Figure 5. Lens computed with the plano-convex lens function and ray traces for 

collimated incoming rays. 



Example: Ray fan plot 
 
Each column of the ray matrix corresponds to the heights y of all rays at a constant z. In order to compute 
a ray fan plot, we need to find where the paraxial ray crosses the optical axis, and plot the column 
corresponding to that point.  
 

 
%Find where each ray crosses optical axis 

ray_focus = zeros(1,length(y)); 

for i = 1:length(y) 

    [a, ray_focus(i)] = min(abs(raymatrix(i,:))); 

End 

 

%Find where paraxial ray crosses optical axis 

paraxial_focus = ray_focus(ceil(length(y)/2)); 

 

%Ray fan plot 

plot(y,raymatrix(:,paraxial_focus)') 

 

 

 

 

 

 

 

 

Figure 6. Ray fan plot for the plano-convex lens. 



Example: Longitudinal spherical aberration 
 
In the previous example, it was found where the rays cross the optical axis. We can plot those values to 
see the longitudinal spherical aberration of the system. 
 
 

spher_ab = x_optaxis(ray_focus(find(y>=0))); 

plot(spher_ab - spher_ab(1),y(find(y>=0))) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Longitudinal spherical aberration of the plano-convex lens. 



Appendix A 

Code to obtain the results presented in this tutorial. Save each function in different files, the 

name of the file must be the name of the function, e.g. sphere_refract_ray.m. 

function [ray,slope,z] = sphere_refract_ray(y,radius,thickness,n,dz) 

    sag = radius - sqrt(radius^2 - y^2); %lens sag at y 

    z = sag:dz:thickness;  

    sin_phi1 = y/radius; 

    sin_phi2 =  sin_phi1/n; 

    phi1 = asin(sin_phi1); 

    phi2 = asin(sin_phi2); 

    theta = phi2-phi1; 

    slope = tan(theta); 

    ray = slope*(z-sag) + y; % Ray in lens 

end 

 
function [ray_air] = plane_refract_ray(y,slope,thickness,n,z) 

  

    theta1 = atan(slope); 

    theta2 = asin(n*sin(theta1));  

    slope2 = tan(theta2); 

    ray_air = (z-thickness)*slope2 + y;  

  

end 

 

function [raymatrix,z_front,z_optaxis,zmax] = plano_convex(n,radius,thickness,dz,y) 

    power = (n-1)/radius; %lens power 

    f = 1/power; %paraxial focal lenght  

    zmax = floor(f+.1*f);  

    z_front = 0:dz:thickness-dz; %x-axis back of plane surface 

    z_back = thickness:dz:zmax-dz; %x-axis front of plane surface 

    z_optaxis = [z_front,z_back]; %total optical axis 

    y(y==0)=10^-10; 

    raymatrix = zeros(length(y),length(z_optaxis)); 

     

    %Ray tracing 

    for i = 1:length(y) 

         

        %Refraction at spherical surface 

        [ray_lens, slope, x_lens] = sphere_refract_ray(y(i),radius,thickness,n,dz);  

  

        %Refraction at plane surface 

        [ray_air] = plane_refract_ray(ray_lens(end),slope,thickness,n,z_back);  

  

        %Ray comming in 

        x_front_air = 0:dz:x_lens(1)-dz; 

        ray_front_air = y(i)*ones(1,length(x_front_air));  

  

        %Create matrix of rays (adjust length if necessary) 

        if length(ray_lens)+length(ray_air)+length(x_front_air) <= length(z_optaxis) 

            raymatrix(i,:) = [ray_front_air,ray_lens,ray_air]; 

        else 

            raymatrix(i,:) = [ray_front_air, ray_lens(1:length(ray_lens)-1), ray_air]; 

        end 

  

    end 

end 

 



%% Plano-convex lens: ray tracing analysis 

  

clear all 

  

n = 1.5168; %Index of refraction of lens 

radius = 20; %Radius of spherical surface 

thickness = 2; %Central thickness of lens 

dz = 0.01; %Step size for computation purposes 

%dy = 1; %Separation between rays 

aperture = 5; 

number_rays = 11; 

dy = (2*aperture + 1)/number_rays; 

y = -aperture:dy:aperture; %Field of view 

  

  

%Ray matrix 

[raymatrix,x_front,x_optaxis,zmax] = plano_convex(n,radius,thickness,dz,y); 

  

%Figures 

front_lens = sqrt(radius^2 - (x_front-radius).^2); 

figure(1) 

plot(x_optaxis,raymatrix','r') %Rays 

hold on 

line([thickness thickness], [max(front_lens) -max(front_lens)],'color','b')  

%Lens back surface  

plot(x_front,front_lens,'b',x_front,-front_lens,'b') %Lens front surface 

plot(x_optaxis,zeros(1,length(x_optaxis)),'k--') %Optical axis 

hold off 

axis([-thickness zmax -max(front_lens) max(front_lens)]) 

 

 

%% Ray fan plots 

%Find where each ray focuses 

ray_focus = zeros(1,length(y)); 

for i = 1:length(y) 

    [a, ray_focus(i)] = min(abs(raymatrix(i,:))); 

end 

%Find where paraxial ray focuses 

paraxial_focus = ray_focus(ceil(length(y)/2)); 

figure(2) 

%Ray-fan plot 

plot(y,raymatrix(:,paraxial_focus)') 

 

 

%% Spherical aberration 

figure(3) 

spher_ab = x_optaxis(ray_focus(find(y>=0))); 

plot(spher_ab - spher_ab(1),y(find(y>=0))) 

 


